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Summary

Expressions have been given for the approxi-
mate calculation of the mean and variance of the
estimate of interest for use in queuveing simula-
tions. The results contained herein are an ex-
tension of a case previously solved where the
estimates of interest were independent because
of independent tours.
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Stopping Rules for Queueing Simulations:
Non Independent Tours

Irwin W. Kabak

Introduction:

An ever present question in all simulations
is "Have enough trials been processed by the
simulator?” A usual stopping rule is: stop the
simulation when the (theoretical) variance of the
statistic that estimates the quantity of interest
is within limits. However, there is an opera-
tional difficulty in the administration of this
measure, i.e., because of the correlation of
successive trials one cannot easily calculate
the required variance. This isg discussed in
some detail by Hauser, et.al. [1].

In a previously published paper [2] a stop-
ping rule for queueing simulations was presented.
Therein, expressions for the calculation of the
mean and variance of the estimate of interest
were given. The expressions were based upon in-
dependent estimates of the quantities of interest
In this paper similar expressions are furnished
for the case of non-independent estimates of the
quantities of interest.

The state of the system is defined as the
number of attempts in the system either being
served or waiting to be served. When an event
(an arrival or a departure) causes the system
to be in state J, we begin a tour. A departure
from state j and a subsequent return to j, of
the same type (arrivel or departure) that be-
gan the tour completes the tour. Referring to
Figure 1, all tours illustrated for state C are
[153)9 £3,7), [7,10), [2,4) and [2:}+) and [L|'58)-
Note that L1,2) is not a tour.

Bemoulli Type Estimates and Queueing Simulations
One is often interested in the probability
of blocking (not being served immediately) that
attempts experience. In such cases one simply
divides the blocked attempts by the total number
of attempts and obtains an estimate of the pro-
bability directly. The gquestion of how to handie
the delay distribution is now discussed. It is
suggested that the estimate of the cumulative
distribution function of the delays be obtained
in a Bemoulli manner at several points. For
example, say we are interested in four points of
the delay distribution: we want to know what pro-
portion of the delayed requestes are served with-
in 0.1, 0.5, 1.0 and 2.0 average service times.
From each tour we obtain four estimates,
a5 J=1(1)4*, which chacterize the conditional
delay distribution. Each of these estimates are
to be treated separately to obtain four varisnces.
When all of the variances are within limits we
may stop the simulation. Although it is recog-
nized that the q; are not indepernident and hence
the respective variances are also not indepen-
dent this is asserted to be a reasonable opera-
tional stopping rule.

* .
That is j=1,2,3,4
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Calculation of the Variance
We will now indicate specifically how we may
calculate the variance of the estimate that in-

terests us. Let
N = the random number of arrivals during
each tour
N; = the random number of arrivals during
tour i
ny = the sample number of arrivals during
tour i
We will designate as N, N; ' and ni'the arrivals

interest for the aforementioned tours; they may
represent the number of attempts blocked, or
perhaps the number of attempts served within two
minutes. The statistic of interest for tour i is

p; = (W )/m; i=10)u (1)
where M equals the fixed number of tours under
consideration. It is suggested that the weighted
average over all tours be used for the grand
estimate p, namely

M., M
i21 M)/C 42 M)

Tt was demonstrated [2] that for two simple
queueing systems with independent tours the grand
estimate p yields asymptocally unbiased result
for the probability of blocking.

We are interested in the variance of p, viz.

(2)

V() =V l:(il\éll m ")/ (iréll N; )] (3)

An approximate expression for the variance of a
ratio can be obtained by expanding the ratio in
a Taylor series about the mean of the numerator
and then taking expected values. The result,
given in [3], is

v(4/B) ~ ER(A)V(B)+V(A)/E2(B)

-28(a)cov(a,B)/E3B) (4
For our case we have
M 1
A= i§l Ny (5)
B = igll\ri (6)

The moments of (5) and (6) are, in general, not
known; sample estimates will be used in the
dexter (right hand side) of (4).

Let us assume stationarity in first and
second moments for each tour¥. We therefore have

E(A) = ME(N') = igl N’ {7)-

and when using sample values
1

B(A) ~ ig__l]_ni (8)

and similarly for the denominator

(9)

B) ~ 2
E(B wi=lni

*Actually it may not be unreasonable to assume
that the statistics from each tour are identi-~
cally but not independently distributed.



Now for the variance of the numerator we have
M
= V(N;) + % ./ .
v(a) jgl (3) 2 Cov(ty’, Nj) (10)
because of stationarity
M el
£,V(y) = w() (11)

and when using sample values

" u (¥ =P
Fvy e 2 [ 22 1] a2

For the covariance term we have

M-1
N

ow. Y= 5 et
2 ingoV(Nl >Ny )—21=l j=i+lcov(Nl’NJ ) (13

because of the stationarity of Ni' and N.' only
the lag, i.e. j-i, need be considered a.n& hence

M-1 M sy M- 1o
2,5, j='2;.'-_+lCov(l\Ii >N )=2i§l(M'l)C°V(Nt’Nc+i) (1)

By definition
Cov(Ny' N 3 )=B(N, N, )-E(Nieg )E(NL)  (15)
t NG £ t

and when using sample values

- l. Mi o, 1 M, 1
Cov(Wy ' ,Ny o o T (Z10% Mui” W 2176 Tt
Mei
21 Dai (16)

The variance of the numerator, V(A), can then be
approximated by

{1.42
Z.13) M-3r M3
M M, (J=l ] 1[ 1, g
UOEE - FACH R el S

1 ¥, M-1 ’ l]
" W 2% 21 a7
Similarly with V(B)

MTY¥ 2 ( glnj)a M-1
~ L _d=r ] .
V() ~ 31 [jélnj M 2 {E)nented

1 M M-i
- % 21 tglnt"'i] (18)
The covariance of the numerator and the denomina-
tor Cov(A,B) is written as
Cov(A,B) = E(AB)-E(A)E(B) (19)

where expressions for E(A) and E(B) have been
given previously in (8) and (9) respectively.

We now have

M ’ M M y 7
E(AB) = E (i‘g‘ll\rij}_f‘.__ll\lj)=E [i§1N1N1+2i§jNiNj:| (20)

because of stationarity, we have, in some detail,

M 1, 1]
E(AB) = E [iElNiNi+2 1:.fg_l(M-l) Wic Mg+

E(AB)

M=1
7 . /
ME(N;N; ) + 2 i_g_l(M-l)E(Nka_,.i)
and using sample values
M .
1 ’ M=1 v 1 M1,
E(AB) m M § Eonin; + 2 .20 (M-i)gms 5 oyt

and finally

Mo, Ml ML
E(AB) m (Zobyny + 2 B By Oyl
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