QUIKSIM - A BLOCK STRUCTURED SIMULATION LANGUAGE WRITTEN IN SIMSCRIPT

DAVID G. WEAMER
National Cash Register Company
Hawthorne, California

I Introduction

Users of simulation languages have historically had to
choose between one of two types of language. On the one
hand, they could choose a block type language such as
GPSS. Languages of this type have the advantage that
the learning and programming of the language is both
quick and relatively easy. Also, since the number of de-
bugging runs is usually small, turn around time is likely
to be quite rapid. However, the block structuring of the
language may also create some difficulties. The fixed
nature of the blocks, both as to the types of blocks avail~
able in the language and the manner in which the blocks
simulafe a particular activity, may render the language
unsuitable for the simulation of certain types of systems.
In addition, the need fo pre-allocate much of the avail~
able memory space of the computer may make the use of a

block structured language impossible on a small computer.

—Application —tApplication
] 1
-4 =
~1Start Block | Start Block
|
p— P
) ~
T—
Y
Ly} End Block
L] End Block Figure 1

The alternative to a block structured language is an alge-
braic language, such as SIMSCRIPT or FORTRAN.,
Languages of this type are extremely flexible and give the
user a wide range of options in simulating a system.
However, the programming time required to implement a
model written in an algebraic language may be consider-
able due to the likelihood of a number of debugging and
recompilation runs. In addition, making changes to a
previously written program will also involve a certain

amount of debugging and recompilation time.

Clearly, it would be desirable to have a language which
combines the advantages of both types of language with-
out some of the disadvantages. QUIKSIM represents an

aftempt to produce such a language.

ll.  Fundamentals of the QUIKSIM Language
QUIKSIM is a block structured language which operates

Facility Table
] ]

Table

| [; I
Facility Table l

Lyl Facitity Ly

Facility

A |

Table




through an interpreter, written in NCR SIMSCRIPT. Each
QUIKSIM program consists of one or more applications.

An application is defined as a sequence of blocks,
beginning with a START block and ending with an END
block, which simulates some part of a system. A system may
also contain various types of entities which are used to
analyze the traffic in the system. Such entities might
include processing entities such as facilities, storage and
switches, data collection entities such as tables and compu-
tational entities such as functions, These features of
QUIKSIM are similar o those found in other block type

simulation languages.

Each block and entity in a QUIKSIM program is represented
internally in the computer as a temporary entity. When an
input record containing a block or entity description is read,
the QUIKSIM interpreter creates an appropriate size record,
containing all the information about the block or entity.
The temporary entities are then linked together by filing
them in an appropriate list. Each application consists of a
list containing all the blocks in the application. Each type
of QUIKSIM entity is also filed in its own list, i.e., there
is a list of storages, a list of tables, etc. Internally, a

QUIKSIM program might appear as in Figure 1.

The use of temporary entities instead of fixed sized arrays
for storing data has both advantages and disadvantages.

On the plus side, the available memory space is allocated
dynamically, as needed. This feature results in an efficient
allocation of memory space, maximizing the size of program
that can be run. A second feature, which is potentially
quite valuble, is the ability to insert or delete new blocks
or entities on a list while a program is running. This ability
would be an aid in on line debugging as well as encbling
the user to run similar programs consecutively without re-
loading his basic program each time. (This feature is not
currently implemented in the QUIKSIM interpreter.) On
the minus side, the user may pay a penalty in run time if
there is a need to perform list searches to find an entity or
block whose address is unknown. In order to reduce this
problem, the QUIKSIM interpreter contains an array of

addresses so that items on a list may be found more quickly.

2

Each application creates its own transactions, called jobs.
These jobs flow through an application, executing each
block in sequence, unless otherwise diverted. A temporary
entity is created for each job in the START block of an
application and destroyed in the END block of the applica-

fion.

. The QUIKSIM Interpreter
The QUIKSIM Interpreter is written in NCR SIMSCRIPT for
an NCR 315 RMC with an 80K memory (20K 48 bit words).

I+ consists of several routines.

The main routine is a driver
which simulates the flow of a job through an application.
This driver consists of a sequence of calls to routines which
simulate the various blocks in a system, each block being
simulated by its own routine. In addition, there is an in~
put and setup routine which reads the input cards, sets up
a temporary entity for each input record in the user's pro-
gram and files the entities in the appropriate lists. The
QUIKSIM Interpreter also makes use of the SIMSCRIPT
driver, a simulated time clock which drives the system

from event to event.

