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Abstract

The paper describes the results of a GPSS simulation of a real-time computer
system undertaken to determine the effects of specific types of !|nput/Output
(1/0) activity on the average instruction execution time (AIET) of the system's

central processor.

and references to mass storage devices.

The types of 1/0 activities studied are communications 1/0
Various memory bank configurations and

different memory bank referencing schemes are considered in an attempt to mini-
mize the effects of the 1/0 activity on the AIET.

1. INTRODUCTION

Many third generation real-time computer systems
employ various hardware devices which make it
possible for the system to handle communications
input/output (1/0) activity while simultaneously
executing instructions in the Central Processor
Unit (CPU). In effect these devices remove the
responsibility for handling the 1/0 activity from
the CPU in order to allow the CPU to devote more
of its time to instruction execution. Theoreti~
cally, it is possible for several operations to
take place concurrently within the system without
interferring with each other. However, this
simultaneous activity is possible only if the CPU
and the /0 activity handlers are referencing
different memory banks contained within the com-
puter system. Should any two devices attempt to
reference the same storage bank at the same time,
in most cases, the bank will service the requests
on a priority basis, and one of the devices will
have to wait until the other device has been
serviced before it receives its requested memory
cycle. The question which naturally arises con-
cerning such a simultaneous access system is:
What is the frequency of occurrence of these
conflicts at the memory banks and what is their
accumulative effect upon system performance? If
a system designer were to configure a real-time
system and compute the response time of an
incoming transaction on the basis that (1) all
required processing activity occurs sequentially
and (2) all possible activity that can be over-
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lapped with other activity occurs in an overlapped
manner, he would find that two completely dif-
ferent response times are obtained. The actual
response time would like somewhere between the two
extremes computed.

In many cases, finding the upper and lower bounds
of the response time would be sufficient. In
many other cases, the range between these two
extremes is too large and must be narrowed. In
an attempt to measure the effectiveness of simul-
taneous processing in a real-time system, a model
was developed which simulates a computer with
simultaneous access capabilities and generates
statistics which give information relating to the
frequency of occurrence of the memory bank con-
flicts and their effect upon overall system
performance. The statistics give information
concerning (1) the average walt time at a memory
bank, (2) the effective transfer rate of 1/0
activity, and (3) the average instruction
execution time (AIET) of the CPU. These results
can be used to help predict, with greater accuracy,
the performance of such a system in a real-time
application.

2. DESCRIPTION OF THE SYSTEM NODELED

The basic computer configuration to be studied is
shown in Figure No. 1. [t consists of a CPU, two
I nput/Output Modules (10M) to handle i/0 data
transfers, and N memory banks. The Input/Output
Modules actually function as small independent




processors that direct the 1/0 data transfer
operations and provide the system's 1/0 channels.
It is important to note that the Input/Output
modules function independently of the CPU.
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In order to accomplish the objectives of the
study, the manner in which the hardware items
simulated reference the main storage banks and
transferred data has to be included in the model.
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Real-Time System Configuration

The IOM channels are assumed to be connected to
mass storage media or communications lines. Data
being transferred over any channel is assumed to
be transferred in either of the following modes:

(1) Internally Specified Indexing (ISI) mode
(2) Externally Specified Indexing (ESI) mode

The 1S1 mode of operation permits each word of
data transferred over a channel to be transferred
in one storage cycle. Mass storage media make
data transfers in the 1S| mode. The ESI mode of
operation is used when more than one data com-
munications line is connected to the same 1/0
channel. In this mode of operation, Buffer
Control Words (BCW) are stored in main storage
and an index value that indicates the location

of the BCW is specified by the external device
(communications terminal) as the data is trans-
ferred. The ES| mode allows each |/0 channel to
operate as a multiplexer servicing a large number
_of communications lines which are transferring
data concurrently., ES| data transfers require
more than one memory cycle to accomplish the data
transfers. The study discussed here assumes that
four memory cycles are required per ES! character
transferred. |n both the IS] and the ESi mode,
é6nce the transfer of a block of data is initiated,
no CPU cycles are required to effect the individ-
wal character or word transfers of the data block.
in the study, the CPU is assumed to be continu-
ously executing instructions from a pre~determined
instruction mix, and both 1Sl and ES| data
transfers are occurring in a random manner.

