FORTRAN SIMULATION OF DIGITAL LOGIC

Dale I, Rummer
University of Kansas
lawrence, Kansas

SUMMARY

The software described in this paper
was created to aid engineering students
verify the correctness of the design of
digital logic systems, The verification
coneizts of comparing a truth table gen-
erated by the simulation with the truth
table desired, The software ig written
in FORTRAN becauste computers with FORTRAN
compilers are widely available both to
students and practicing engineers, The
digital logic is defined in terms of
actual hardware, rather than in terms of
the classical AND, OR, and NOT functions,
This feature makes it easy to write the
simulation program directly from 2 hard-
ware logic diagram, Thus the design is
verified at the hardware level, rather
than at the classical logic level, The
implementation described is in terms of
logic hardware produced by the Digital
Equipment Corporation, but the hardware
produced by any manufacturer can be de-
scribed in similar terms, The method of
simulation is applicable to a wide vari-
ety of both combinational and seguential
logic, The restriction is that the oper-
ation of the logic system can be describ-
ed by a sequence of decisions which are
independent of subsequent decisions, For
example it is not convenient to simulate
+the intercénnection of two NAND gates for
operation as a FLIP-FLOP, Other cases of
feedback around several logic stages may
also cause problems, This software is
not concerned with aiding in minimimation
of the logic structure, The nature of
the formulation of the simulation lends
itself to automatic checking for fan-in
or fan-out limitations, but this also is
not the concern of this paper, The oper-
ation of the logic is assumed to be inde~
pendent of propagation delays which there
fore are not simulated, This method of
simulation has been used to verify stu-
dent designs for a pipeline control sys-
tem, a degital message switching system,
and a printer control system for a digi-
tal computer,

GENERAL IMPLEMENTATION

Although many FORTRAN compilers have
the Boolean operators built in, these
operatore are not as convenient for the
gimulation of digital logic as are some
special functions which can be easily de-
fined, Fig. 1 shows three bhasic logic
functions, their truth tables, and a
FORTRAN arithmetic statement function
which simulates this operation, All log-

297

ic variables are assumed to have eitier
the value zero or one, The correctness

of these functions can be easily verified
by direct substitution of the indicated
values, Fig, 2 shows how the NAND and NOR
functions are simulated in terms of previ-
ously defined logic functions, Although
this approach may not yield minimum pro-
gram length, nor minimum execution times,
it does minimize the time, and hence, ex-
pense of software development, The user
can always write the more complex logic
function directly in terms of sums and
products if desired, Fig, 3 shows addi-
tional examplezs of the derivation of three
and four input logic functions in terms

of the original two input functions,

SPECIFIC HARDWARE

Fig. 4 shows how a particular hard-
ware device may be used to implement ei-
ther a NOR function or a NAND function
depending upon the definition of the log=-
ic as positive or negative, The method
of simulation descridbed will work for ei-
ther convention, or for a mixed conven-
tion, just as hardware will function un-
der any of these circumstances, For the
sake of a consistent point of view in this
paper, the following description will be
in terms of negative logic, The logic
function which simulates a particular
item of hardware is given a name com-
pounded from the manufacturer's part num-
ber and the lable of the output terminal
for that particular function, This pro-
cedure makes it easy to compose the FOR-
TRAN statements which constitute the sim-
ulation program directly from a hardware
logic diagram, The possible errors in-
troduced by translating back into clas-
sical logic functions are thus eliminated,
This procedure is illustrated in Fig, 5
for the DEC type 107 INVERTER card which
has seven inverters, The logic function
associated with terminals 4 and e is
called R107D since the output for that
section appears on terminal 4, This pro-
cedure of naming the FORTRAN statement
functions which simulate a particular
jtem of hardware is further jillustrated
in Fig, 6 for the R121 Quad NAND gate
card, -

EXAMPLE OF COMBINATIONAL LOGIC

Consider the simulation of a binary-
to=-octal converter as an example of how
the FORTRAN simulation program would be
written, Fig, 7 shows the truth table for
this converter and Fig, 8 shows the logic

block diagram on the right side, The
three binary inputs to the converter are
A, B, and C, Inverters are used to pro=-
duce the inverse of each of these vari-
ables denoted as AB, BB, and CB, The ocut-
put of the first inverter is AB and hence
the FORTRAN replacement statement,
AB = R107D(A),

simulates the operation of this inverter,
The remaining statements for BB, and CB
are obtained in similar fashion. The
R1211 section of a NAND card is used to
compute the variable XOB. which is then
inverted to obtain X0, The FORTRAN state—
ments to simulate the operation of these
two hardware devices are:

XOB = R]121L (AB,BB,CB)

X0 = R1O7L (XOB)
The sequence of these statements must be
as shown to provide the proper value of
the argument, XOB, for the inversion pro-~
cess, The other seven outputs are simu-
lated in the same manner, The simulation
of the operation of the binary~to-octal
decoder consists of executing in sequence
the series of statements shown on Fig, 8,
It is assumed in this discussion that the
values of the wvariables A, B, and C have
been previously defined by computation, or
by reading in as data, Since this se-
quence of statements must be executed once
for each set of inputs, these statements
might well be enclosed in a DO LOOP, or
perhaps constructed as a subroutine, The
same type of logic card may be used in
several different locations in the hard-
ware which is being simulated, Such a card
needs to be defined by only one set of
FORTRAN functions, The procedures indi-
cated can be extended to simulate any
combinational logic device which may be of
interest,

FLIP-FLOP CIRCUITS

The operation of a FLIP~-FLOP can be
simulated by appropriate combinational
logic functions together with "memory" of
the previous state, If this memory is
provided within the function which defines
the FLIP-FLOP, a separate function must be
defined for each FLIP~-FLOP which is need-
lessly wasteful of computer memory., Al-
though FORTRAN functions are formally
limited to one output value, extra input
parameters can be used to provide the memw
ory of the previous states which may be of
interest, Fig, 9 shows the external con~
nections for one FLIP-FLOP of the pair
found on DEC type R205 cards, The condi-
tions for setting, clearing, or comple=
menting the FLIP-FILOP are also shown, The
inputs F,D, and M are effective in alter-
ing the condition of the FLIP-FLOP only
when there has been a change from the one
state to the zero state, The normal state
is the one state, The flow chart for a
FORTRAN subprogram to simulate the opera-

298

tion of this FLIP-FLOP is shown in Fig, 10,
It is possible to define an arithmetic
statement function to simulate the oper-
ation of a FLIP~FLOP, However, the main-
line programming is made more tedious by
the necessity of saving the previous
value of pertinent variables, The use of
a subprogram permits these operations to
be coded just once, rather than once each
time the FLIP-FLOP function is used,
Other types of FLIP-FLOPS may also be
simulated by similar definitions,

PARALLEL TO SERIAL CONVERTER EXAMPLE

As an example of the simulation of
both sequential and combinational logic,
consider the five-bit parallel to series
converter shown in Fig, 11, The input
consists of logic levels present on the
input lines PO thru P4, After the regis~
ter has been cleared by a CLEAR pulse,
the inputs are transferred to the shift
register by the LOAD pulse, The shift
pulse gates the state of the upper FLIP-
FIOP to the output bus, and causes the.
states of the FLIP-FLOPs to shift upward,
The essential segments of the FORTRAN
program to simulate the operation of this
shift register in the context of a FOR~
TRAN subroutine are shown in Fig, 12,
Fig, 13 shows a print-cut such as would
be produced by the computer simulation
of the parallel to serial converter, The
register was assumed to be all cnes ini-
tially to show the effect of the clear
pulse, The transition of the LOAD bus
from the one state to the zero state
causes the data on the INPUT buses to be
transferred to the shift register, The
transitions from the one state to the
zero state of the SHIFT bus causes the
data in the shift register to be shifted
up one stage, The serial sequence of
ones and zerces on the OUTPUT bus corre-~
sponds to the original data in parallel
form on the INPUT buses, The OUTPUT bus
returns to zero each time the SHIFT bus
goes to zero, This point is made clear
by the second case where the parallel
data consists of all ones, Note that
this new data appeared on the INPUT buses
several shift cycles prior to the second
LOAD pulse,

