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Absiracr

This paper describes a variety ot statistical devices for improving the effectiveness of com-
puter simulations of random processes, The metheds are illustrated by examples from a queue~-
ing problem that is inadequately treated by conventional analytical theory,

1. INTRODUCTION

In a great many situations encountered in systems
engineering and management science one is confronted
with a problem that, figuratively spedking, falls into
some familiar category of models, and yet'is foo com=
plex for the mathematical techniques thereof, The
queueing problems encountered in job=-shop studies and
computer system and traffic (road, dir, elevator)analyses
are frequently in this category. So also are problems
connected with the completion time of certain projects
involving inter-related activities, as in PERT networks,
where these activities have uncertain duration, There

are undoubtedly other examples, but these will suffice.

After an initial attempt to develop information about such

problems by use of sirictly analytical or mathematical

methods, the analyst is typically forced fo adopt com-
puter simulation techniques for their treatment, When
this is done it is also common to drop further analytical
investigations, and merely to use the results of the sim-
vlations, I wish fo argue in this paper for an inter-
mediate, synthetic, approach: one that incorporates
both “oversimplified", "unrealistic" analytically ob-
tained resulis for simple models, and the output or ob~
servations from a simulafion experiment, The evidence
for the possible value of such techniques will be pre-

sented in terms of certain specific examples, and hence

will be largely empirical,

2. SIMULATION, AND MONTE CARLO METHODS
A brief statement of the simulation procedure is as

follows. We are concerned with a system, and a par-
ticular response variable, W, which is influenced by



several other variables, X, Y,...; we denote these col-
lectively by X, For example, W might be the waiting
time of an aircraft at an airport, and then X represents
the interarrival times of the planes appearing previously
on that day (or portion thereof), their runway occupancy
times, etc. The modelling process involves relating W fo
X; the latter are offen taken to be random variables, We
then investigate the distribution of W in terms of that of
X and are interested in figures of merit such as the ex~
pected value of W, the probability that W will exceed
That is, we seek fo find characteristics
of the probability distribution of

W= f(X) 2.1)

where f(- ) is presumed known, but is usually a complicated

some value, etc.

function. We now outline briefly some procedures for study-

ing the distribution of W, or certain of its characteristics

such as its mean, E (w]

(a) Straightforward Sampling

In order to obtain a sample value of W, we first obtain a
sample value of X,and then compute W by means of (2.1).
More specifically, X=(X,Y, ...) may be found by first
selecting a vector of pseudo random numbers, and con=
verting these fo realizations or samples of X, Y, ...
ufilizing the probability integral transformation or an
equivalent, i.e. solving

X = F;(] ®) 2.2)

FX(-) is the disfribution function of X, and R represents

a random number, uniformly distributed over (0,1). A set
of k independent realizations of W being af hand, denoted
by ; W(I) i=1,2..., k}, the latter may then be
averaged to obtain an unbiased estimator of E[W]:

k
N\ .
i:
having variance
Var {E[W]] = L Ver[W]. 2.4)
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Apparently the estimate can be brought closer to E [W] by
increasing k, the number of realizations, However, the
latter brute force approach is apt to be expensive in terms
of computer time, and alternatives are worth exploring.

A number of these are familiar, and will be briefly re~

viewed.,

(b) Antithetic Variables

Frequenily the response, W, is consistently positively or -

associated with one or more of the input variables, say X.
That is, if infer-arrival times in a queue realization are
larger than normal, the waiting times will be smaller than
normal, etc., Suppose then that the random number R
creates a realization X and X is "large™; then 1-R will
tend to create a corresponding realization X' that is
"small", Af small cost in programming one can then gen-~
erate anfithetic realizations W(i)cmd wt (I), where the
laiter are formed from the antithetic samples X M and