Insofar as IOM references to main storage are
concerned, the process is very simple and will
be explained later. The operation of the CPU is
somewhat more complicated and will be explained
in detail.

As stated above, the CPU is assumed to be con-
tinuously executing instructions during the
analysis. |n general, the types of instructions
being executed by the CPU are governed by the
application being studied.

Two important instruction mixes are frequently
used for analysis purposes in studies of this
type--The Gibson Mix and the Scientific Mix.

The applicability of these mixes to given appli-
cations will not be discussed here. Suffice it
to say that a probability density function
specifying the types of instructions to be
executed and the probability of occurrence of a
given type is a necessary input to the model.
Regarding the individual instructions in the mix,
the only area of interest is the number of memory
cycles requested by a given instruction and the
time, relative to the instruction's start, that
the memory cycles are requested. Two typical
computer instructions are shown in Figures 2A
and 2B.
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CPU Instruction Types

The instruction depicted in Figure 2A is a type
which requests two memory cycles. These cycles
are requested with no time interval between the
requests. The instruction illustrated in Figure
2B requests three memory cycles, and there is a
time interval between these requests. With the
instruction of Figure 2A, the CPU begins to
execute the instruction at time ty. At i, the
first memory cycle is requested from one of the
system memory banks. |f no wait time develops

at the memory bank granting the access, the CPU
finishes the instruction cycle of the instruction
at time t3 and immediately begins the operand
cycle. At t4 the first memory cycle is com-
pleted and the second cycle begins. |f no memory
wail occurs, the CPU finishes the operand cycle
at tg, and the memory bank being referenced is
busy until tg at which time it finishes the
second memory cycle. The memory cycles requested
during this instruction execution may or may not
be requested from the same memory bank in the
system. Should the bank that is to grant the
request be busy at either t, or t4, the time
required to execute the ins%ructlon will be
delayed an amount equal to the time spent waiting
for the memory access. An instruction of the
type shown in Figure 2A with a memory wait in-
cluded is given in Figure 3.
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At time t, the memory bank which is to be
referenced for the second memory cycle is busy.
This busy condition exists until time t4 when the
second cycle begins. As a result of this memory
wait, the times noted by tg and tg are delayed a
tlme interval equal to 17 —% The memory wait
has, in effect, 1ncrea5e§ the execution time of
this instruction an amount equal to t4 ty. The
effect of repeated memory waits similar to the
one described above is obvious, i.e., the

average time required to execute an instruction
becomes longer than the time which would be
required were no memory conflicts to arise. This
lengthening of the average instruction execution
time would naturally result in longer program
execution times and higher CPU utilization--both
undesirable results.

Typically, medium and large scale computers have
an instruction repertoire which includes in
excess of one hundred instructions. When these
one hundred or so instructions are placed into
type categories determined by time-memory request
figures such as shown in Figure 2, usually less
than ten to twelve different instruction type
categories result. |t is very simple, then, to
model the computer system's entire instruction
repertoire since only the dozen or so different
instruction types need be modeled.
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Memory cycle requests made to the memory banks by
the Input/Output Modules are very straightforward.
In the I8! mode one cycle is requested per word
transferred. Should a memory wait.develop, the
IOM simply waits to obtain its required access.
in the ES| mode, multiple memory accesses are
requested (four in the study discussed here).
requests are made one at a time, i.e., the IOM
cannot request four consecutive cycles. |t must
request the cycles one at a time and contend with
the other requesting devices for each cycle.
Should a wait develop for any one of the memory
cycle requests, the succeeding requests are all
delayed. The effect of memory waits developing
during ES| or IS| data transfers is a slowing
down of the [OM transfer rates. That is, data

is transferred at a rate lower than the hardware
speeds alone would dictate. This slower data
transfer rate could have some adverse effects
upon the computer system (communications data is
lost, drums are caused to go through extra revo-
lutions in order to transfer data, etc.). Such
side effects are, needless to say, extremely
undesirable and should be avoided whenever
possible.