With respect to the block routines, the QUIKSIM Interpreter
is modular in design. A block routine may be added,
deleted or altered without changing any of the other block
routines. This modularity feature is a major objective of
the QUIKSIM language, because it allows the user fo
expand QUIKSIM by writing his own block routines in
SIMSCRIPT or FORTRAN. The user causes his routine to be
executed by including an input record with an appropriate
block name in an application. As a simple example,
consider a three block application with the blocks:

START

USER 1

END
After execution of the START block, a job flows to the
block USER 1. This block causes the execution of a user~
written SIMSCRIPT or FORTRAN subroutine called USER 1.
Following the subroutine execution, the job terminates in
the END block.

The use of user-written routines may be as extensive as the



user desires. Although the QUIKSIM blocks are designed
to be sufficient for most simulation models, the user may
re-write any or all of the block routines to suit his purposes.
In an extreme case, the user might have a QUIKSIM pro-
gram in which only the input and driver routines are retain~
ed with the user writing all the block routines. When used
in this manner, QUIKSIM becomes similar to the simulation
language GASP.

v. Features of the QUIKSIM Language
The preceding sections have indicated some of the consider-

ations which led to the development of the QUIKSIM lang~

uage. In this section, some of the details of the language
are discussed. Many of the features of QUIKSIM are similar
to those found in other block structured languages. Hence,

this section will concentrate on the differences between

QUIKSIM and the other languages.

A. Blocks

QUIKSIM contains 27 blocks, not including any that the

user might write. They are:

1. START 15. SEIZE

2. END 16, RELEASE
3. PRINT 17. PRICRITY
4. REPORT 18. PREEMPT
5. TRACE 19. ASSIGN
6. ENDTRACE 20. VARIABLE
7. RECLASS 21. EXECUTE
8. CALL 22, ENTER
9. RETURN 23. LEAVE
10. ACTIVATE 24, TABULATE
11. REPEAT 25. WAIT FOR
12. LOOP 26. SENDTO
13. GO TO 27. COMPARE

14. ADVANCE

The first six blocks are fairly standard. QUIKSIM has a
somplete range of reports including block count reports, a
queve report, a facility and storage utilization report and
any table reports that the user may desire. The tracing
feature allows the user to monitor the flow of jobs through
the system. One feature of QUIKSIM is that reporting and
tracing can be controlled on line, through the use of con-

sole sense switches.

The seventh block, RECLASS, is used to group the user's
processing entities (facilities, storages, and switches) into
classes. This feature enables the user to search partial

lists of these entities.

Blocks 8 and 9, CALL and RETURN, are used with QUIK-
SIM routines. A routine is the QUIKSIM equivalent of the
subroutine found in other languages. It is a sequence of
blocks which is executed when called by a CALL block.
The RETURN block causes a job to return to the calling
application or routine. Routines have been widely used in
QUIKSIM models and this feature is a highly desirable part

of the language.

Block 10, ACTIVATE, causes a job to begin flowing
through an application. Certain types of applications,
called dependent applications, do not generate their own
jobs. A job is generated for these applications only when
an ACTIVATE block is executed. This block is frequently
used in systems where parallel transactions are performing

activities in different parts of the system at the same time.

Blocks 11, 12, and 13, REPEAT, LOOP and GO TO, are
similar to their FORTRAN counterparts - the DO loop and
GO TO statement.

Block 14, ADVANCE, is a standard delaying block. A job
enters an ADVANCE block and is delayed until its block
departure time. At that time, it continues its flow through

its application.

Blocks 15 and 16, SEIZE and RELEASE, are used in conriect-
ion with facilities. Their use in QUIKSIM is slightly differ-
ent than their use in other languages. QUIKSIM assumes
that each processir;g entity in a system has its own queue.
Thus, the QUIKSIM SEIZE block combines the functions of
queuing and seizing in one block. Because of this feature,
the SEIZE block does not deny entry to any job which
attempts to enter it. Instead, if the facility is busy, the

job is queued at the facility and program control is passed
to the SIMSCRIPT driver for execution of the next event.
The execution of a RELEASE block is then required before

a queved transaction can seize a facility.



The PRIORITY block assigns a priority fo a job. This prior-
ity is used in ranked queues and in the preemption of a
facility. All jobs which do not enter a PRIORITY block are

assumed to have the same priority.

