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ABSTRACT

This work presents a methodology for developing embedded applications in Internet-of-Things (IoT) and
robotic systems through Model and Simulation (M&S)-based design. We introduce adaptations to the
PowerDEVS toolkit’s abstract simulator to enable embedded execution on resource-constrained platforms,
specifically targeting the widely used ESP32 development kit tailored to IoT systems. We present a library
of DEVS atomic models designed for simulation-environment interaction, enabling embedded software
development through sensor data acquisition and actuator control. To demonstrate the practical utility of
the embedded PowerDEVS framework, we evaluate its performance in real-world discrete-event control
applications, including a line-follower robot and an electric kettle temperature regulator. These case studies
highlight the approach’s versatility and seamless integration in IoT and robotic systems.

1 INTRODUCTION AND RELATED WORKS

The continuous upsurge of embedded hardware platforms in the market at affordable prices and the pressure
of users for new and innovative applications demand modern and efficient development cycles.

The design of embedded software for cyber-physical applications, which implies the interaction with
the surrounding environment, is usually a complex task. Due to their complexity, different systematic and
incremental design methodologies have been proposed with the aim of shortening development cycles.
Modeling-and-Simulation (M&S)-based design techniques have proven a successful approach for the
development of software applications, including embedded software. However, M&S is mostly used only
during the early stages of the design process to build and test the software under development (SUD),
while models are ultimately discarded when switching into the real target environment, and replaced by a
new software implementation from scratch for the target hardware.

In contrast, innovative design methodologies based on the model continuity approach (Hu and Zeigler
2005) provide an incremental M&S-based design methodology. The process starts with conventional
simulation of the models for the SUD and the environment. Ultimately the simulated environment becomes
replaced by the real environment using some Hardware Abstraction Layer (HAL). Therefore, the model
for the software remains the same throughout the different design stages, including its embedded execution
in real-time (strictly speaking, an embedded real-time simulation). Model continuity has been successfully
applied in a wide range of examples for the design of embedded applications for unmanned aerial vehicles
(Horner et al. 2022; Ruiz-Martin et al. 2019), mobile robots (Hu and Zeigler 2005; Moallemi and
Wainer 2013; Pecker-Marcosig et al. 2018), data network controllers (Wainer and Castro 2011), and power
management systems (Cicirelli et al. 2018), to name a few.

Implementing the model continuity approach necessitates a unified framework capable of representing
both the software being developed and the dynamic environment with which it interacts. The model for
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the latter depends on the application and may be split into the model for the hardware platform (e.g.
sensor aspects -such as uncertainty and periodical acquisition- , communication aspects -such as random
delays or dropped messages- , physical aspects -such as robots’ kinematics- , etc.) and the model of the
environment itself. Anyway, this model usually ranges from simple abstractions of the real environment
(e.g. pure discrete models) to complex detailed hybrid representations (e.g. involving non-linear differential
equations). The Discrete-EVents System specification (DEVS) formalism can act as a common ground to
represent and combine a wide variety of mathematical formalisms (Vangheluwe 2000), making it suitable
to represent hybrid dynamical systems. DEVS also features some convenient advantages (Wainer and
Castro 2011): (a) reliability due to logical and timing correctness (based on the DEVS theoretical roots
and sound mathematical theory); (b) model reuse due to the modular and hierarchical structure of DEVS
models fostering model composition; (c) process flexibility since a user does not need to worry about
the simulation engine common to all models, and (d) festing since different test scenarios can be easily
incorporated. Furthermore, the execution of an embedded simulation to interact with the environment in
real-time claims for lightweight simulations, another aspect where DEVS stands out.

Different formal methodologies for the development of embedded systems making use of DEVS and
model continuity have been proposed, such as Robot-in-the-Loop (RiL) (Hu and Zeigler 2005), Discrete-
Event Modeling of Embedded Systems (DEMES) (Wainer and Castro 2011) or DEVS-over-ROS (DoveR)
(Pecker-Marcosig et al. 2018) (the list is not exhaustive). They all have in common a pure virtual simulation
stage, where the model of the SUD is designed, supplied with artificial data, and the simulation is executed
in virtual simulation time, and a real-time embedded simulation stage, where the model for the embedded
software is executed on the embedded system and the models representing the environment are replaced
by interfaces with the real world. Nonetheless, they differ in the number of intermediate stages used
to bring simulation one step closer to reality and consequently refine the design of the SUD, increasing
the designers’ confidence in the functioning of the final software. It is worth mentioning that the model
continuity approach is not exclusive of DEVS, as shown in Cicirelli et al. (2018).