The

Hardware considerations and the utilization of the
system memory cycle requesting devices alone do
not determine the number of conflicts that will
occur at the memory banks. The system software
and core allocation--core location of the IS| data,
ES! data, worker programs, and the Executive
System--are important considerations and have a
pronounced effect upon system performance. Since
detailed information of this type is usually not
known until a time much later than the time at
which studies of this type are usually conducted,
an attempt was made to find the limits of the
variation in the results by making different
assumptions concerning the operation of the system
software and core allocation. Basically, the
system was studied by assuming:
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Case A -

Case B -

t5 tg

S| data, ES| data, and programs are
scattered throughout core. For any
given data block transfer or a communi-
cations request, selection of the bank
to or from which the data is to be
transferred is made by assuming that it
could go to any bank in the system with
an equal probability. Once a bank is
selected for a transfer, all of the
data in that particular transfer goes
to the bank selected. For each
instruction executed by the CPU, a bank
is selected from the banks present on
an equi-probable basis. Oncé a bank is
selected for an instruction, both the
instruction and operand cycles requested
their access from the selected bank.

Specific banks are designated to contain
only ISl data. Other banks contain only
ES| data, and the remainder of the banks
contain the programs. ESI and IS|
transfers are made to or from their
designated banks only. During the
execution of an instruction, the CPU
makes its instruction cycle request to
one of the program banks. The operand
cycle, if the instruction has one,
requests its memory cycle from either an
IS| or ES| designated memory bank. For
realism groups of instructions - between
ten and one hundred - make their operand
cycle request to the same memory bank.

It is the feeling of the writer that Case A will
cause a maximum number of memory conflicts and

Case B a

minimum. Needless to say, a program and

a core allocation scheme could be devised which
would result in more memory conflicts than will

occur in Case A.

The feeling here is that, if

such a situation does arise, it is really the

result of careless programming.

Such a case will
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not be considered in the results presented here.
The terminology "worst case" and "best case" must
be interpreted, however, with the above comments
in mind.

In all of the plots to be presented the [OM
utilization was taken as the independent param-
eter. Since it was possible--actually quite
probable~-that the utilization of the system

I nput/Output modules would not be equal, the
utilization given is the average 10M utilization.

3. SIMULATION MODEL

The general flow of the simulation model is shown
in Figure No. 4. Three devices capable of
requesting memory cycles from the N memory banks
are simulated. The simulated GPU begins the
execution of an instruction immediately upon the
completion of the previous instruction. The
initiation of a new instruction causes the
instruction type to be selected from an instruc-
tions type distribution. The distribution is
varied in accordance with the application being
studied. Once the instruction type is selected,
the CPU is "seized", and the storage cycles are
requested from the memory banks at a time
determined by the instruction being simulated.
Any memory conflicts that occur cause the
instruction's execution to be halted until the
memory request is satisfied. Operating independ-
ently of the CPU and also requesting memory cycles
is an I0OM which is transferring simulated data
blocks from mass storage devices. The time be-
tween block transfers from the various devices is
selected from a Poisson inter-arrival distribu-
tion. The number of words transferred per block
is drawn from a normal distribution. The rate at
which memory cycles are requested for a given
transfer, i.e., the mass storage device's data
transfer rate, is a function of the mass storage
devices being simulated. Several mass storage
" devices can be active and transferring data at
different rates concurrently. The maximum number
of devices which can be active at any one time is
governed by the hardware characteristics of the
[OM being simulated, which for all practical
purposes may be simply thought of as a multi-
plexer. The other simulated device which requests
memory cycles from the banks is another I0M. This
IOM is transferring communications 1/0. The
inter-arrival time of the communications requests
is selected from a Poisson distribution alsoy and
the number of characters transferred per /0
request is selected from a normal distribution.
The rate at which memory cycles are demanded per
|/0 request is governed by the transmission speed
of the line being simulated. As is the case with
the mass storage data block transfers, several
communications 1/0 requests can be active
simultaneously. Conflicts arise at the memory
banks whenever more than one device requests a
memory cycle at a given memory bank at the same
time. Each bank processes its request queue on
a first-in-first-out basis. .All of the delays
which result from the conflicts are tabulated in
the simulation output.