Block number 18, the PREEMPT block, simulates the pre-
emption of a facility. All preemption is based on priority.
If a job currently using a facility has a lower priority than
o job attempting to preempt a facility, and the facility is
not in preempt status, the current user will be preempted

and filed in the queue af the facility.

Blocks 19 and 20, ASSIGN and VARIABLE, are used to
store data in temporary storage locations. The ASSIGN
block stores data in parameters, which are attached to the
job record and may be referenced only by a specific job;
the VARIABLE block stores data in variables which can be

referenced by any job in the system.

Block 21, the EXECUTE block, is used for off line execution
of a block or blocks. These blocks are stored in a table
which is referenced by the EXECUTE block. This feature
allows the user to simulate activities without diverting the

flow of a job through an application.

Blocks 22 and 23, ENTER and LEAVE, perform the same
operations on storages that SEIZE and RELEASE perform on
facilities. They are responsible for the operations of the

queues at the storages.

The TABULATE block allows the user to file data in a table
which is later printed out in a report. Tables give the user
the ability to obtain specific statistics of interest on the

behavior of any part of the system.

The blocks 25 and 26, WAIT FOR and SEND TO, are fairly
general blocks which can be used for a variety of purposes.
Their inclusion in QUIKSIM was originally inspired by the
need to simulate the transmission of signals in computer
simulation models. These blocks operate through an entity
called a switch which is a multi-level indicator containing
a value. A job which arrives at a switch also contains a
value. If the two values match, the job flows past the

switch; if not, the job is queved. The WAIT FOR block

assigns a value to the job and causes it to be queued, if
the job values does not equal the switch value. The SEND
TO block sends a value to a switch and examines the queuve
at the switch to determine if anyone is waiting for the

value.

A switch may be used for a number of purposes. It may be
used as a logic switch, taking on the values 0 or 1 exclus~
ively. [t may be used as a queue, in which case the WAIT
FOR and SEND TO blocks operate in a manner similar to
the QUEUE and DEPART blocks in other languages. 1t may
also be used as a filter, allowing certain jobs to pass
through but blocking others. Finally, it may be used as an
indefinite time delay block in which jobs are delayed until
the execution of some activity in another part of the system

which causes their release.

The final QUIKSIM block is a COMPARE block. This
block works like the three way IF statement in FORTRAN
or SIMSCRIPT, transferring control to one of three blocks

depending on the relative magnitude of two values.

The pufpose of this brief discussion of the blocks in QUIK=
SIM is to give the reader some idea of the types of programs
which can be ruﬁ without the user having to write his own
SIMSCRIPT or FORTRAN routines. For most simulations,

the QUIKSIM blocks should be adequate. However, all

the blocks involve certain assumptions about the manner in
which activities are simulated and, to the extent that these
assumptions don't correspond to the user's system, the ability

to reprogram the QUIKSIM blocks becomes valuable.

B. Block Arguments

Each block simulates the performance of some activity. For
most activities, it is not sufficient to merely specify that the
activity is taking place = it is also necessary to specify the
manner in which it is taking place. In a SEIZE or RELEASE
block, for example, the user must specify which facility is
being seized or released. Or, as another example, in an
ADVANCE block, the user must specify the amount of time
a job is to be delayed at the block. The user performs this

specification by using an argument or arguments. A QUIK~



SIM block argument has a fairly well defined form. It
consists of one or more operations, specified in four column
alphabetic fields, and one or more integer values related to

the operations, specified in eight column fields. Some

examples below, illustrated in connection with an ADVANCE

block, should clarify the nature of arguments.

actry A ] [} ® 3 ¥ © [l 1 1 K [ u 1
1 sl sl 9o nln wa e ne  Ge v sl ssw  sWo st e

ABYAXCE BCO NS 100 8]
ADVARCE Eln:nusl 108 8 I '

ADYANCE lnlv Funglcnns 2|F U CICONS 1]
] S — | | I—
e ~ pa - I i

In the first ADVANCE block, the argument takes the infeger
1000 and uses it as a constant. In the second example, the
value of the argument is given from the QUIKSIM function
EtAT which itself has an argument, the integer constant
1000. EIAT generates values from an exponential distribu-
tion with a specified mean. In this case, the mean is 1000
and so the value of the argument will be a random variable
from an exponential population with mean 1000. The final
example gives an illustration of the use of an arithmetic
operation in a block argument. The argument gets values
from user functions 1 and 2 (FUNC specifies a user function)
and then divides the value of function 2 by the value of

function 1.

