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ABSTRACT

The design of distributed control strategies for multi-robot systems (MRS) relies heavily on simulations
to validate algorithms prior to real-world deployment. However, simulating such systems poses significant
challenges due to their dynamic network topologies and scalability requirements, where full inter-robot
communication becomes computationally prohibitive. In this paper, we extend the applications of the
Emergent Behavior DEVS (EB-DEVS) formalism by developing an agent-based model (ABM) to address
key distributed control challenges in networked MRS. The proposed approach supports both direct and
indirect interactions between agents (robots) via event messages and through macroscopic-microscopic states
sharing, respectively. We validate the model using a challenging cooperative target-capturing scenario that
demands dynamic multi-hop communication and robust coordination among agents. This complex use case
highlights the strengths of EB-DEVS in managing asynchronous events while minimizing communication
overhead. The results demonstrate the formalism’s effectiveness in supporting decentralized control and
simulation scalability within a hierarchical micro-macro modeling framework.

1 INTRODUCTION AND RELATED WORKS

The growing complexity of autonomous missions for mobile robots has led to the adoption of networked
multi-robot systems (MRS), due to their advantages in adaptability, coverage, robustness, and scalability
across a wide range of applications. MRS are typically employed to tackle complex tasks by dividing
them into simpler sub-tasks executed by each robot. In addition, many applications demand keeping
some structural properties, such as network connectivity or rigidity, while avoiding inter-robot collisions.
These constraints require the implementation of coordination strategies between robots, commonly achieved
through the use of onboard control systems and peer-to-peer communication. The development of distributed
controllers for these applications demands efficient design methodologies to accelerate development cycles.
Heuristic approaches, such as trial-and-error methods applied directly to operational systems, can incur
substantial costs and safety risks—particularly in safety-critical contexts (Hentati et al. 2018). Alternatively,
analytical techniques are often limited by the complexity of the underlying models, requiring significant
simplifications. As a result, numerical experimentation becomes essential for simulating such systems.

In the control community, MRS are typically modeled as graphs, where nodes represent robots and
edges denote communication links or sensing relationships between them. As observed by (Testa et al.
2021), robotics simulators frequently oversimplify the communications dynamics between agents or consider
unrealistic full mesh topologies (leading to very compute-intensive models). In addition, due to limited
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communication ranges and sensing constraints, the topology of multi-robot networks evolves over time as
the robots move across space to perform a given task. Therefore, any attempt to model such systems must
be able to jointly represent multiple robots communicating over arbitrary dynamic networks. A simple
approach to simulate dynamic topologies is to consider all-to-all links that can be enabled/disabled during
the simulation, as in Hu et al. (2005). Testa et al. (2021) presents a more efficient graph-based approach,
where it is left to the agents to explicitly know the neighbors with which they are connected at a given
time.

Existing simulation platforms for cooperative MRS typically use co-simulation to integrate inter-robot
communication aspects with the simulation of vehicle physics, due to the fundamentally different nature
of these two types of dynamics (Calvo-Fullana et al. 2021; Acharya et al. 2023) (and references therein).
However, the necessary synchronization mechanisms between the clocking and robots’ states of these
tools introduce complexity and potentially loss of performance. An alternative approach is to develop a
unified simulation tool capable of representing all the dynamics within the same framework. The most
straightforward solution takes the form of application-specific discrete-time simulators, which are often used
for preliminary validation of control strategies. This approach provides the advantage of rapid deployment
and ease of use. However, the resulting ad hoc simulators are typically non-reusable, entangle the model
specification with the simulation engine, and struggle to handle discrete events over a continuous time axis.

