APPROXIMATIONS FOR SIMULATION RUN-TIME REDUCTION

G«M« Herman
Control Data Corporation
Minnesota

St
INTRODUCTION

The age of more complex computing
systems has made it increasingly import-
ant to have reliable means of evaluating
the performance of existing systems: and
of future systems during their design and
development. This latter aspect is only
beginning to come into beings and shows
great promise of yielding large benefits
to the industry. UWhere most evaluation
wasr and still is+ applied to the eval-
uation of existing systems for various
applications:r it is becoming increasingly
recognized as a valuable tool for use
during the design and development of
systems« Results of these evaluations
are used to aid in the decisions leading
to inclusion of proper hardware and soft-
ware: incorporated into an effective
total system for the task for which it is
designeds.

In instances where academic know-how
and system complexity and variations
prevent adequate system evaluation or-
analysis by computational meansr simula=
tion may provide the means of analysis
required- This analysis may: however:
be expensive and time-consuming on the
computers depending upon the accuracy
desired- For there exists within any
simulation effort a tradeoff: or law of
diminishing returnss if you will, between
simulation run-time and simulation
accuracy. The accuracy desired isr of
coursar dependent upon the application at
hand-

Effective use of approximations
whose accuracy are within a tolerance
sufficient to yvield results suitable to
the application: and incorporation within
the model of appropriate known computa-
tional methods can greatly reduce the
run-time required to achieve a given
degree of simulation accuracy. It is to
these approximations and computational
methods that this paper is directed.

SIMULATION MODEL

This paper discusses and evaluates
approximations implemented in a simula=
tion model to provide a 10-to-1 reduction

Paul

94

in computational time without unduly
sacrificing simulation accuracy. This
model was originally constructed using
the Univac Simulation Package f{USP} 2.0
simulation language for the purpose of
studying the organization and control of
multi-memory structures imemory hier-
archies}r and later modeled for evalua-
tion in GPSS for execution on the CDC
3600 systems. The model simulates the
activities of a demand-paging multi-
programming computing system consisting
of one processors one direct access
local storage bank: and one extended
core storage TECST bank not directly
accessible by the processor. All data
transfers between system components
{processor, local storager and ECST are
assumed to be performed on a request/
acknowledge basis across a one-word
interface.

Programs for input to the simulator
are structured as shown in Figure 1.
Each is represented by its prioritys its
start time at which it becomes available
to the system for execution: and a
linear sequence of segmentss each with
an identification label: a base execu-
tion time, and those pages required to
be resident in local storage prior to
initiation of segment executions

b

EXECUTION TIME

The base execution times empioyed
in Figure 1 reflect the interaction of
many parameters whose relationships are
not considered in detail in this analy-
sisr but are incorporated inherently
within the parameters utilized.

Examples would be Average Instruction
Execution Time and Processor Sequence
Overlap. These base execution times

are segment execution times at a defined
local storage cycle timer without access
conflict for local storage due to ECS/
Local transfers. Expressions describing
the relationship between execution time
and local storage cycle time may be
approximateds and incorporated into the
mode! to represent performance during a
series of runsr each with differing
local storage cycle times: without re-
specification of this base-



Let us assume that the time between
processor requests for a hypothetical
local storage bank of infinite speed
{zero cycle timet} may be defined by the
probability density function 2(¥) shown
in Figure 2« This funguion, which will
be called the Ultimate Reference Distri-
bution LTURD}r is essentially a measure of
the processor®s thruput capabilityr and
defines the lower limit to segment execu-
tion time requiring R references-

The following relationship is assum-
ed valid For?(f)i

o0
f;(tuf.—-. I .
0
and the mean time between memory requests:
r is expressed by the equation:

tv oo
Gf_[j(f),l-f =£g(f)4t=_é_ o3

Let us also assume that the local storage
has a cycle time & « There is: then: a
probability G, r where:

A
C.= [aerdt

that the memory will be next requested
prior to completion of its current cycler
causing an executién delay time equal to
A-Ty 3 wheret, is the time of request-
The mean execution delay time occurring
with probability Gx is &-tn 5 where %, is
the mean time of request given thatt. &«
and is expressed by the relationship:

fn o &
- fdf:f dt =52
G, _f:f“ 763() =

There is a probability /-G4 that the next
storage reference will occur after the
memory cycle time has completed -- pro-
ducing a local storage idle time equal to

-« 3 where %, is again the time of
request. The mean memory idle time oc-
curring with probability /-G4 is 4,~ 4 3
where %,, is the mean time of request
given that .24 + and is expressed by
the relationship:

o

13}

{47r

"o ‘I—Gd G,(‘f'{
Gm‘fﬂ@")dt'e{'— =zt 53
-0
It follows that:
'é°= G,(-tn"-(l_ed\)tm ik}

95

Task execution time IETT as a func-
tion of local storage cycle time may then
be expressed by the relationship:

ET=R[t.+6u(-%,)] 173

- R[«G,@z‘m(/—@.()]

where K is the number of requests requir-
ed for a given segment. Execution times
may then be approximated to the degree
required by approximating the integral
expressions used to derive Gy 1 %,

- Figure 9 shows the relationship
between time per reference and local
storage cycle time for normal Ultimate
Reference Distributions of means 1%, ¥
of 5.0+ 3.8, 205+ and L-0 usec.-

{8}

and

A system of this nature does not
exhibit independent memory request inter-
arrival time djstributionss and such
distributions cannot adequately express
the Execution Time/Cycle Time relation-
ship« Note that the expression for
execution timer equations 17} and {8},
do not assume independent inter-arrival
time of storage requests: but accounts
for inter~arrival dependence and execu-
tion delay as a function of processor
storage request distribution and storage
bank utilization.

