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In ;11 simulations containing random pheno-
mena, the investigator wishes to estimate the
reliability of his results. This study describes
several approaches and suggests an easily imple-
mented two-stage procedure.

DEFINITIONS

In most simulations the basic elements of
collected information are interdependent. These
elements, known as observations, are quanti-
tatively summarized to yield the experimental
result of interest. To analyze experimental
results properly, we require a probability model
that explicitly recognizes the interdependence

among observations. To a great extent, covariance

stationary stochastic processes are useful for
this purpose.
th .
Let Yt be the t~ observation collected
in an experiment. The sequence of observations
{Yt; t=1,2,...,0} defines a covariance stationary

stochastic process if
(1) wo=EX),

(2) R = EL(Y -w) (Yt+,r-p.)] < o,

T=0,+1,+2,,..,}»

—

This means that the process {Yt} has an
index invariant mean i and an autocovariance
function R that is a function only of the

difference between indices t and t+r. This model

is commonly used to study a series of everits,
espegially in time series analysis.

The raﬁdom variable Y may assume one of
two meanings. It may méasure‘systeq response
over the interval [t-1,t), or it may denote
some cha?acteristic of the tth event in a éeries,
for example, -the wai;ing time of the ttﬁ job to ‘
receive service. In the first case thé in&gi t.‘
refers to time. In the second it simply denots
or¢er, which may or may not agree with chronolo-
gic;l ordering. .We use Fhé first definition, but
our énalysié applie; equally to.either d;finition.

We impose the condition that '
3 © lim R_=0, .

. .

whichvimplies Lhaé the influé&ce of the b;st wears
off as time elapses. This gcddrds with our
intuition and simplifies certain limiting pro-
cedures regarding the variance of the sample mean.

Suppose we collect N observations on {Yt}

without error in a simulation experiment. The

sample mean is then

@ In = W Z Te

with variance

N-1
— -1 -
(5) var(yy) = N Z (1 lT\/N)RT-
T=-N+1



Notice that Yy is a sample time integrated

average over [O,N)- As N becomes large, we have

(6a) lim N var(yN) =m,
Nexo
[eo]
(6b) m = E R# < o,
T==w
so that
(6c) var(yN) ~ m/N,

The truth of (6a) is a consequence of (3). 1In

% asymptotically

addition the statistic N;é(yN-u) /m
has the unit normal distribution. These asympto-
tic properties are especially useful in deter-
mining sample size., Hereafter we assume N
sufficiently large so that the asymptotic proper-
ties hold.
RELIABILITY

The sample mean Iy is a random variable
which we take as an estimate of the population
mean y. By increasing N we thesretically
improve our estimate of yu. Two questions now
arise. The first is how reliable an estimate

of u we require. Since Yy is asymptotically

normal we may write

(72) Prob(\yN-p.l<6) ~ Lo,
(75) 62 = QPvar(yy
where

Q@
(7¢) (Zn)'fli/ e ? /z‘dz = 1-g/2.

For N observations collected in one replication

we have
(82) 82 ~ QZm/.

The quantity Q is the /2 probability point of
the unit normal distribution.
The second question is how large N should be

so that Yy satisfies (7a). From-(8a) we have
2
(8b) N . (Q/8) m.

We defer our discussion of the choice of § until
Sec. 10 of [3] and concentrate here on estimating

m and then N.

If {Yt} were a sequence of uncorrelated

random variables, then

(9a) Rk =0,7#0,
so that
(9b) m = RO'

An unbiased estimator of m would be

N
%) =Ry = @)Y yp?,
t=1

a simble straightforward result. The process

{Yt} is generally autocorrelated, aﬁd hence (9a),
which applies only for an uncorrelated sequence,
is inappropriate. The quantity m may be estimated
by one of several methods. They are described

in Secs, 4 and 5 of [37.

INDEPENDENT REPLICATIONS

The most obvious estimating approach is to

replicate the experiment. Let Yj e be an
2

: . . t . .
observation at time t on the j h replication.



For M independent replications each with S

observations, we have the sample means

S
-1 § ; .
(10a) Vi g = S Yj,t’ i=1,2,...,M,
2
t=1
M M S
-1 -1
(on) yg=utYy cwmTt Y Y
j=1 j=1 t=1

with variance
(10c) var(ys) = var(y, ,)/M ~ m/(MS).
. 3,8

To estimate var(ys) we use

M
(00 Gty = eI Y 0, g’
—

so that
(10e) m = MS \Q(ys) .