This paper is organized as follows. Section 2 provides the background. Section 3 presents the changes
introduced to the PowerDEVS engine, the adaptations addressed in some atomic models to run on an
ESP32 development kit and the toolchain to cross-compile models to run embedded. Section 4 introduces
the library of DEVS atomic models developed to interact with the environment to be used in robotic and
IoT applications, while Section 5 makes use of this library in the development of embedded software for
some real applications. Finally, Section 6 concludes the paper.

2 PRELIMINARY CONCEPTS
2.1 Discrete Events Systems specification (DEVS) formalism

We adopted DEVS (Zeigler et al. 2018) for the modeling and simulation of hybrid dynamical systems.
A remarkable aspect of DEVS is its modular and hierarchical structure, based on structural (coupled) and
behavioral (atomic) models, which promotes the incremental construction of complex models, the robust
reuse and replacement of modules, and a hierarchical building of systems. This fact fosters the definition
of model libraries.

Formally, a DEVS Atomic model is a minimal building block defined as My = (X,Y,S, 8ins, Oext, A, ta)
where X is the set of input events, Y is the set of output events and S is the set of state values. Four
dynamic functions define the behavior of the model: J;, (internal transition, for autonomous behavior),
Oeu (external transition, for receiving events and reactive behavior), A (output, for emitting events) and ra
(time advance, for autonomous self clocking). Each possible state s € S has an associated time advance
ta(s) that determines for how long the model will remain in s in the absence of external input events.

ADEVS Coupled model is anetwork of models defined as Mc = (Xyei £, Yserf, D, {My},{1s},{Za j},Select)
where sel f is the coupled model itself, X,.;r and Yy, ; are the sets of input and output values of the coupled
structure (respectively), D is the dictionary of connected components belonging to self, and M, (d € D)
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is any other model, coupled or atomic. For each d € DU {self}, I; is the set of influencees models of
subsystem d. For each j € Iy, Z, j: Y; — X; is the d to j translation function, while Select : 2P — D is a
tie—breaking function for simultaneous events.

To graphically visualize the behavior of a DEVS atomic model we rely on the DEVS-Graph notation
(Song and Kim 1994). The states s € § are represented by circular nodes including the state identifier and
the time advance ta(s), and the double circle is the initial state. Dashed edges between states denote internal
transitions, labeled with the associated output ports and output events separated by an exclamation mark
(OutPort OutValue), while continuous edges represent external transitions, labeled with the input port
that fires this transition and the event value separated by a question mark (InPort?InValue). Although
there is a way to represent coupled models in DEVS-Graph, we will exploit the graphical representation
provided by the PowerDEVS simulator (see next section).

A key aspect of DEVS is the strict separation between a DEVS model and the simulation engine used
to run the model. Since the engine is common for any model, any modification introduced to it will have
an impact on all new and previously developed models without any additional effort.

DEVS features a generalized abstract simulator algorithm, with two main classes of objects: simulators
and coordinators. The execution of each atomic model is controlled by its simulator, while coordinators
manage the coordination of coupled models and are in charge of synchronizing their children simulators
and coordinators. At the top of this hierarchy, an overseeing root-coordinator is in charge of triggering
new simulation cycles and handling the advancement of the global simulation time.

2.2 PowerDEVS simulation toolkit

The PowerDEVS toolkit (Bergero and Kofman 2011) is a DEVS simulator particularly suitable for the
simulation of hybrid dynamical systems. PowerDEVS features a Graphical User Interface (GUI), which
hides away the internal aspects of DEVS models facilitating its use by modelers unfamiliar with DEVS.
A model is then built by interconnecting graphical representations of DEVS atomic and coupled models
(blocks with input/output ports that are dragged, dropped and wired) including the setting of their parameters.

The core of PowerDEVS is written in C++. The building mechanism is based on a series of Makefiles
for compiling the atomic models, the engine, the utilities and some PowerDEVS extensions, and for linking
all together to create a standalone executable that comprise the model and simulator to run the simulation.

Beyond the discrete-events internally generated by a PowerDEVS model, the abstract simulator was
adapted to receive external events from outside PowerDEVS (Pecker-Marcosig et al. 2018). Every time
an atomic model requests for listening a given communication port, a listener is launched in a secondary
thread which is continuously monitoring that port. Incoming events arriving at any time are enqueued in
a message queue common to all listeners. During the idle time, the root-coordinator checks the queue
and processes incoming messages by mapping them as external events for the listening atomics. A similar
mechanism is available for an atomic model to send events outside PowerDEVS. Currently listeners listen
to UDP sockets, while other IoT communication protocols are being incorporated.