GPSS was selected as the simulation language since
the program was relatively small and the logical
model was well suited for implementation in the
language. The longer run times that resulted
from using GPSS were more than compensated for by
the savings in programming time. In the simula-
tion model the CPU, the Input/Output modules, and
the Memory Banks were treated as facilities which
were seized and released by the program trans-
actions. A transaction in the program could
represent either an instruction, a mass storage
data block transfer, a communications 1/0 request,
a memory cycle request, or a word or character to
be transferred. The location of a transaction in
the program, naturally, determined its physical
meaning.

The GPSS simulation program was about 200 cards in
length, and approximately two man weeks were re-
quired to program and debug the simulation model
once a logical model was at hand. Program
execution time varied between two and fifteen
minutes on aq§UNlVAC 1108 System. The number of
instructions executed by the simulated CPU varied
between 5K and 50K. The high number of instruc-
tions executions and the longer run time were
necessary to achieve stability in the output
statistics when low IOM utilization was being
similated. In order to determine when stability
had been achieved, the output statistics were
printed every 5000 simulated CPU instructions.
Stability was said to have been achieved whenever
the statistics varied less than 1%.

4, RESULTS

The results obtained from the study of Case A of
Section 2 will be discussed first. Figure No. 5
shows a family of curves giving the increase in
the average instruction execution time as a
function of the average IOM utilization. The
family of curves was generated by running the
model with 2, 3 and 4 memory banks in the system.
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Figure No. 5
AIET Vs. IOM Utilization-Case A
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In the figure the average instruction execution
time is plotted as a percentage increase over

the value that would result with no IOM activity.
The curves show that the average instruction
execution time increases in all cases with
increasing IOM activity, and the rate of in-
crease becomes higher as the number of memory
banks is decreased. When the IOM activity is

low (less than 10%), little difference is noted
in the average instruction execution time as the
number of memory banks is decreased. This is an
important result since one of the primary
objectives of the study was to determine when the
addition of memory banks could be used as a means
to speed up the system.

Perhaps a word should be said here about memory
system design choices in a system of the type
being discussed. A memory bank in our system
can have a capacity of either 16K or 32K words.
If it has been determined that 64K words are
required to contain The Executive System, all
applications programs, and the data, the system
designer may obtain this amount of core in either
two or four memory banks. There is quite a dif-
ference in cost between these two memory systems.
The results of Figure No. 5, then, gives some
guidelines which may be used in selecting the
number of banks to be placed on the system. |If
a particular computer system being designed has
an average |OM utilization ofl 10%, employing two
banks instead of four causes only an additional
2.5% increase in the AlET. This increase will
manifest itself mainly in a 2.5% increase in
program execution time and GPU utilization.
Since most real time systems are designed with
CPU utilizations in the neighborhood of 20-50%,
this slight increase in utilization will have no
real adverse effect upon overall system perform-
ance. Economy would then dictate that the sys—
tem should be configured with two memory banks
instead of four.
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Average Memory Wait Time Vs. IOM Utilization - Case A

Figure No. 6 shows a family of curves which give
the Average Memory Wait Time as a function of |0OM
activity for 2, 3, and 4 memory banks. As with
Figure No. 5, for low |OM activity rates, there

is little difference in the wait time between the
two and four bank systems. This result could