S l), in turn the result of R and 1-R, The latter anti-
thetic realizations are then averaged to obtain the final
estimate, Permutafions of the random numbers among the
components of X to obtain further antithetic realizations

is also profitable occasionally, E.S. Page [6 ] describes the
use of this technique in queueing problems, The writer and
J. Burt have experimented with it, and found it to be

effective in queueing and PERT network simulations,

(c) Stratification

This method in a sense extends the antithetic idea, Again
in brief, we can segment the unit interval over which R

ranges into, say, three equal parts:
1 1 2 2
n= ©, §), B = ( §,§-), r3=(§,1) . We then select

a subrange, n af random, using one random number,
Within @ value for R(1) is selected in accordance with
a random number uniform over (0, %- ); here R(1) denotes
the random number that generates X(1), a variable associ~
afed with Realization Number One, To obtain X(2), the
corresponding variable for Realization Number Two, it is
only necessary to add Jé- to R(1), thereby obtaining R(2),~~

possibly a subtraction of unity will be required to locate



R(2) in the range(0, 1), From R(2) X(2) results,
Another addition of :],7 to R(2), together with a subfrac—~
tion of unily of necessary, generates R(3), and hence
X(3) for Realization Number Three, Note that this
stratification procedure may be carried out for each vari-
able in X, and that two independent random numbers, in
the case above, generate three parallel realizations.
Actually, six realizations can be generated by the above

procedure provided the second uniform random number,

over (0, %—,) is treated antithetically inside that interval,

It can be seen that stratification fends to force an equal
distribution of X across companion realizations, and hence

a negative correlation of the corresponding values
W<I)(l ) W(I)(2), and W(')(3). The average

N\

E[W] = —l]é

o 0 e ¢ w3 (3)

3
J=1

= H1)H(2)+H(3) (2.5)

3

thus tends to have a variance smaller than that obtained

from 3k independent realizations.

3, CONTROL AND CONCOMITANT VARIABLES

THE USE OF APPROXIMATE MODELS
The techniques just described are useful for reducing the
sampling variability of simulations, but they fail to employ
exira information that may exist concerning the approximate
behavior of a system, I will now describe several prg~
cedures that involve the simultaneous use of simulation
with approximate models and concomitant information,
and will illustrate them by means of relatively simple

examples,
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{(a) Control Variates

A classical and useful estimating procedure that involves
the use of an approximate model operates as follows, We
desire to estimate E [W], where W is related to X by (2,1).
We are able to calculate (analytically or numerically) the
expectation of W* relatively easily; W* is the variable of

a model approximating that giving W, We might have either

W= = f*(X) @.1)
or
W= x*)
or even W* =#(X*); 3.2)

an asterisk will generally be used to denote an approxi-
mation,

The important intuitive requirement is that the distributions
of W and W* be similar. We then simulate both W and W,
utilizing the same random numbers R, That is, comparing
(3.1) and (2. 1), the values of X are identical accross
realizations to as great a degree as possible. This implies
that W and W* will be correlated. We now estimate E [W]

as follows

— k . k

Bw] = gwl+i ¥ w(3) -1y weld) (3.4.)
. 521

=k

E[we] + W - WF

11

If expectations are taken it is seen that

B{FW} = Ewe] + 6] - B[] = E[W]  (@3.5)

and so the estimate is unbiassed. Owing to the buili=in

correlation between W and W* we have

(3.6)
Var{ﬁ\ﬁ} =% {Var[ W] + Var[wx]} - 2 cou[W, W]}

Consequently, if the quantity in brackets on the right-

hand side is smaller than Var [W] then an improvement
has been achieved over straightforward simulation, This
is equivalent to requiring that the conirol variable, W*
exhibit the property cov[ W, W¥ !
va‘xj_ W] 2 (3.7)



It will, of course, not always be easy to see that (3,7)
is satisfied in advance. However, if the results of severdl
realizations are available one can simply compare the

empirically determined variances of a straightforward and
a control variate estimate to assess the coniribution of the

latter,

(b) Control and-Regression

The form of (3.7) suggests another possibility for improv~
ing precision, namely that of a correction of the form