The Discrete-EVent System specification (DEVS) formalism (Zeigler et al. 2018) has proven successful
for the modeling and simulation (M&S) of hybrid dynamic systems under a unified framework. DEVS
has been used in a wide variety of applications involving robots and autonomous mobile systems, ranging
from pure discrete models for the robot and the controllers (Moallemi and Wainer 2013) to complex hybrid
and non-linear models (Pecker-Marcosig et al. 2020; Bordón-Ruiz et al. 2021), and multi-robot systems
(Hu et al. 2005). In addition, discrete-event models (with a continuous-time base) inherently capture
stochastic phenomena—such as robot clock drifts and path-dependent propagation delays in peer-to-peer
communications—that are otherwise extremely difficult to deal with in conventional frameworks based
on time discretization. DEVS models have the additional advantage that they are built in a modular and
hierarchical fashion, fostering code adaptability and reusability, a key aspect for the development of model
libraries. Additionally, the strict separation between the models and the underlying simulator algorithm
fostered by DEVS ensures that a modeler does not need to worry about the overall orchestration of events
produced by each component of the system, as this is a responsibility of the abstract simulator. This
approach clearly contrasts with the use of custom simulation code where there is no separation between
model and simulator.

In the interest of scaling the distributed controller algorithms to larger networks, we favor using a
simulation framework specifically built for complex systems. Various approaches have been developed
within the DEVS formalism to handle models with dynamically changing structures. Among them, the
recently introduced EB-DEVS formalism (Foguelman et al. 2021) is specifically targeted to deal with
complex systems, which exploits a microscopic-macroscopic communication mechanism offered by the
simulator for agents to interact via global states (complementary to using explicit communication channels)
helping to reduce the number of connections and consequently the number of exchanged events.

Following this discussion, this paper presents a unified simulation framework where models are
specifically designed for simulating complex networked MRS, leveraging the capabilities of EB-DEVS.
This tool aims to balance the strengths of the existing approaches by combining ease of use with the ability
to model complex multi-robot behaviors. To deal with dynamic communication networks, we extend the
ideas proposed in (Testa et al. 2021) by creating an atomic model that represents the transmission medium,
which is responsible for routing messages from each robot to its neighbors according to their physical
state—positions, orientations, etc.—and sensor specifications—range, visual range, etc. This allows the
system to mimic the real-world behavior of robots broadcasting messages without explicit knowledge of
their neighbors. The work is organized as follows. Section 2 provides the background on the EB-DEVS
formalism and its simulation toolkit. Section 3 presents the library of EB-DEVS models for robotic
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applications, while Section 4 makes use of them in a real application involving a decentralized controller
for a MRS. Finally, Section 5 concludes the paper.

2 THE EMERGENT BEHAVIOR DEVS (EB-DEVS) FORMALISM AND SIMULATION TOOLKIT

The Emergent Behavior DEVS (EB-DEVS) formalism, recently introduced by Foguelman et al. (2021),
extends Classic DEVS (Zeigler et al. 2018) to model, simulate, and identify emergent properties. It
incorporates multi-level feedback loops between macro and micro-states, allowing parent models to exchange
values that are a function of their global states with their children models (and vice versa), enabling indirect
communication via upward and downward channels. These channels support information flow while
preserving the DEVS’s internal state-hiding principle. EB-DEVS remains fully interoperable with standard
DEVS models.

An Atomic EB-DEVS model is defined formally as MA = ⟨X ,Y,S,δint , δext ,λ , ta,Yup,Smacro⟩ where
X is the set of input events, Y is the set of output events, S is the set of state values, Yup is the set of
output events directed to the parent model, and Smacro is the set of parent’s states. Four dynamic functions
define the behavior of the model: δint : S×Smacro → S×Yup (internal transition, for autonomous behavior
in absence of external events), δext : AtomicS×{R f ormally}+0 ×X ×Smacro → S×Yup (external transition,
for reactive behavior after receiving external events), λ : S → Y (output, for emitting output events) and
ta : S →R+

0 ∪∞ (time advance, for the state duration). Two major changes are introduced in the EB-DEVS
atomic models compared to Classic DEVS: (a) the state transition functions δint and δext can use the parent’s
model state Smacro as a parameter for state changes, and (b) they can communicate their outputs to the
parent model through Yup, which may use these outputs to compute δG (defined below).