have been anticipated since the average instruction
execution time results of Figure No. 5 merely
reflect the effects of the memory wait times.
Figure No. 7 shows a family of curves which give
the |OM word and character transfer times for SI
and ES| data transfers. With both types of data
transfers, the transfer times increase as the
utilization rate is increased. The system
studied, theoretically, has an ISl word transfer
time of .75 microseconds (usec) and an ES| charac-
ter transfer time of 3.0 usec. An interesting
phenomenon can be noted in both families of
curves. If any of the curves, either ESI or iS1,
are extended, they will not intersect the
theoretical transfer time supposedly obtained when
there are no memory bank conflicts. Unfortunately
stabilization problems prohibited running of the
model for average |OM utilization below 10%. The
indication is definitely here, however, that even
for low IOM utilizations, the transfer times
obtained would be reduced some 10 to 15% below
their theoretical value. A further interesting
bit of data is obtained from the curves in the
high 10M utilization range. Transfer times are
seen to increase some 50 b 100% when IOM utiliza-
tion approaches 70%. This indicates that applica-
tions which require utilizations computed to be
70% or so using the theoretical transfer time
would more than likely exceed the system transfer
capacities because of the reduction in the IOM
efficiency.
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Figure No. 8 shows two curves which give the
increase in the average instruction execution
time versus I0M utilization of 3 memory bank
systems of Cases A and B of Section 2.” A marked
reduction in the increase in the average
instruction execution time is noted when the mem-
ory allocation scheme of Case B is employed.

This reduction in the average instruction execu-
tion time is seen to occur at all IOM utilization
values. |t may be concluded that a definite
improvement in program execution speed can be
obtained when the software is designed to minimize
the number of memory conflicts that occur.
Further, the curves indicate the magnitude of the
improvement. Comparison of the Case B curve of
Figure No. 8 to the 4 memory bank curve of

Figure No. 5 shows that a greater improvement in
system performance can be obtained by improving
the software than may be obtained by simply
adding hardware.
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AIET Vs. IOM Utilization - Case A, Case B Comparison

Figure No. 9 shows curves giving the average
memory wait time versus 1OM utilization for 3

bank systems of Cases A and B. A reduction in
the average wait time is noted for Case B. The
reduction is not as dramatic as the improvement
noted in average instruction execution time plots.
This is due to the fact that the wait time
plotted for Case B is the average of the waits
that occur at the two memory banks in which data
is storeds These are the only banks where memory
conflicts can occur. No waits can occur at the
bank(s) which contain the Executive and the
applications programs since only the CPU refer-
ences these banks. Therefore, during the
instruction cycle of each instruction executed, no
memory wait occurs, and the CPU executes instruc-
tions at a greater speed.
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Figure No. 10 shows curves giving the 10M transfer
times for 3 bank systems of Cases A and B. A
reduction in the transfer times can be seen for
both transfer modes in Case B. This is not sur—
prising since the probability of a conflict at a
given memory bank is reduced in Case B, i.e.,

the |OM's cannot conflict with each other and
either I0M can only conflict with the CPU during
its operand cycle. In Case B the IOM transfer
times should be independent of 10M activity.

This can be noted in the figure and served as one
of the many model validity checks employed in
debugging the model.
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5. CONCLUSIONS

In an effort to increase the speed of real-time
computer systems which handle many |/0 requests,
many third generation computer systems contain
hardware devices which allow simultaneous proc-
essing of instructions and.l/0 requests. The
model described in this paper provides a method
by which the effectiveness of these devices may
be measured in particular applications. The
hardware necessary to obtain this simultaneous
processing is expensive and should not be employed
unless its use can be justified. A model, then,
to evaluate such systems can be extremely useful
since mathematical techniques - Queueing Theory,
etc. - cannot easily be applied to study the
problem, and the problem does require study.

The model described here cannot be easily modi-
fied to study different computer systems, i.e.,
the operation of the hardware varies so greatly
from system to system that a separate model is
required to describe each particular system to be
studied. Once a model has been developed for a
system, however, it may be re-used many times to
evaluate different configurations used in a wide
variety of applications. The general format
followed in developing this model, however, can
be used to develop similar models to study the
same problem.

The usefulness of the model can be attested to by
the results described in Section 4. Guidelines
for selecting system hardware, system limitations
in a given application are predicted, and the
value of improving softiware over adding hardware
is demonstrated. A model of this type can be a
powerful tool in system configuring during a pro-
posal effori since it allows configurations to be
quickly evaluated in a particular application.
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