[t

E w]r =W+ p(wx-E[w*]) (3.8)

where P is selected to minimize the variance of the

—~
estimate E[w]r' Since 3.9)
Var{ﬁ?_/w:lr} = Var[W] + 28 cov[W, W% - E[w*]]

& ﬁzVar[m ’

simple differentiafion and straightforward simplification

yields for the optimum B the value

(3.10)
_ cov W, wxi . » Var| W]
By = V?‘;EW:QJ = - correlation [W,W*] Var ¥

If this value of B is utilized, the resulting optimal re-

gression ud'lusfed estimate has variance

(3.11)
2
et _ 1 cov.| W, W
Var{E[W]r,o} = 5 {VaslW] - _\E;{-W%*Tl }
= —]%Var[W]{l - (correlatio‘n[w,w*])z}.

Notice that the variance of this estimate is always af

least as small as Var [W], ond hence will, in theory,
always be an improvement over simple estimates, while
ordinary control variates need not have this property;

see (3.7). Ona practical note, however, we remark that
the required covariance will not be known, and hence must
be estimated from data, Since the conirol variable model
has been chosen for its analytical tractability, Var [W#] is

presumably known, We are led to the use of the estimated

optimal B
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£ w3y w3 grwe)) (3.12)
0 Var[ w#] ’
and it is now clear that the realistic estimate is
W] A=W+ p, (W - ELwr]) (3.13)
r,0 0

which is no longer unbiassed, although the bias decreases
as the sample size, k, increases. In order o decrease the
bias for finite k an application of the Quenouille~Tukey
"jacknife” method is perhaps worth a try. The latter may
actually reduce the mean-squared error of the estimate,
There_ is, of course, no need tfo resirict attention to

linear corrections estimates of the form

AL
E[W]

(3. 14)
W+ o+ py (W - E[W]) + (W - E[w<])?

T

may also be worth investigation,

(c¢) Concomitant Variables

Suppose that realizations of the random variables X are

used to create realizations of W, where

wi = g @) | (3.15)

Quite commonly W(l)and Xi(l) are monotonically related

and we can put

cov[W(j), x§j)] = o (3.16)
where < is either positive or negative, Furthermore,
we actually know E[ng)]=E[Xi],since X is a given speci~-
fied input, Since sampling only k times will naturally
mean that the realized X-values deviate from their means,
then a linear correction to the simple average suggests

itselfe I
. X - HxD .
i; hE ( 1 [ 1]) 3.17)

Again ¥ can be estimated in terms of the covariance of

E[W], W o+

W and Xi’ and the resulting estimate is unbiassed and
consistent (tends in probability to E[W]) asympototically
as k, the sample size, increases, There is no restriction

fo a linear correciion,



4, QUEUEING EXAMPLES
The methods just described are well illustrated by con~
sideration of a very simple queuveing problem, It is well~
known that the waiting time, Wn , of the n-th arrival to
a single~server facility may be written as

wo= max[‘Wn_ 4.1)

-~ A +5 0]

1 n-1’

where An is the inter-grrival period elapsing between

the n-1" and n~th addition fo the queue {or entrance to
the server), and S_ is the service time of the n-th customen
If {An} and Sn are mutually independent sequences
of independent and identically distributed random variables
with  E[a.T=E[A]> E[s 1=E[s], andifother
moments exist as required, then a stationary or "steady~
stafe" distribution for Wn exists as n, —> co.» This dis~
tribution can sometimes be described in simple analytical
form but exact formulas are formidable in most cases. In
the "heavy traffic" situation, when E[A] is only a little
larger than E [S] and queues tend to be large, then
neat approximations based on diffusion equation solutions
are available: see Gaver [3] , and Newell (5].
When E [A]< E [S] the queue tends to grow, and
little information is available. Intuition suggests that in
the latter case the annoying boundary necessitating the
“max® in (4. 1) is eventually of no importance, and the

distribution of Wn approaches that of W"‘1 ; where

=W* . =
W: Wn_] An + Sﬂ_.I 4.2

as becomes large. Of course the latter is approximately
normal (if An and Sn have finite variances) and so we
feel that Wn is approximately normal as n increases, with

mean

W 1% (n-1)(ElS] - ELAD) () o

provided that W] =0, But a more refined enalysis indi=~
cates that the adequacy of (4, 3) depends on the variances
of A and S, and it may be desirable to estimate E [Wn]
by simulation for small to moderate n, both when