A Coupled EB-DEVS model is an ensemble of interconnected models, and is defined formally as
MC = ⟨Xsel f ,Ysel f ,D, {Md},{Id},{Zd, j},Select,Xb

micro,YGup ,SGmacro ,SG,Vdown,δG⟩ where sel f is the coupled
model itself, Xsel f and Ysel f are the sets of input and output values of the coupled model (respectively), D is
the dictionary of connected components belonging to sel f , Md (d ∈D) is any other model, coupled or atomic.
For each d ∈ D∪{sel f}, Id is the set of influencees models of subsystem d. For each j ∈ Id , Zd, j : Yd → X j
is the d to j translation function, while Select : 2D → D is a tie-breaking function for simultaneous events.
Xb

micro is a mailbox input port for the information events sent by the children atomic models (via δint and
δext). YGup is an output port for the information events sent towards its parent model. EB-DEVS coupled
models have their own global state sG, with SG representing the set of states of all possible global states.
Vdown : SG → Smacro is the downward value coupling function that provides the global information to its
children. The global transition function δG : SG×R+

0 ×Xb
micro×SGmacro → SG×YGup computes a new global

state sG ∈ SG based on its own state, the time elapsed in its last state, the messages Xb
micro arrived from

its micro components and its parent’s macro state SGmacro . It also computes the upward-causation event (a
value in the YGup set) towards its parent. The cascade of upward-causation events can eventually climb up
in the system hierarchy, possibly (but not necessarily) until the topmost (root) coupled model.

In this work, the library of models for multi-robot networks (Section 3) as well as the simulations
presented (Section 4) were developed using the EB-DEVS simulator (Foguelman, D.J. 2022) which was
designed using the abstract simulator for EB-DEVS (Foguelman et al. 2021). The latter, which defines how
EB-DEVS models are executed, was implemented as an extension of the PythonPDEVS (Van Tendeloo
and Vangheluwe 2015) simulation toolkit.

3 EB-DEVS LIBRARY FOR MULTI-ROBOT NETWORKS

This section presents an extensible library comprising EB-DEVS atomic and coupled models, aimed at
supporting applications involving MRS and distributed control strategies (SEDLab and LAR 2025). These
models were designed with modularity in mind, allowing them to be used out-of-the-box for constructing
a wide range of complex applications, leveraging the inherent modular structure of DEVS. We adopted an
ABM approach, where each robot is an agent that executes a local set of rules and interacts with neighboring
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agents to exchange information. The agents’ models include the robots’ physics, the controller algorithms
that execute the control rules, the communication modules that exchange data, and the measurement and/or
estimation of the robot state.

Figure 1 illustrates the modular and hierarchical composition of EB-DEVS models. Atomic EB-DEVS
models are represented with light-blue boxes and Coupled EB-DEVS models with white boxes (with the
topmost bar in light gray showing their global state SG between angle brackets). The small black squares
on sides of the boxes represent input and output ports for direct communication connected by solid arrows,
while upward and downward facing triangles (linked with dotted lines) represent indirect communication
channels (Yup and Vdown for atomics, and Xb

micro and YGup for coupled). Notice that a DEVS model is a
particular case of an EB-DEVS model. Therefore, in what follows, DEVS models will be presented as
EB-DEVS models that simply ignore any upward/downward channels.
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Figure 1: EB-DEVS library for multi-robot networks. Figures (b), (a) and (c) illustrate the hierarchical
composition of the models, progressing from micro to macro-level structures. Blue-light boxes represent
atomic EB-DEVS models, while white boxes represent coupled EB-DEVS models.

3.1 EB-DEVS Coupled Models

3.1.1 Multi-Robot System

The MultiRobotSystem coupled model (Figure 1(a)) is the top coupled model illustrating the complete
architecture. It consists of N instances of the Robot coupled model (Section 3.1.2), each with bidirectional
links to the Transmission Medium atomic model (Section 3.2.9). The MultiRobotSystem’s global state SG,
updated upon receiving information from the Robots through the YGup ports, is the dictionary

SG = ⟨. . . , ⟨<id>,<time>, <state>, <comm_range>⟩, . . .⟩,
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where id identifies the robot, time is the time stamp, state comprises the QSS polynomials representing
the dynamical state of the robot (Section 3.1.3), and comm_range is the communication range. During
initialization, the MultiRobotSystem loads configuration parameters from some json files containing
individual dictionaries for each robot.