To meet the reliability criteriom (7a), each

replication must have
*
(112) ¥~ m(e/8) %/
*
observations. We estimate N from

(11b) N = max{8,m(Q/8) 2 /] .

~

Iif ;I*—S > 0, we run each replication for N*-S
additional observations, If AN*-S = 0, we have
enough observations and we use yg as the estimate
of p, its estimated variance being ;x/(MS) .

As an alternative, we may also run one
replication, say the Mth one, for N'-S
additional observations, where N'-§ is the

additional number of observations required to

obtain the specified reliability. The sample

mean is then

M-1 N
(12a) v =M'1(E y +N'_1§ Y )
S,N' i,s M, ¢t

j=1 £=1

with variance
(126) var(yg o) = nl(M-1)/s + N/
To satisfy (7a), we require

(12¢c) N ~ ms/[s(sM/Q)z-m(M-l)],
which we estimate from

(12d) ﬁ' =8 max{l,;l/[S(GM/Q)z-:n(M-l)]}.

If KI'—S > 0, collect IIII'-S more observations on
the Mth replication. C;therwise use yg as the
estimate of y, its estimated variance being
;/(MS) .

It is helpful to compare the two ways of
meeting the specified reliability when each

requires more observations. We have
(132) N'-S-(N'-S)M = N' + (M-1)S-My"
= 0D [m(e/8) w512/ mee-1) - (/8% > 0,
since
(13b) S(M/Q) 2-m(M-1) > 0.

This implies that if we wish to minimize the
number of observations, we should collect §*
observations on each of the M replications. From
a practical viewpoint, it is more desirable simply

N
to collect N' observations on the Mth replication,



since we then need no longer account for the
remaining (M-1) replications. This practical
consideration suggests that the experimenter
evaluate (13) and decide whether or not the
operating advantage of using one replication
overcomes the penalty of the additional computer
time required,

AN ALTERNATIVE ESTIMATOR OF m

Using independent replications to determine
sample size carries with it the necessity of
handling many replications if var(ys) is to
be estimated reliably. We suggest an alterna-
tive approach given in [2]. Here we describe
its major points.

Suppose we initially collect S observations
on an experiment., We form the sample auto-

covariance function

S-

Y (v vy
=1

(14a) R?

n

T=0,l,...,b <8 -1,

il

(14b) Vg

S

-1 § :
S Yt.

t=1

A rough estimate of m is
P
(158) & = Ry#2 z (1-1/B)R_ P<s.
=1

For large S we have

(15b) E(RT) ~ RT - m/S,

so that for sufficiently large P
(15¢) E(@) ~ m(1-B/S).
To remove the bias we modify our estimate of m:

(16a) m = m/(L-B/S).

If {Xt} is a normal process, then

(16b) var(m) ~ Yu?
(16¢) ¥ = 42/(39).

The experimenter must specify the design
parameter P, To understand its significance we

note that as P increases,

P
(17) 11)_1:: Z:(l-lfr\/l)_)kT = m.
T=-P

In the mathematical sense, this is the correct
"

limit., In (15a) we use RW instead of R?; there-
fore as P increases, the estimate ; becomes less
statistically reliable. Now we desire both good
resolution (mathematical convergence) and good
reliability (convergence in probability). One
alternative is to make S very large, but this

defeats our purpose. A compromise is therefore

necessary that accomodates the conflicting

objectives,

Let
(182) ¢ = [var(;o]%/E(;o «aY%.
If

(18b) P = 38/4,




then sampling fluctuations would be of the same

order as m, thus yielding a poor estimate. If 1.
(18c) P=8/4,

then ¢ ~ 0,57. As a rule of thumb, we suggest
that P not exceéd S/4 and generally be much less. 3.

One may compute

P -1
kN

(18d) ;i = [RO+2 Z (l—T/Pi)lliT]/(l-Pi/S) s
T=1

(18e) B, = iAP i =1,2,...[S/4)/AP,

where AP is some specified increment, plot the
;'s, and subjectively determine the value to
which ;1 seems to be converging. Altemnatively,
we may compute ;n for P=S/16, S/8 and S/4 and
observe where convergence occurs. In some cases
convergence may not occur, Then it is necessary
to increase S before one can reasonably estimate
m,

With this estimate of m, one determines the

required sample size from

(18%) N = (Q/8)2m

~

and collects N-S more observations, provided that
N-S > 0. As a final check we suggest estimating

A

m with all N observations.

10
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