E[a] < E[s]

and in the steady-stare case when .E[A] > E[s].

~~ the over-saturated case==
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We shall display the effects of applying various of the
variance-reduction methods described fo estimate E [Wn]
for selected values of n. In particular we focus on the
control and concomitant variables approaches. For a
conirol varicble it is quife natural fo select the simple
boundary~less random walk W: when E[A] < EFS].  For

a cancomitant variable it is tempting fo select
n-|

L S
£=1

for infuitively speaking an increase in the former is

n
Z Ai s and also
i=1

associated with a small Wn , while an increase in the
latter induces an increase in Wn . Also,

e[ J=rE[A] ana E[s ;1= (n-1)E[s].
Numerical examples for the following cases will now be
presented. In each of these, service times are taken to
be exponentially distributed with mean ;L--] :

x20

H

P[Sn < %3 1~ e H*

0 x<0
The inter-arrival times are taken to be either constant

(regular arrivals), or egponentially distributed; in each

case the mean is unity,

5, DISCUSSION

Tables 1 and 2 illustrate the value of some of the pro-
posed estimating procedures, The service system selected
for study is quite simple: customers arrive (regularly in
Table 1, in Poisson fashion in Table 2) at a.single server,
where their service times are exponential with mean 10/9.
Even so, the transient response of such a system is not
easily characterized mathematically, and so simulation
suggests itself, An alternative is the diffusion approxi-
mation; see [ 3]and[ 5 1.

Rows (1) and (2) of the tables show the results obtained
if 25 independent realizations are averaged to obtain
W—n as an estimate of E [Wn]' Then using the same
random numbers we simulated the process again antithe-
tically and averaged to obtain the antithetic estimate

Wn (a). Comparison of the variances in rows (2) and (4)



indicafes that the antithetic device produces an improve-
ment even after the labor of simulating a tofal of 50
realizations is taken into account, The im‘provemenf is
smaller. for Table 2 than for Table 1, because of the added

variability contributed by the random arrivals,

Next the simple control variable device is applied; see
rows (6) and (7). The control is the boundary~free random

walk,

According to the variances computed, this control estimate
seems fo perform somewhat better than the anfithetic
estimate for large n (customer numbers), and less well" for
intermediate n, although the small differences observed
may be due to sampling errors, Certainly one is led to
explore further the comparative values of "antithetic”

and "control " as inherent process variability builds up:
conirol seems better than antithetic in Table 2 than in
Table 1. A combination of antithetic conirol might be

profitable,

Rows (8) and (9) display the effect of adjusting a straight-
forward estimate (see row (1)) in accordance with the
concomitant variable that equals the sum of the first n
service times in Table 1; Table 2 considers both service
and arrivals fimes as concomitant variables, The latter
device behaves in a manner comparable to antithetics and
to control. Rows (10) and (11) exhibit the results of
applying concomitant varidbles to the components of the
antithetic estimate of (3) and (4), This adjusted estimate
seems to be more effective than the others for the present
problems. Rows (12) and (13) indicate the value of a re~
gression~adjusted control procedure; one should compare

the variances of (7) with those of (13).

A diffusion approximation foEth] , valid for large n,
involves adding a constant term to E[W*] ; see [3].