3.1.2 Robot

The Robot coupled model (Figure 1(c)) includes atomic models for subsystems typically used in multi-robot
applications. This coupled model has one input port (msg_in) and one output port (msg_out) indicating
the ports for communication with other robots. The global state of the Robot coupled model, updated when
receiving information from Robot Dynamics (Section 3.1.3) through the YGup ports, is the dictionary

SG = ⟨<id>,<time>, <state>, <comm_range>⟩.

A generic Robot configuration is shown in Figure 1(c), including the coupled model Robot Dynamics,
and atomic models like Localization, Control, Coordination, Communication, Interoceptive Sensor, and
Exteroceptive Sensor (Sections 3.2.1 through 3.2.9).

3.1.3 Robot Dynamics

The Robot Dynamics coupled model (Figure 1(b)) is used to numerically solve the ordinary differential
equation that models the robot dynamics, ẋi(t) = fi(xi(t),ui(t)), where xi ∈ Rdx denotes the state of the
robot i, ui ∈ Rdu its control input and fi : Rdx ×Rdu → Rdx the dynamics function. This model includes
the Dynamics Function atomic (Section 3.2.1), dx multilevel QSS Integrators (mQSSI) (Section 3.2.2), a
Merger atomic model (Section 3.2.3) and the appropriate interconnections. The Robot Dynamics’s global
state, updated when receiving information from the mQSSI through the YGup ports, is the dictionary

SG = ⟨<time>, <state>⟩,

where <state> comprises one QSS polynomial segment for each of the dx state variables.

3.2 EB-DEVS Atomic Models

The atomic models in this library are designed to closely represent common components present in networked
MRS. Their design includes the typical required inputs and outputs, which can be modified to suit the
modeler’s needs. In addition, they provide hooks for calling external Python libraries during both internal and
external transitions. This design choice fosters re-usability and adaptability, which are key for developing
different control strategies. To simplify the following description, those atomic models that start passivated
(time advance equal to infinity) and trigger an output event in zero time after receiving an external event,
and then return to passive, are called reactive.

3.2.1 Dynamics Function

The Dynamics Function atomic model is a reactive model that implements the mapping fi :Rdx ×Rdu →Rdx .
It includes two input ports (state and control) and dx output ports (out_<i>) where it emits dx
simultaneous outputs events carrying one element of the state derivative vector ẋi.

3.2.2 QSS Integrator and multilevel QSS Integrator

The family of Quantized State System integration methods (QSS) can naturally be represented using DEVS
(Kofman and Junco 2001). The integration result x is approximated by a sequence of polynomial segments,
each valid between consecutive events. The QSS Integrator DEVS atomic model (QSSI) has one input port
dx for the time derivative ẋ, and one output port q for the quantized QSS polynomial q that approximates
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the time evolution of x. In this work, we present the multilevel QSS Integrator (mQSSI) for EB-DEVS, an
extension of the QSSI in which every change in the atomic state is communicated to the parent model via
the Yup. This event carries both the polynomial for the quantized state q and the current time t. The QSSI
and mQSSI atomic models have four parameters: the relative quantum dQRel, the minimum quantum
dQMin, the input gain gain and the initial condition x0.

3.2.3 Splitter and Merger

The complementary Splitter and Merger atomic models perform reactive splitting and merging of lists of
any data type. A Splitter receives a tuple with n elements on its tuple port and emits n simultaneous
outputs on ports elem_<i> (i = 0, . . . ,n− 1), each carrying one element. Conversely, a Merger has n
input ports (elem_<i>) and one output port (tuple). It maintains a tuple data indexed by port, updates
the relevant entry upon receiving an input, and emits the complete tuple.

3.2.4 Interoceptive and Exteroceptive Sensors

Typical sensors found onboard robots can be classified as interoceptive and exteroceptive. The Interoceptive
Sensor atomic model aims to represent various types of sensors that measure variables that depend only
on the robot’s internal state, such as accelerometers, gyroscopes, and odometers. This atomic model has
one input port (state) for receiving the list of QSS polynomials corresponding to the dx state variables.
The atomic model periodically schedules an internal transition to simulate a new measurement evaluating
the QSS polynomials. which are valid between consecutive input events, therefore they can be evaluated
at any time.