MEMORY ACCESS

There are within the model two
approximations introduced: inherently:
by the method of local storage access
employed to avoid instruction-level
simulation. The first, task execution
is delayed for the full duration of all
local storage service times associated
with ECS/Local transfers. And secondsr
ECS service requests for local storage
are granted instantaneous response re-
gardless of the state of local storage
at the time of interruption-

Granting immediate response to ECS
service requests for local storage omits
transfer delays that should occur-. Al-
though it is common practice to assign
priority to transfer service requests
over those for execution reference
servicer preemption of local storage
while its cycle is in progress {pre-
emptive resume priority disciplinel}
does hot accurately portray the physical



environment to be simulated. Transfer
service requests to local memory occur-
ring while a memory cycle is in progress
should wait until the current cycle is
complete before response is granted {non-
preemptive priority discipline}. It is
assumed in this analysis that these waits
cause serial delays of block transfers
not accounted for in the model.

Some estimation of the error intro-
duced by these assumptions may be obtain-
ed by comparison of results derived using
a preemptive priority discipline to those
derived using a non-preemptive priority
discipline. Figures 3 thru 7 show
results obtained using an instruction-
level simulation model constructed using
GPSS for error analysis. Figures 3. and
4 show time per processor reference as a
function of local storage and ECS cycle
times for preemptive and non-preemptive
priority disciplines respectively.

Figure 5 shows the time per transfer as a
function of local storage and ECS cycle
times for preemptive and non-preemptive
priority disciplines respectively. The
URD was assumed to be normal with a stan-
dard deviation of D-Esf}- Figures b and
? show the error incurred when the
assumptions are employed as a function of
local storage and ECS cycle times for
processor references and transfers
respectively. UWhether such approxima-
tions and their associated errors are
Justified is dependent upon the applica-
tion. It is noted that errors become
increasingly larger as local storage and
ECS cycle times approach equal values:
and that errors are significantly less
when differing appreciably.

Fig. 1 =

PROG. 1 PROG. 2 PROG. 1
(PRIORITY PRIORITY PRIORITY
START_TIN TART TINE TART TINE

SEG. 1 SEG- 2 SEG. )
SEG. 8 SEG. 2 SEG. 2

SEG. 3 3 SEG. 3

o

Y

AN,

/ . /

SEG- r-1
SEG.

SEG. n-1
SEG- n

SEG. P-2.

.
TASK ¥D-
lExeC T |

PAGE 31,

SEG. P-)

o
SEG. P :
;ﬂ!ﬁi

_PROGRAM STRUCTURE

STATE MODEL

In instances where suitable states
may be definedr it may be beneficial to
employ a state simulation model {Fig- B}
employing conflict factors approximating
system overhead. Unlike a similar con-
cept employed by J.H. KatzZ2 in which
factors for the states were derived from
empirical data and retained in their
entiretyr the factors associated with
each state encountered: for which factors
do not already exist, are derived by
limited use of an associated detailed
simulation model: or derived by computa-
tional methéds to an accuracy dictated
by the application. These are then re-
tained in an associative memory for
later use without time-consuming recom-
putation when the state is again encoun-
tered: Use of these approximating
factors permit high simulation accuracy
of complex systems with shorter run
times than would be obtained using
conventional simulation techniques.

References

k- B«P. Ochsners%Controlling a Multi-
processor SystemY, Bell Lab. Rec-r
Feb. 19tb, .59-kL2.

2« J.H. Katz:"Simulation of a Multipro-

cessor Computer System”r Proc. SJCCo
196k, 127-139.

Fig. 2

P)

ULTIMATE REFERENCE DISTRIBUTION

96



Tk 2

Mean Time per Reference

tEVRY

Nean Time per Reference

{usec.}

18,00 16 4

%o
(Ne Transfers)

flean Time per Transfer
{usec.}
@

HonPreenptivt

Preemptive 10.00

¢
Preemptive .50
2 4] .
0
_?ftl"ft
o Her Preemptive 3.00
! ad
[} T T T T o T T
o] ! 2 3 4 5 o [} -4 3 &
Local Storage Cycle Time 1K ¥ Local Scoragisgz?;a Time {3}
{usec.
PREEMPTIVE REFERENCES TRANSFERS
Fig. 4
Fig, 6
3,00 450 0,00
8 4
4 -
450
Q.00 b0
7
Iz
NonPreampiive
()
t o Transferd)
2
* ]
¢ 21
G
c
&
%4=3.00 .
a4 S—-
42208
21 i
S 7
s
/:/::”://
2=h00,7 100
11 Pt
10.00
0 T .
e ! 2 3 4 & ° v .
e s,
Local Storage Cycle Time 1«4} ! 2 3 4 MSec.
{usec.} Local Storage Cycle Time

NON-PREEMPTIVE REFERENCES

97

REFERENCE ERROR



Epror Ratio

Fig, 7
4,50
Hq ¢ ¢.00
3 4
2
5 _”DnPrecnpi;v’z —~ Freenptive
Ratio= NenPreemptive
-
lo.oo
Q T T T T
] 2 3 4 & usec,
Local Storage Cycle Time {R}

TRANSFER ERROR

98

ENVIRONMENTAL
DESCRIPTION

JoB
DESCRIPTION

BLOCK DIAGRAM-

Hean Time per Reference { E77R b3
{usec.}

STATE STAT- ANAL.

> 8
/'—) ANALYZER REPORT GEN-

\

CONFLICT
COEFFICIENT
STORAGE

\
(

SIMULATION
MODEL

STATE SIMULATION MODEL

Asymptete
2] T T T T T
o i 2 3 4 &
Locs! Storage Cycle Time {«}
{usec.¥

REFERENCES WITHOUT TRANSFER:



