SOME FEATURES OF THE SIMULA 67 LANGUAGE

by

Ole~Johan Dahl, Bjgrn Myhrhaug and Kristen Nygaard

Norwegian Computing Center
Oslo, Sept. 1968

SIMUEA 67 is. a general purpose programming langua-
ge with a bullt-in simulation capability similar
to, but stronger than that of SIMULA I. SIMULA 67
has been developed by the authors at the Nor-
wegian Computing Center. Compllers for this
language are now being implemented on a number

of different computers. Other compilers are in
the planning stage.

A main characteristic of SIMULA 67 is that it is
easily structured towards specialized problem
areas, and hence will be used as a basls for
special application languages. i

SIMULA 67 contains the general algorithmic
language AILGOL 60 as a subset, except for some
very minor revisions. The reason for choosing
ALGOL 60 as starting point was that 1ts basiec
structure lent itself for extenslon. It was felt
that it would be impractical for the users to
base SIMULA 67 on still another new algorithmic
language, and ALGOL 60 has already a user basis,
mainly in Europe and the Soviet.

The SIMULA I language (1), (2), was conceived
strictly as a simulation language or, rather, as
a language providing concepts and statements
allowing a complete and precise description of
discrete-event systems.

In SIMUIA I the world is regarded as a collec-
tion of programs, interacting and existing in
parallel. Instead of splitting e.g. a "machine"
into one plece describing the data structure of
the "machines" and several other pieces de-
seribing various kind of actions executed by
these "machines", the SIMULA I approach is to
unify all these aspects of the "machines" into
one "declaration", called an "activity declara-
tion", (a “process class declaration in SIMULA

67).

SIMULA I has been used in a wide range of problem
areas since the beginning of 1965, (3). The
SIMULA 67 work started as an effort to improve
SIMULA T as a simulation language, but gradually
turned into a general purpose programming
language and finally also into a language for
generating problem-oriented languages. The
language is described in (4).

29

The limited space available does not permit an
exposition of the ALGOL 60 features used in this
paper. Readers are referred to textbooks and
the very short presentation given in (1).

The central concept in SIMULA 67 is the "object".
An object is a self-contalned program, (plock
instance), having its own local data and actions
defined by a “class declaration". The class de-
claration defines a program (data and action)
pattern, and objects conforming to that pattern
are said to "belong to the same class".

If no actlons are specified in the cléass declara-
tion, a class of pure data structures is defined.

Example

class order (number); iInteger number;
begin integer number of units;
arrival date;
real processing time end:

A new object belonging to the class "order" is
generated by an expression such as

"new order (103); "

and as many "orders" may be introduced as wanted
by such expressions.

The need for manipulating objects and relating
objects to each other, makes it necessary to
introduce list processing facilities.

A class may be used as "prefix" to another class
declaration, thereby building the properties
defined by the prefix into the objects defined by
the new class declaration.

Examples

order class batch order;
begin integer batch size; end;
order clags single order;
begin real finishing time, welght; end;

single order class plate;

begin real length, width; end;

New objects belonging to the "sub-classes" -
"batch order""single order" and "plate" all have
the data defined for "order", plus the additional
data defined in the various class declarations.
Objects belonging to the class "plate" will e.g.
consist of the following pileces of information:
"number”, "number of units", "arrival date",
Yprocessing time", "finishing time", "weight",
Mength" and fwidth".

If actions are defined in a class declaration,
actions conforming to this pattern may be exe-
cuted by all obJects belonging to that class. The
actions belonging to one object, may all be exe-
cuted in sequence, as for a procedure. But these
actions may also be executed as a series of
separate subsequences, or "active phases". BRe-
tween two active phases belonging to a given ob-
Ject, any number of active phases belonging to
other objects may occur.

The basls SIMULA 67 language contains the funda-
mental statements necessary for organizing the
total program execution as a sequence of active
phases belonging to objects. However, in special
applications special sequencing principles should
be made easlly available to the user.

SIMULA 67 may be oriented towards a special appli-
cation area by defining a suitable e¢lass con-
taining the necessary problem oriented concepts.
This class is then used as prefix to the program
by user interested in the problem in question.

The unsophisticated user may restrict himself to
using the aggregated, problem oriented and
familiar concepts as constituent "building blocks"
in his programming. He may not need to know the
full SIMULA 67 language, whereas the experienced
programmer at the same time has the general
language available, and he may extend the "appli-
cation language" by new concepts defined by him-
self.

As an example, in discrete event system simulation
the concept of "simulated system time" is the
principle commonly used. SIMULA 67 is turned in-
to a simulation language closely resembling

SIMULA I by providing the class "SIMULATION" as a
part of the language, (in this case provided with
the compilers). In the class declaration

class SIMULATION;
begin seeevessvssncesnan.. end;

a'time axis" is defined, as well as two-way lists

("sets") which may serve as queues and files, and

also the class "process" which gives an object

the property of having its actlive phases organized
through the "time axis".

A user wanting to write a simulation program starts
his program by

SIMUIATION begin secevevesccccennces

in order to make all the simulation capabllities
avallable in his program.

The SIMULA "processes" are objects which are de-
seribed by declarations unlting their

- data aspect, through parameters and local de-
clarations

- action aspects, through the description of all
thelr active phases by statements in the class
body

- iInteractions In "system time" with other pro-
cesses, through the prefix "process"

" - other propertles, through locally declared pro-

cedures.
Example

In SIMULA 67 names may be assigned to individual
objects through "references variables", declared
by ref (class identifier). "Sets" (eircular
two-way lists) arve introduced by "head" objects
which serve as starting and end points of these
lists. Subroutines. are in ALGOL 60 given by
"porocedure declarations®.

The description below gives an (incomplete) illu-
stration of how a simple "machine" in a job shop
simulation may be deseribed.

Process class machine (ing. outg. own crane);
ref(head)ing. outq;ref(crane) own crane;
virtual: procedure service: '
begin
ref (order) served; real setup time;
procedure service;

hold (setup time + served.processing
time);)
work: if inq. empty then passivate
else begin served: - ing. first;
served. out; service; served. into(outq);
.activate own crane delay message tilme end;
80 to work

end machine;

Since the procedures "service" is specified as a
"yirtual quantity”, it may be redefined in sub-
classes to "machines".

Example

machine class type A;
begin procedure service;
hold{negexp(served.processing time));
end type A;

A process belonging to "type A" will have data and
operate like a "machine"process, except that "ser-
vice" will be as defined within "type A".

If a user wants to generate a special-purpose
simulation language to be used in job-shop ana-
lysis, he may write:

SIMULATION class JOBSHOP;

DEEIN seevessacacnsnsasencesss €Nd;

Between "begin" and "end" he defines the building
blocks he needs", like

process class crane;

begin

Y 1 Te

process class machine;

begln
end;

ete.

The programmer now compiles this class, and when-
ever he or his colleagues want to use SIMULA 67
for jobshop simulation, they may write in their
program

JOBSHOP begiln seseecesaccssccaseas

thereby making avallable the concepts of both
"SIMULATION" and "JOBSHOP", and program in terms
of "eranes", "machines" ete.

This facility requires that a mechanism for the in-
corporation of separately compiled classes is
avallable in the compiler.

SIMULA 67 contains the new types "character" and
"text", the latter to provide the desired flexi-
bility in string handling. Input/output is also
defined in SIMUIA 67, in contrast to ALGOL 60
which has been seriously affected by lack of
standardization in these areas.

31

(1)

(2)

(3)

(%)

References

"SIMULA - A language for programming and de-
sceription of discrete event systems. Intro-
duction and user's manual"

by 0.J. Dahl and K. Nygaard.

NCC, Sept. 1967

"SIMULA - an AIGOL - Based Simulation
Language"

by 0.J. Dahl and K. Nygaard.

Comm. of the ACM, Vol. 9, Sept. 1966

"Users Experience with the SIMULA Language"
by H. Hegna, 0.J. Lund and K. Nygaard.
NCC, June 1968

"STMULA 67 Common Base Language"
by 0.J. Dahl, B. Myhrhaug and K. Nygaard.
NCC, May 1968