The Exteroceptive Sensor atomic model aims to represent various types of sensors that perceive
parameters which depend on external references, such as GNSS receivers, magnetometers, cameras, and
lidars. This atomic model possesses no input; instead, it simulates measurements by periodically retrieving
information from MultiRobotSystem’s global state SG via the Vdown function.

Both sensor atomic models have one output port (measurement) for emitting events carrying the scalar
valued measurements corrupted with white Gaussian noise. Three configuration parameters are required:
the measurement period (<sensor_id>_period), the noise’s mean value (<sensor_id>_bias) and
covariance matrix (<sensor_id>_covariance).

3.2.5 Localization

The Localization atomic model is designed to implement information fusion algorithms that combine
data from multiple sources at different rates such that each robot estimates its own state. A generic
specification of this atomic model has M+2 input ports, where M is the number of onboard sensors (see
Figure 1(c)). Sensor measurements are received via M inputs (<sensor_id>). Another input corresponds
to coordination_data, involving information received from the other robots which, depending on
the coordination strategy, might be other robots’ estimated states or other relevant data. The remaining
input is control_action which contains the robot’s last computed control action. This model has one
output port (localization_data) where output events are emitted containing the robot’s own state
estimation possibly accompanied by additional data such as uncertainty measures.

3.2.6 Control

The Control atomic model provides the essential tools to implement control strategies for MRS. It is intended
to contain the implementation of the control law from two inputs: localization_data containing the
state estimate, and coordination_data that incorporates relevant information communicated by other
robots. Based on these values, this atomic model periodically executes the control law and schedules an
internal transition in zero time to emit the control action through its output port (control_action).
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This atomic model takes the execution period (control_period) as a configuration parameter. With
this generic atomic model, a wide variety of multi-robot control schemes can be implemented. If needed,
when handling complex control operations, such as path planning, optimization solvers, etc., this atomic
model can be replaced by the modular composition of simpler atomic models in a coupled model that
maintains the same external interface (inputs and output ports).

3.2.7 Coordination

This atomic model is intended to encapsulate the coordination strategy among robots. The coordination among
robots is assumed to be based on the exchange of tokens. This atomic has three input ports (unseen_token,
localization_data and control_action); and two output ports (coordination_data and
created_token), see Figure 1(c). The particular way of creating and processing tokens depends on the
application. However, all tokens are considered to be of the form

⟨<id>, <type>, <order>, <data>, <max_hops>, <hops>⟩, (1)

where id identifies the source robot, type indicates the type of information it carries, order determines
the order in the sequence of tokens emitted by the source, data carries the relevant information or payload,
max_hops is the maximum number of hops that it must traverse, and hops the number of hops already
traversed. All fields must remain immutable through the token’s propagation except for hops, which starts
at 1 and gets incremented each time it is forwarded. In Section 4, we describe the token handling in detail
for the proposed case study.

3.2.8 Communication

The Communication atomic model is intended to contain the logic that manages peer-to-peer communications
(see Figure 1(c)). This reactive atomic has two input ports (msg_in and created_token); two output
ports (unseen_token and msg_out), see Figure 1(c); and a configuration parameter, forward, a
boolean flag that determines whether the robot forwards received tokens. This atomic keeps, as part of the
atomic’s internal state, a double-key dictionary ⟨(<id>, <type>) = <order>⟩ that identifies received
tokens by source and type. This dictionary is used to check if a received token has not been seen before,
since forwarded tokens might arrive multiple times. Each time a token (1) arrives at a robot via msg_in,
the Communication module outputs it through unseen_token if it has not been seen before; otherwise,
the token is discarded. The token is forwarded through msg_out if hops< max_hops and forward
= true. The Communication atomic model includes the capability to store communication metrics
(comm_metrics) when exchanging tokens with other robots. This feature can be used to simulate the
measurement of indicators such as Time-of-Arrival (TOA) or Received Signal Strength Indicator (RSSI),
which can be used, for example, to estimate inter-robot distances. This is implemented by retrieving
information from MultiRobotSystem’s global state SG via the Vdown function upon the reception of a token.