The structure of the QUIKSIM block arguments is designed
to be straightforward, The rules for their use are few and
mainly specify which operations are followed by an integer
and which are followed by another operation. From the
point of view of the interpreter, input is fairly efficient in
terms of both run time and memory requirements. All alpha
fields are directly converted to an integer code and the
code is stored in the appropriate temporary entity; all
integer fields, being right adjusted, can be stored in an
entity as read. Each type of argument format gives rise to
a specific execution code. (Given the QUIKSIM rules and
the 72 column limit on an input card, there are about 40
different argument formats available to the user.) The

execution code allows rapid execution of fairly complex

arguments. The major defect of the argument structure is
that it is inconvenient to use in performing complicated
arithmetic operations. The user is, in effect, restricted
to no more than two arithmetic operations per block. This
restriction does not mean that a user can't perform compli-
cated arithmetic; it simply means that the user must store
intermediate calculations and use several blocks to calcu~
late a desired value, much as he would do if he were
writing a program in assembly language. At times, it may
be more convenient for the user to write a FORTRAN or
SIMSCRIPT subroutine to generate an argument value and

QUIKSIM gives this capability. In a block such as

gty A & ¢ [ € F © " 3 3 L [l ]
1 b U ulbs oo sl o an wfe  wle e wla sl sde s ek el

ADVANCE WUSH

the argument to the ADVANCE block will be the value

generated from the user written subroutine USR1.

Ve Example
The preceding three sections have illustrated some of the

features of the QUIKSIM language.

In this section, these features are illustrated in greater
detail in an example. This problem is a simplified model
of a communications system. The configuration of the

system is as diagrammed below

CPU

[ 1

L...._J\

Communications
dapter
| l | 1
Line Line Line Line
Concentrator| [Concentrator Concentrator{Concentrator
e e
Terminals Terminals Terminals Terminals
Figure 2



Each line concentrator is attached to a certain number of
remote ferminals.- Each concentrator, in turn, is connected
by a high order line to the CPU. To determine if there is a
request for service, the CPU polls each concentrator in
sequence. When it finds a concentrator with a request, the
CPU sets up the line and allows the request to begin process—
ing. When the reauest has finished processing and an out=
put message has been sent, the CPU resumes polling. The
following pages present flowcharts and QUIKSIM coding.
(Figures 3-6). Figure 3 is a flowchart of the operation of

a concentrator. Figure 4 is a flowchart of the poll mechan~
ism of the CPU. Figure 5 is a flowchart of the processing

activities connected with servicing a request and polling.

The QUIKSIM coding is designed to be reasonably self-
explanatory. The operation of each concentrator has been
modeled separately. This modular technique has two
advantages ~ first, it allows the user to add or remove
concentrators from the configuration of the system without
any major reprogramming and second, it allows the user to
alter the arrival rate to one or more of the concentrators
without making any major changes. Application RPT initial-
izes two variables which relate to the operation of the poll
table and schedules a report. Application POLL simulates
the processing of a request and polling. The three routines -
LINE, EX~1 and APL 1 - simulate the seizure and utiliza=
tion of the high order line and the CPU. The final two
applications, ENV 1 and ENV 2, simulate the utilization

of the CPU by requests which are generated from outside

the system.

The results which can be obtained from o program of this
type may be useful in aiding in the design'of systems.
Specifically, the user can determine the effect of adding
or removing concentrators from the high order line on the
utilization of the line and the CPU. He can determine the
effect of changing the arrival streams to the concentrators
(i.e., changing the number of terminals per concentrator)
on device utilization. He can also determine the effects
of changing the assumptions about device utilization times.
These assumptions are imbedded in the three user defined

functions, which specify utilization times and the proba-

bilities associated with each time. In all these cases, the
QUIKSIM language is designed to allow a user to alter his

program quickly and easily.

Vvi. Required Resources

The development of the final version of the QUIKSIM

interpreter required approximately one man year. This
time included the production of a preliminary version of a

user's manual .

An early version of the interpreter and manual was complet-
ed in about six months; however, this version contained a
number of undesirable features and was abandoned. In
developing a language of this type, it is necessary to
estimate what features a potential user is likely to find
desirable and to include those features in the language.
Balanced against the desire to include a large number of
user oriented features are the dual considerations of run
times and memory requirements for users' programs. The
interpreter which was ultimately produced aftempted to

balance all of these factors.