LOGIC SYMBOL TRUTH TABLE FORTRAN
STATEMENT FUNCTION

L AND 1 7 [x
< o o o AND2(I, J) = I * J
g ___| o 1 0
10 0
11 1
OR
I I g X
X 0o o 0 OR2(I, J) = I+J ~I*J
J 8 1 1
10 1
11 1
NOT
T X I X
0 1 NOT(I) = 1 - I
1 0
Fig.l : BASIC LOGIC FUNCTIONS AND THE RELATED FORTRAN SIMULATION
LOGIC SYMBOL TRUTH TABLE FORTRAN
STATEMENT FUNCTION
. NAND I J X
X o o 1 NAND2{ I,J) =
J 0 1 1
1 0 1 Nor(AND2(I,J))
11 0
NOR I3 X
1
X 6 o0 |1 NOR2(I,J) =
3 0o 1 0
1 o |o N¥or(or2(I,J))
1 1 0

Fig,2 : LOGIC FUNCTIONS DERIVED FROM THE BASIC LOGIC FUNCTIONS

299

S AND3 1 NAND3
P | J |
K ___1 Ko
I I[AND4 I NOR3
J
S X
L
AND3(I,J,K) NAND3(I,J,K)
= AND2 (AND2(I,J), K) = NoT(AND3(I,J,K))
aAND4(I,T,K,L) NOR3(I,J,K)
= AND2 (AND2(I,J), AND2{ K,L) = NoT(OR3(I,J,K))
Fig.3 : ADDITIONAL DERIVED LOGIC FUNCTIONS
HARDWARE POSITIVE LOGIC NEGATIVE LOGIC
I I
R— X x I O
J | J J
[.._....__O
H Higher level H=1 H=0
I Lower level L=20 L=1
I J X I J X I J X
E H L 1 R 6 o 1
E L L 1 o o 0o 1 1
L B L 0 1 0 1 (8] 1
r L =H o o 1 11 0

Fig. 4: POSITIVE AND NEGATIVE LOGIC CONVENTIONS

‘

300

FORTRAN STATEMENT FUNCTIONS

a R107D(I) = NorT(I)
£ R107F(I) = NoT(I)
3 R1073(1) = wor{ I)

R107L{ I) = NOoT(I)

n R1O7N(X) = Nor(I)

r RI1O7R(I) = NOT(X)

t R1077(I) = NANDn{ I,)

notes terminal v permits use of external
diode networks,

L‘fv ﬁv

DEC~-R107

Fig, 5 : DEC TYPE R107 INVERTER LOGIC

CARD

®

gs8 ot th

4 2t

WAL L)L)

Qs

R121p(I,J)

NAND2(I,J)

o

R121H(I,J)

NaND2(I,J)

il

R121L(I,J) NAND3{ I,J,K)

H

R12I1R(I,J,K,L) = NAND4(I,J,K,L)