3.2.9 Transmission Medium

The Transmission Medium atomic model simulates the physical environment through which inter-robot
communication occurs. It is designed to enable peer-to-peer communication that adapts to the dynamic
topology of the multi-robot network (see Figure 1(a)). This reactive atomic has N input ports <id> and
N output ports <id>. When the Transmission Medium model receives an input event carrying a token
from a robot, it is routed to the neighboring robots through the corresponding output ports by scheduling
multiple output events in zero time. The event value consists of the transmitter’s id and the token. To
determine the set of neighbors, the Transmission Medium queries the downward value coupling function
Vdown : SG → Smacro. This function checks the global state SG of the Multi-Robot System, which contains
the polynomials that approximate each robot’s state xi(t) at the current time.
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Observe that in the absence of a global state, DEVS models would demand connecting all the robots with
each other, which requires O(N2) links, where N is the total number of robots, affecting the scalability of
this simulation scheme. For example, (Hu et al. 2005) leverages the Dynamic Structure DEVS formalism to
dynamically enable/disable links between robots based on their distances. In contrast, the presented library
connects all robots with the Transmission Medium atomic using bidirectional static links. This approach
requires O(N) links, reducing the number of events and resulting in improved simulation performance.

4 CASE STUDY: RIGIDITY CONTROL OF A NETWORKED MULTI-ROBOT SYSTEM

There exist different types of distributed control strategies for MRS that require the intensive exchange of
data between robots, where this library can be applied. This section describes a challenging application
involving a multi-robot network of N = Nh +Nt robots engaged in a cooperative task: a group of Nh
mobile robots, called hunters, aims to capture Nt stationary targets that are randomly distributed throughout
the environment. While targets have known positions, hunters must estimate their own locations using
distance measurements from each other. To enable distance-based localization, hunters communicate with
each other, forming a network where links serve both for message exchange and distance measurements.
Distance-based localization is possible if the hunter’s communication network preserves the structural
property of rigidity, see (Anderson et al. 2008). This approach is common in multi-robot control strategies,
particularly useful in GPS-denied environments such as underwater or indoor settings.

The cooperative mission considered assigns each hunter the goal of approaching the nearest uncaptured
target, resulting in trajectories that naturally lead to the dispersion of hunters. In this work, we assume
that the communication network among the hunters is determined by their relative distances and their
comm_range. As a consequence, inter-hunter links and therefore rigidity might be lost, leading to the
failure of the distance-based localization scheme. Therefore, a decentralized rigidity maintenance controller
that relies on local interactions between neighboring hunters is required. To this end, we adopt the control
strategy proposed in Presenza et al. (2022a) and Presenza et al. (2022b). This control strategy requires
a multi-hop exchange of tokens, configuring a challenging scenario that helps to evaluate the network
capabilities of the simulation library. The coupled models for the targets and the hunters are described as
follows.

4.1 Targets

A Target model is an instance of a Robot (Section 3.1.2) that includes the models Robot Dynamics,
Coordination, Communication and Control. The dynamical system of a target is defined by its position
xi = pi ∈R2 satisfying ṗi = 0 (i.e. remain stationary). Hence, Robot Dynamics model includes a Dynamics
Function atomic model implementing fi(xi,ui) = 0 and two mQSSI models for the x and y coordinates.
The Communication model has the forward flag set to false. The Coordination model incorporates
an additional flag called status that is initially set to active. A Control model, with no inputs,
periodically sends empty messages to Coordination (at control_period) through control_action.
When receiving these messages, the latter issues a status token, with fields type and data filled with
the target’s status (flag status) and position

⟨id= i, type= status, <order>, data= pi, max_hops= 1, hops= 1⟩, (2)

which is sent by Communication. These tokens are received by the Transmission Medium which delivers
them to all targets and hunters within a predefined communication range comm_range_<id> ∈ R+.
When Communication receives a token from a hunter (Section 4.2), it measures the distance to it as
comm_metrics and sends it along with the token to the Coordination. If the distance is less than a
predefined range capture_range_<id> ∈R+, the target is considered hunted and the status flag is
changed to inactive. This flag remains inactive for the rest of the mission, during which it continues
emitting the token in (2) with status set to inactive.
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4.2 Hunters

A Hunter model is an instance of a Robot that includes the models Robot Dynamics, Coordination,
Communication, Localization, Control, and Interoceptive Sensor. The dynamical system of a hunter is
defined by its position xi = pi ∈ R2 satisfying ṗi = ui, i.e., it is controlled through velocity commands.
Hence, Robot Dynamics model includes a Dynamics Function atomic model implementing fi(xi,ui) = ui
and two mQSSI models for the x and y coordinates. The Communication model has the forward flag set
to true. All hunters include an Odometry Interoceptive Sensor that periodically triggers linear velocity
measurements ˜̇pi. Also, to enable absolute position estimation, 2 hunters are equipped with an GPS
Exteroceptive Sensor which periodically outputs the measurement p̃i.