The QUIKSIM interpreter is written for an NCR 315 RMC
with 80K of memory. The memory requirements for the
FORTRAN system, QUIKSIM interpreter object program,
and all other FORTRAN and SIMSCRIPT system reéuiremenfs
is approximately 45K. The user has the remaining 35K to
use for his jobs, blocks and entities. While the exact size
of program which a user may run depends on the structure
of the system being modeled, a program with in excess of

500 blocks would probably fit the available memory.

Experience with the language hes indicated that programm-
ing and turn around time is fairly rapid. Large models (in
excess of 200 blocks) have been written, debugged and

run in about a week. This turn around is undoubtedly more
rapid than would have been obtained using SIMSCRIPT;
however, run times have been quite lengthy. The example
given in Section V required approximately one hour of
computer time to simulate 10 minutes of real time. During
the 10 simulated minutes, approximately 33,500 jobs were
processed in all applications. Pert of the run time problem

is due to the relatively slow speed of the computer being




Start

Seize Line
Concentrator

Wait for poll
code from CPU

O

Release
Concentrator

End

Figure 3

L,

off

Figure 4

Start

Send
poll code

Transmit

EOT

End of
poll table?

Reset
poll table

Utilize
CPU

Continve
polling

O HHH L HHH FOHIH RO

Account for terminal
and concentrator delay

Transmit input

Interrupt processor and
service input

Process application

Test message type

Interrupt for OCD and
terminal put

Transmit output

Account for terminal
processing delay

Send acknowledgement

Interrupt processor and
verify acknow ledgement

Send EOT

Drop input
pilot fone

Interrupt CPU and
resume polling

End

Figure 5



Cm»=~=~SET UP OF FACILITIES,SWITCH, AND RUN LABEL
FACILITY CPU FIFO

FACILITY HOL FIFO

FACILITY CONLFIFO

FACILITY CONZFIFO

FACILITY CON3FIFO

FACILITY CONAFIFO

SWITCH  QUE Q

LABEL CONCENTRATOR POLLING
END

O W

C--"'SEg UP OF TABLES

TA 1000c0 50000
TATAL ngvxce TIME
2 TABLE 1000c0 100000
WAIT TIMES FOR HOL
C=====SET UP OF FUNCTIONS
1 FUNCTION DISC 3RNI CONS OCONS 999
1 FuNcn 42 301200 934 53666 993 32000
2 FUNCTION D 3RN] CONS OCONS 999
UNCTION Disc 442 10000 93k 8000 999 17000
RN1 CON OCONS 999
3 FUNCTION DIsc 818 agsgac s 936 245000 599 145200
END
Cecwe=APPLICATION TO SXHULATE ARRIVALS AT CON1
1 START 10000 1g1AT 3333333 CONL
2 sp1g N1
CouwwnlF CONCENTRATOR HAS BEEN SEIZED, ENTER GUEUE YO WAIT FOR HOL
3 WAIT FOR @ ONS 3

VE C

Crevr=TABULATE WAITING TIME FOR HOL
% TABULATE CONS 2TRA

Ce====WAIT FOR END OF PROCESSING BEFORE RELEASING CONCENTRATOR
5 WAIT FOR GUE CONS b

6 RELEASE CON1

7 END

Cres7APPLICATION TO SIMULATE ARRIVALS A1 coNg
1 START 10 1EIAT 3333333
2 SEIZE . CON2

ce==i~1F CONCENTRATOR HAS BEEN SEIZED, ENTER GUEUE TO WAIT FOR HOL

cone

COMMENT
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
SHITCH
LABEL
FACS

COMMENT
TABLE
TABLE
TABLE
TABLE
TABLE

COMMENT

FUNCTION
FUNCTION
FUNCYION
FUNCTION
FUNCTJON
FUNCTION
FUNCTION

Ccon2
10 CON2
coneg
coN2

Figure 6

3 WAIT FOR OUg CONS
Ce-<c-TABULATE WAITING TXHE FGR HoL
CommemWATT PG END OF
cavme R END O Pﬂocsssxua BEFORE RELEASING CONCENTR
S WAIT FOR QUE CONS 1 NG CONCENTRATOR
6 RELEASE CON2
7 END

Ce=v=<APPLICATION TO Sl"ULATE ARRIVALS AT CON3
% ST!z 1000 1E1AT 33333233 CON3

ON3
Cosvs=1F CONCENTRATOR HAS gEEN SEIZED, ENTER QUEUE TO WAIT FOR
3 WAIY FOR GUE Bco NS 5 1T FoR HoL
C=e=-TABULATE WAITING TIME FOR HOL
c 4 ;:?ULATE CONS 2TRAN
m=-=«WAIT FOR END OF PROCESSIN BEFORE RELEASING CONCENTRATOR
5 WAIT FOR QUE coN G 1 ¢ A0
6 RELEASE CON3
7 END

CeanswAPPLICATION TO slMULATE ARRIVALS AT CON%
1 START 10 1g1AT 3333333
2 SEIZE  CON%

+=1F CONCENTRATOR WAS BEEN SEIZED,
WAIT FOR GUE CONS
Cume==TABULATE WAITING T:nz roa HoL
conn A S0
LI R END OF PRDCESS]NG EFORE RELEASING ' CONCENTRATOR
5 WAIT FOR QUE 8 NG CONCENTRATO
; RELEASE CON4

CON&

Crer ENTER QUEUE TO WALT FOR HoL

C-..;qAPPL!CATlON 10 CgNTRDL REPORTING AND INITIALIZE VARIABLES
1EIA 0 PT
R

ART E
S=VARTABLE 1 EDUALs NUMEER of FIRS; CONCENTRATOR
NS

2 VARIABLE Ci 1
CecweaVARIABLE E EGUALS NUMBER OF LAST CONCENTRATOR,PLUS 1
3 VARIABLE CONS 2CONS 7
Ce~=*sSCHEDULE REPORT AT 600 SECONDS
4 ADVANCE MuLTCUNseooooouocuNs 10
£ oo

20

30

con2
COoN2
CONE2
cone
CONE
CONE
coNe

CIn3
cCn3
€ON3
Can3
CON3
CON3

con3

COon&
CON®
CON4
CON4
CON*
con
CON#
CONY
CON&
CON4
CON%



C---'-APPL1CA710N 10 SIHULATE PnLLxNG AND UTILIZATION oF CPU
1000 STAg 1000 ONS POLL
1008 Assxen CONS

-y

3VaR CUNS 2
2CQNs 28666

LINE
Cee --CHEEK 1F FOLLED CONCENTRATOR MAS A REQUEST FOR SERVICE
1040 cOMPARE  133010501330CONS 1UFLBVAR CONS 1

CeweveBpLLED CONCENTRATDR HAs A REGUEsT
1090 SEND . TO u: . VAR CON

CreseSERVICE REQUEST
seweyACCOUNT FOR TERMINAL AND CONCENTRATOR DELAY
1420 ADVANGE CONS 8000

c;..-,liLecY NUMBER OF CHARACTERS AND TRANSMIT INPUT

130 ASSIGN  CONS 2FUNCCONS
1§40 caLL LINE

C-----;NT(RRUPT PROCESSOR AND SERVICE
185 ASSIGN CU NS 2co 28000

Xed
cu‘---(ELECT APPLXCAT!ON COMPUTE TIME AND REGUEST CPU USAGE
1210 Assxan co 2FUNCCONS 2

1
[0 TE aHINE TYFE oF HESSAGE

t13° Ex:curs CONS 1CON§ 1

1335 a0 o FARM 10
CeeseaOCD AND TERMINAL PUT

AIl;GN Eo s 2CONE 6000

ciosagabicy Nunu R OF CHARACTERE 4D yRANSHIT OUrPUT
060 AES aN 2FNCCONS

1230 CaLL LlN:
GeerssTERMINAL PROCESE!NG DELAY

1280 ADVANCE CONS 3220
CavavegEND ACKNOHLEDGEHENY

230 ASS!GN CONS 2CONS 20333
300 CALL LINE

CessSs INTERRUPT paoc:ssOR,vEerv ACK
1310 ASSIGN  CONS 2col 7000
1320 caLL sx.x

CIU'-'SEND E
iszg ASSIGN  CONS 2CONS 20333

LINE
¢ OROP INPUT PXLOT TONE
1350 ADVANCE CONS _ 39

222
Ce=vre INTERRUPT PROCESSOR;RESET INTES;AL TIMER AND RESUME POLLING
10

1360 ASSIGN CONs RCONS
1370 cALL

END To OQUE CoNs
9 10 CONS 1430
=~NO REGUESY FOR SERVICE
Ce=»w=TURN IPY AND ]C ON
1390 ApVANCE COyS 25000
C--r-vsinp EoY To CENTRAL
1400 ,5516N CONSg 2CoNs 20333

