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INTRODUCTION

Traditionally, manpower estimation has been done on
an expected value basis. Such estimates, although pro-
viding an estimate of the mean of manpower requirements,
provide no indication of the probable spread about the
mean. Manpower solution plans, however, often implic-
itly assume an estimate spread based upon experience
gained from previous projects. This paper is concerned
with estimation of manpower forecast variations, both in
the aggregate and by skill level.

BASIC PROCESS MODEL

Consider the following basic model of a process.
Figure | is a flow diagram for the process possessing the
following characteristics: ]

l. There are at least n primarly operations (OPI,
OP2, . . . OPn) performed on each unit passing through
the process.

2. There are n! possible rework operations (RIl, R12,
. . . Rnn) on each unit passing through the process.

3. There are n primary yield points (S, 52, . .

Sn) in the process.

Each primary and secondary operation on a unif repre-
sents a demand for manpower with a particular skill.
Each yield point represents a possible reduction in
"throughput" which affects the manpower requirement
as well . Typically, primary operation times, rework
times and yield rates are stochastic variables. Therefore,
to effectively estimate manpower variation, process
simulation must be based on a probabilistic specification
of these process elements.

SUBJECTIVE DENSITY FUNCTION SPECIFICATION

Unfortunately, process information rarely is detailed
sufficiently to permit direct specification of the density
functions of stochastic variables. When such information
is available, the developed cumulative distribution
function can serve as input to a General Purpose Simu-

“lation System (GPSS) model in the form of a tabled
function. When such information is not available - and
it offen is not - subjective estimation -can serve as a
basis for specification of a density function.

Figure 2 illustrates a family of 8l curves developed
by the writer to serve as normalized density functions for
specification of stochastic variables. Selection of a par-
ticular density function from the family is based on
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answers to five questions concerning the variable of
interest. The individual most familiar with the process is
asked to estimate:

1. The modal value (most likely). Point X

2. The lower limit (the value below which only 5 per
cent occurrence is expected). Point Y

3. The upper limit {the value above which only 5 per
cent occurrence is expected). Point Z

4. The lower limit end point condition ( a subjective
selection of one of three curves of varying flatness as the
curve passes through point Y).

5. The upper limit end point condition [similar to (4)
for point Z].

These five questions are in an increasing order of
difficulty of obtaining accurate information. The inform-~
afion they extract is believed sufficient, for most appli-
cations to allow specification of a density function which
approximates the shape of the underlying density function
for the variable of interest. The 8l curves represent a
family possessing three shapes (i.e., kurtosis levels) at
both ends of the density function, at five possible left or
right skewness levels. The ratio of XZ to YZ permits sel-
ection of the appropriate skewness level . A Fortran pro-
gram was developed fo produce X-Y corrdinates for the.
81 cumulative distribution functions in the GPSS
specified format.

Figure 3 illustrates the use of the family of density
functions.

Assume the most likely (i.e., modal) time required
for an operation is estimated at 70 minutes. Fifty minutes
is estimated as the lower limit below which operation
times occur 5 per cent of the time. Similarly, 100
minutes is estimated to be the 5 per cent upper limit.
Since operating times very rarely take less than 47 minutes,
a type C curve is selected for the left half of the density
function. Because times extend occasionally as high as
125 minutes, a type A curve is chosen for the right half
of the density function.

The ratio of XZ to YZ of 30/50 = 0.6 comes closest to
a number 2 skewness level which has a ratio of 0.625,
Therefore, a CA2 curve is employed. The simulation
generates operation times distributed according to density
function CA2 employing lower and upper 5 per cent limits
of 50 and 100 minutes, respectively. Similar specification
of stochastic variables for the other operation times, re-
work times and per cent transfers to rework or scrap will
complete specification of stochastic elements of a model .



SUMMARY

To generate the desired output, which is a distri=-
bution of labor requirements by specified skills, a GPSS
model is developed for each specific process. Figure 4
is a GPSS model for a process containing three primary
and five secondary operations. The model generates
operation times, rework times, and transfers to rework
and scrap for successive fransactions based on the function
values produced employing the selected cumulative
distribution functions. Data cards for all 8l curves were
produced by a FORTRAN program. The data cards for

curves AAl and CA3 were merely inserted into the above
GPSS program. Figure 5 is a distribution of labor fimes
accumulated for a single run of 100 units through the
process. An obvious extension of the model to permit
estimation of interference times would be to allow units
to queue at process steps as a function of facility
restrictions. Such a model would permit estimation of
the labor skills required and their variation for a given
level of “throughput", including facility restriction
effects, for a defined calendar period.
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