The Localization model produces the estimate p̂i using a distributed Kalman-filter-based localization
algorithm (Presenza et al. 2022a) that requires the aforementioned ˜̇pi (and p̃i if available) along with
distance measurements with the 1-hop neighbors {z̃i j : j ∈Ni} and their estimated positions {p̂ j : j ∈Ni}.
The value of p̂i is updated and outputted through localization_data (Figure 1(c)) each time a new
measurement is obtained.

The ith hunter’s Control model has three objectives: (a) commanding the robot to pursue the nearest
target, (b) avoiding collisions with its hunter neighbors, and (c) maintaining the network’s rigidity. In order
to achieve (a), Coordination maintains a variable nearest_target= ⟨<id>, <dist>⟩, representing
the id and the distance to the nearest active target. This pair is initialized as ⟨none, infinity⟩; dist
is updated whenever the hunter receives a token from its nearest target, and id when a token is received
from a closer active target. After each update, hunter’s Coordination shares the nearest target position
(included in token (2)) to hunter’s Control through coordination_data (Figure 1(c)) which computes
the action ui,T , to attract the hunter i to the nearest target. For control objectives (b) and (c), the controller
of i needs the estimated positions of each j ∈ Hi, defined as the set of hunters within ηi (a configuration
parameter) hops from the ith-robot, see (Presenza et al. 2022a). This control action is updated at a fixed
rate determined by control_period and outputted by scheduling an internal transition in zero time.

The following part details the configuration of hunter’s Coordination, required to implement the control
and localization strategy in a decentralized fashion. To do so, each robot issues two tokens (state and
action) at each control period, directed by the controller (when an input event in Coordination model
occurs in the control_action input). The tokens’ content is defined as follows

⟨id= i, type= state, <order>, data= p̂i, max_hops= σi, hops= 1⟩,

⟨id= i, type= action, <order>, data= {u j
i,R : j ∈ Hi}, max_hops= ηi, hops= 1⟩,

(3)

where ηi and σi are configuration parameters stored by hunter’s Coordination, and u j
i,R is the set of control

actions computed for j ∈Hi. When hunter i receives a state token emitted by j, the Coordination model
sends p̂i to the Localization atomic if hops ≤ ηi; otherwise, it is discarded. On the other hand, when
a j receives an action token from i, the Coordination model sends u j

i,R to the Controller atomic. This
protocol ensures that all robots gather the necessary information to apply the corresponding control action.

4.3 Experimental Results

We consider the following scenario: Nh = 10 hunters and Nt = 30 targets were randomly distributed in
an area of 100m×100m (Figure 2(a)). All hunters were configured with comm_range= 15m; targets
had comm_range = 50m, and capture_range = 5m. The control_period for hunters was set
to 0.02s and for targets to 0.1s. The Odometry Interoceptive Sensor measurements were synchronized
with the control (odometry_period= 0.02s) while the GPS Exteroceptive Sensor measurements had
gps_period= 1s. The hunter’s Coordination parameters were set as ηi = 1 for 7 hunters, and ηi = 2
for the rest; additionally, σi = 2 for all.

We took advantage of a preexisting discrete-time simulation (DTS) model, specifically designed for
the control strategy described in Section 4.2 and validated in (Presenza et al. 2022a; Presenza et al.
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2022b). This model was used for cross-validation against the present EB-DEVS simulation (EBDS). For
this comparison, the sensors’ noise biases and covariances were set to zero. Finally, the mQSSI were
configured with dQMin= 0.01 (fixed), gain= 1. On the other hand, the DTS considers Euler integrators
with time step 1 ms (this value was set according to the value of dQMin to obtain comparable errors).
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Figure 2: Simulation snapshots of the multi-robot system using the EBDS (red) and DTS (blue) models for
time instants: (a) t = 0 s, (b) t = 30 s, (c) t = 60 s, (d) t = 67 s, (e) t = 90 s. The evolution of the maximum
and minimum absolute error between the hunters’ positions (EBDS vs. DTS) is shown in (f).