Xel
=wSEND SIGNAL T0 CONCENTRATOR TO INDICATE END OF PROCESSING
1

1410 caLL LINE

1420 ADVANCE CONS 18000

€ =>"~CONTINVE PoLLING
Cre==aTABULATE senvxcE TiMg

1430 TABULATE CONS TTRAN
Co=e==INCREMENT POLL TABLE POINTER

1&5
Ce-vveRECYCLE POLL TABLE

1440 VARIABLE CONS 1CONS 3
1,70 assiGN  CONS 2CONS 6000
1480 cALy EXui

1490 gD

1CONS 1

COMPARE 149014603490PARM 3IVAR CONS 1

Crowvep TABLE TO OETERMINE MESSAGE TYPE

1 ETABLE
(134 AssxGN CONS 10CONS 1310
939 ASSIGN  CONS 10CONS 1240

END

C"*"COHHUN[CATIDN LINE USAGE ROUTINE
LIN

1 ROUTIN

2 sEIZE oL

5 ADVANCE AR 2
& RELEASE HOL

S RETURN

& ENp

CommeneXECUTIVE PROCESSING ROUTINEw=eNONs INTERRUPTABLE CPU UTILIZATION

ROUTINE EXsi
PRIORITY CONS 300
PREEMPT CPy

ADVANCE PARM 2
RELEASE CPU

RETURN

END

Cree==APPLICATION PROCESSING ROUTINE=-~INTERRUPTABLE CPU UTILIZATION

21
22
23
a4

ROUTINE APLY
SE1ZE CPy
ADVANCE PARM F]
RELEASE CPU




ol

25 RETURN
26 £Np

.

€= 2=£XOGENOUS ngCUerE PROCESSING APPLICATION

STARY 100 f1EIAT 20850 ENVi
32 ASSIGN  ¢ONS 2cONS 8000
33 caLL EXel
3% gnp

3

C""'§XOGENOUS APPLICATION PROCESSING APPLICATION

TART 000 1ETAT 833000 ENV2
&2 ASSJGN cu~< 2CONS  15C0C

43 caLl APLY

A% END

ENDFILE

APLL
APLL

ENVL
ENvI
ENV1
ENvl
ENVE

NV2
ENv?
ENvE
ENV2
ENv2



used. A typical SIMSCRIPT job will take about three times
as long to run on an NCR 315 RMC as it would on a 7094.

VII. Future Developments

There are a number of potential improvements fo QUIKSIM
which may be desirable when the inferpreter is reprogramm-
ed for a more sophisticated computer system, such as the
NCR Century series. At present, all input in a QUIKSIM
program is on cards and this feature makes it somewhat
inconvenient to make on line changes to a program. If
input were from a remote terminal, on line changes could
be made very easily since the user could easily insert,
delete or change an item on any of the lists which cemprise
his program. Another desirable improvement would be an
expanded ability to display and analyze output.

QUIKSIM currently produces a fairly broad range of
reports. However, if the user wants to analyze or display
his data, he must use some other program. It would be
desirable to hook up the QUIKSIM interpreter with a
statistical package to allow the user to perform regression
analysis, hypothesis testing, etc. without the need to use
a separate program. Finally, there may be some desirable
changes to SIMSCRIPT which would improve the interface
between SIMSCRIPT and QUIKSIM. (In writing the
QUIKSIM interpreter, the SIMSCRIPT translator has not

been altered in any way.)

VI, Summary

This paper has described an approach toward the task of
producing a general purpose simulation language. The
approach has been to utilize a high level simulation
language, SIMSCRIPT, to produce an interpreter for an
even higher level language, QUIKSIM. A user may use
as much or as little of the QUIKSIM system as he desires.
At one extreme, he may program entirely in QUIKSIM;

af the other extreme, he may program entirely in
SIMSCRIPT or FORTRAN, using the QUIKSIM interpreter
as a foundation upon which to build his own SIMSCRIPT or
FORTRAN program. This approach to a simulation language
is designed to provide a maximum of flexibility and pro~

gramming options to a wide variety of potential users.

11

Acknowledgment

The author wishes to gratefully acknowledge the many
helpful suggestions and criticisms of Mr. K, N. Hayward,
Mr. G. W. Dangel, Mr. R. J. Ceci and Mr. S. Wong.