The result in this case is

G.1)

BIW, gie. ] ~ n(E[S)-E[A]) + %&%ﬁ&? )

~f- (4)
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If arrivals are regular (Table 1) then Var[A] = 0, and

the constant correction equals
10

(10 1)

2 (5.2)

Vazr[ 5]
2(E[S]-E[A])

5.6:

9
while for Table 2 the constant equals 10, The diffusion

approximation is tabulated in row (12), Its values agree
quite closely with the control varicbles (row (6) ) and
regression-adjusted estimates (rows (8) and (10) ) for

large n.

The methods feporied here are also of use in improving the
efficiency of simulafion studies of stochastic networks of
the PERT/CPM type. Ceriain simple networks may be
analyzed analytically, provided node-to-node (link)
times are taken to be exponentially distributed. These
simple networks may be used to supply control variables
for actual networks that do not have exponential links,
Some numerical illusirations of this procedure are avail-

able, and more are in the process of construction,
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Table 1.

Estimated Wait of n~th Customer

n

Straightforward:

Antithetic:

Random Walk:
Control:

(=1)

Straightforward
& regression:

Antithetic
& regression:

Control:
(B estimated)

Diffusion

A =1, ES = 1.111

(Regular Arrivals, Exponential Service at Single server)
Based on 25 Realizations

|n: 5 10 25 50 100 150 200
(1) Mean | 1.19 1.87 451 7.85 11.43 17.04 23,60
(2) Variance . .124 .128 .605 1.356 2.758 6.795 10,678
(3) Mean § 1.35 2.51 5.11 8.67 14.50 19.58 24.88
(4) Variance | 054 .14 .256 367 62 130 170
(5) Mean ; Wby .99 2.67 5. 44 11,00 16.55 22.11
(6) Mean : 1.48 2.91 5.92 9.86 16,01 22,12 28.00
(7) Variance .039 .102 373 763 .963 1.296 1.427
(8) Mean 1.42 2.27 5.49 9.48 14.62 22,50 29.08
(9) Variance ' .019 042 144 . 366 446 1.715 3.864
(10) Mean 1.38 2,10 5.16 8.78 15,01 21.72 2746
(11) variance 014 .106 .165. .093 .093 67 1.350
(12) Mean 1.39 2.3 5.33 9.05 1.5k 20,94 27.13
(13) Variance 016 .03l 126 . 198 s 733 .832
(14) Mean 5.9 6.5 8.2 10.9 16.5 22.1 27.6

(Asymptotic; (5)+Constant:
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Table 2, Estimated Expected Wait of n-th Customer
(Poisson Arrivals,. Exponential Service at Single Server)
EA =1 ES = 1.111° Based on 25 Realizations
n: 5 10 25 50 100 150 200
Straightforward: (1) Mean 2.15 2.7 6.92 11.93 19.84 25.65 29.28
(2) Variance  .225 .295 1.119 1.832 2,692 6.59 11,446
Antithetic: (3) Mean | 1.95 3.33 6.62 11.22 17.30 24.33 29.55
(4) Variancei 062 .107 .27 .558 1.079 1.964 3,239
{
Random Walk: (5) Mean | .44 .99 2.67 5,44, 11.00 16.55 22.11
Control: (6) Mean 1.63 3.05 6.13 9,81 15,70 21.55 27,23
(g =1) (7) Variance; .125 .R25 AT 1.026 1.278 1.396 1..393
Straightforward  (8) Mean 1.69 2.86 6.0/ 10.79 17.93 22,46 27.64
& regression:
(9) Variance .148 .087 .162. LA43 1.201 1.565 2.307
Antithetic (10) Mean 1.73 3.22 6.15 10.83 17.61 24.09 29.57
& regression:
(11) Variance .025 .054 074 .216 .368 1.016 974
Control: (12) Mean 1.84 2.92 6.41 10.65 17.03 22,38 27.41
(B estimated) (13) Variance:  .051 .078 <196 «397 .866 1.0L0 1,297
; :
Diffusion (14) Mean 10. 4 11.0 12.7 15.4 21 26.6 32.1

(Asymptotic; (5)+constant:
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