The simulation results are shown in Figure 2. Blue dots and red circles represent the hunters’ positions
for the DTS and EBDS respectively, while blue filled diamonds and red empty diamonds correspond to
the active targets (removed from the picture as they become inactive). Connections between neighboring
robots are represented by edges (blue for DTS and red for EBDS). It can be noticed that, as the mission
evolves, targets are captured while the rigidity of the hunters’ network is maintained. Qualitatively both
simulators collect the same targets in the same order, achieving the same control objective. Figure 2(f)
shows the evolution of the absolute position error of the hunters resulting from discrepancies between the
two simulators. The maximum deviation observed between the trajectories of the robots in both simulations
is upper bounded by 0.7 m (or 0.7 %). This deviation can be observed in Figure 2(d) which also shows a
target that was collected first in the DTS than in the EBDS (red empty diamond). In terms of performance,
the execution times are comparable, although in the EBDS there is significant room for improvement
(performance was not a main concern in this work). These results confirm that the proposed approach
performs as intended, validating both the robots’ dynamic behavior and the token-based communication
mechanism essential for the distributed control strategy.
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5 CONCLUDING REMARKS AND FUTURE WORK

This paper introduces a library of models designed for MRS and distributed control strategy development,
built under the EB-DEVS formalism and simulation tool. It offers a collection of ready-to-use models
representing the most common components in robotic and multi-robot systems. These models were designed
with modularity in mind, allowing complex operations, such as localization and control algorithms, to
be tailored to specific applications. To facilitate this, the corresponding atomic models delegate core
computations to external functions (e.g., a Kalman filter or a rigidity controller), making them easy to
adapt. To address dynamic communication networks, we introduce the Transmission Medium atomic
model that captures the transmission medium, responsible for routing messages from each robot to its
neighbors based on their physical state. This enables the system to emulate the real-world behavior of
robots broadcasting information without explicitly knowing their neighbors.

The proposed library also implements a communication mechanism based on the exchange of tokens,
which embeds the number of hops a token must traverse and the hop count into the token’s payload,
allowing recipient agents to autonomously decide whether to forward or discard them. In constrast, existing
simulation frameworks for MRS often require developers to manually implement communication protocols
such as multi-hop token passing—a task that demands advanced programming skills. A side contribution
of this paper is the multilevel QSS Integrator atomic model, which takes advantage of the micro-macro
communication mechanism offered by EB-DEVS.

To demonstrate the library’s capabilities, this paper implements a multi-robot experiment comprising Nh
hunters tasked with capturing Nt targets, while ensuring network rigidity and inter-agent collision avoidance.
The simulation results were validated against a discrete-time simulator tailored to this application originally
used to test this control strategy.

This paper demonstrates that the EB-DEVS formalism allows to build a unified simulation tool capable
of representing robotic and network dynamics in an event-based manner. While EB-DEVS may appear
complex at first, it offers clear advantages over building custom discrete-time models. First, users do not need
to implement or manage the simulation algorithm, as it is shared across all models. This allows modelers
to focus solely on defining the behavior of submodels, without explicitly handling their interactions—
synchronization of discrete events across is entirely handled by the underlying abstract simulator. Second,
discrete-event models naturally support random and asynchronous events, which are often difficult—or
even impossible—to represent with discrete-time approaches.

As for future work, we plan to continue expanding the proposed library in several ways. Firstly, by
incorporating additional atomics models for a broader variety of dynamical models and sensors commonly
found in robotic applications. Secondly, by including higher order QSS integrators and exploring alternative
integration methods. In addition, we plan to incorporate into the Transmission Medium atomic model a
physical representation of the surrounding environments to enable more realistic modeling of communication
channels. Future releases will also extend the Localization atomic model description to include mapping
capabilities for SLAM implementations, widely used in robotic applications.
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