TTTT

DEC~R121
Fig.6 : DEC TYPE R121 NAND GATE LOGIC
CARD

301

A B ¢ X0 X1 X2 X3 X4 X5 X6 X7
0 0 o0 1 0 0 0o 0o 0 0 o
0 0 1 0 1 0 0 ©0 0 0 o
0 1 o o o0 1 0 0 0 0 o
0o 1 1 0 o 0 1 0 o0 0 o
1 0 o 0 o 0O 0 1 0 0 o
1 0 1 0 o 0 0 0 1 0 ©
1 1 o 0 o 0O 0 0o o0 1 o
1 1 1 0o o 0 ¢ 0o o0 o0 1
Fig, 7 3+ TRUTH TABLE FOR BINARY TO OCTAL CONVERTER
A \ a AB
e :1‘/7 ; AB = R107D(A)
B h iorxf BB BB = R107F(B)
¢ x \ CB .
3? J CB = R107J(C)
AB m
0 \
BB 2 3 122 N1 m oy 1 _ XOB = R121L(AB,BB,CB)
€8 P4 / xoB X0 X0 = R107L({ XOB)
AB s
—-—-O \
BB t \ -
. _;_o 121 r P§ 10 n X1B = R12IR(AB,BB,C, ONE)
oNE —gO / x1B X1 X1 = RI1O7N{ XI1B)
—
AR m B
B n J 121 \1 s 10 r X2B = R121L(AB,B, CB)
CB P CC / x2B X2 X2 = R107R(X2B)
A)
B e r p n =
. 70-121 \ 107 X7B = R121R(A, B, C, ONE)
ONE _V_O X7B ‘X7 X7 = RIO7N(X7B)
— S

302

LOGIC CIRCUITS AND FORTRAN CODING
A BINARY TO OCTAL DECODER USING

FOR SIMULATION OF
DEC LOGIC CARDS

e 3 COMP,
| F D M L K H CLEAR SET.
0 1 R
FF T 1 1 1 1l 1 1l 0 0
£ 1 3 1 0 1 1 1 0 4]
b T l 0 0 1 1l 1l 1l
a | m 3 T 1 1 0 1 0 1 o]
Cx— 1 1 T 1 1 O o o 1

a transition from one to 2zero
1

~
C >
o
—>
*

Fig,., 9: CONNECTIONS AND OPERATION OF THE FLIP-FLOP FOUND
ON ONE HALF OF DEC TYPE R205 CARD

(r2025)

Compute
SET,CLEAR |

and
COMPLE=-
MENT

Is yes
COMP = J=NOT(J)
1

ves

yes J= 0

Save
D,F,M, E

Fig, 10: FLOW CHART FOR FLIP-FLOP SIMULATION SUBPROGRAM

303

FOB FO R121
o] 1
R20S
F1B Fl PO W
0 1
R205
—
- Pl
F2B F2
[o] 1
R20S
r—L1 “—J;;] s
L:§:=><—__1 P2
F3B F3 [
0 1 ’
R205
= |
P3
F4B F4 .
CLEAR
o o
s
HIFT | 1 pa

Fig.

11s

SUBROUTINE SHFRGR
COMMON Sessvensssesss
DIMENSION CLEAR(2),

F4

SHIFT(2), LOAD(2)

9, 1, P4, LOAD,
F4,F4B,P3,LOAD,
F3,F3B,P2,LOAD,
¥2,F2B,P1,LOAD,
F1,F1B,P0,LOAD,

R2083(CLEAR,SHIFT,
= R205P(CLEAR,SHIFT,
R205J7(CLEAR,SHIFT,
R205P(CLEAR,SHIFT,
R205J5(CLEAR,SHIFT,
RETURN

END

a o oo
O = N W
4 0 nn

Fig, 12: ESSENTIAL STATEMENTS FOR FORTRAN SUBROUTINE
TO SIMUIATE THE FIVE-BIT SHIFT REGISTER

304

o}107

PARALIEL

INPUTS

F4B
F3B
F2B
F1B
FOB

- Nl N e s

SERIAL OUTPUT

LOGIC SCHEMATIC FOR FIVE=-BIT PARALLEL TO SERIAL CONVERTER

SERIAL
OuTPUT

SHIFT

PARALLEL
INPUTS P

4

CLEAR

REGISTER F

SHIFT

*

COMPUTER LISTING FROM SIMULATION OF FIVE BIT

PARAELEL TO SERIAL CONVERTER

Fig, 13:

305