2.3 Embedded Hardware Development Kits for Internet-of-Things (IoT) Applications

Several embedded kits for the development of IoT applications can be found in the market. DEVS
simulation toolkits have already been tested on the most popular hardware platforms nowadays for embedded
applications, such as STM32 Nucleo (Ruiz-Martin et al. 2019; Earle et al. 2020), ESP32 (Govind and
Wainer 2024) and RED-V Things Plus (Cérdenas et al. 2024). Furthermore, DEVS simulators are also
used to run simulations in real-time on PCs and single board computers (SBC) on top of general purpose
operating systems (OS), as in Pecker-Marcosig et al. (2018), Horner et al. (2022), Govind and Wainer
(2024). One distinctive feature of PowerDEVS is its ability to build controllers by visually wiring graphical
blocks in a modular and hierarchical manner. This is a highly valued feature of established simulation
toolkits in control engineering.
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In general, the execution of embedded applications on an embedded platform relies on an underlying
real-time operating system (RTOS) which, among other things provides device drivers, a precise time
management and a Hardware Abstraction Layer (HAL). Consequently, the same application on top of an
RTOS can be run on different hardware platforms without any change.

The ESP32-Wroom-32 development kit by Espressif stands out for IoT applications due to its versatility
(thanks to its multiple peripherals and communication interfaces), availability, and performance at an
affordable price. Moreover, its high processing power in a small footprint and lightweight platform makes
it a good choice for autonomous vehicles. The ESP32 is a dual-core Xtensa 32-bit LX6 system-on-chip
(SoC), with built-in Wi-Fi and Bluetooth communication, and multiple I/O and peripheral ports. The
two identical cores are connected to a single shared main memory, allowing data exchange between tasks
running on different cores. A custom version of FreeRTOS is mantained by Espressif specifically targeted
to the ESP32 development kit to exploit its features (ESP-IDF FreeRTOS).

An application for the ESP32 is developed on a PC and cross-compiled for the Xtensa architecture. The
executable is then copied to the onboard flash memory via a UART port accessible through a serial-to-USB
converter mounted onboard. The same UART is connected to the standard output for logging purposes.

3 ADAPTATIONS PERFORMED TO POWERDEVS

This section covers the adaptations performed to PowerDEVS and the modified toolchain to build and run
embedded simulations over FreeRTOS on an ESP32 development kit. A priori the adaptations should only
be necessary on the engine and they will have an impact on all new and previously developed models
without any additional effort. However, some atomic models make use of particular features that are not
useful nor compatible for embedded simulations and need to be removed or adapted.

3.1 Adaptations of the PowerDEVS Simulation Engine for Embedded Execution

The PowerDEVS simulation toolkit was originally released in 2011 (Bergero and Kofman 2011), and across
more than a decade many features were developed in the engine to support different research lines. For
the embedded version of PowerDEVS, we only keep the features that find a potential use for embedded
applications, while removing all the unnecessary features.

Any M&S-based design methodology calls for a single PowerDEVS version to be used to run simulations
on different platforms (PC or embedded) and in different time settings (virtual simulation time or real
wall-clock time). Therefore, to keep the PowerDEVS model (pdm file created with the GUI) exactly
the same (or as untouched as possible) we make use of conditional compilation directives to indicate the
corresponding toolchains the code to build for different platforms, for example, removing unnecessary
features and replacing some pieces of code.

The PowerDEVS engine was adapted to run in the user application layer on top of ESP-IDF FreeRTOS.
Thanks to the FreeRTOS’ HAL, PowerDEVS would also run on any of the large numbers of supported
boards. Moreover, FreeRTOS provides functions for the management of time simplifying the timely
execution of discrete-events by the abstract simulator in real-time simulations, and a large set of device
drivers that will be extensively used throughout this paper. Furthermore, C++ libraries offer another source
of abstraction providing a common interface despite having a different implementation for each OS (e.g.
for the management of time and UDP sockets). However, some C++ libraries are not fully ported to
FreeRTOS, such as the Boost C++ set of libraries.

To foster adaptability and modularity, functions used by the PowerDEVS engine that depend on specific
features of the underlying hardware platform and/or OS are separated from the rest. This is why we have
the file pdevslib.linux.cpp for simulations on Linux and pdevslib.esp32.cpp for embedded
simulations on ESP32. For example, the function printLog () used to manually print log messages for
debugging writes in a text file in the Linux version, while on the embedded version it prints to standard
output. This file is also used to launch UDP listeners requested by atomic models to listen to UDP ports.
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In Linux, the listeners run as separate threads independent from the main thread (see Section 2.2), while
on the embedded version listeners run as independent FreeRTOS tasks running on the second core. This
way, we decided to use one core for the execution of PowerDEVS handled by its task scheduler, while the
second core handled by another task scheduler is left to execute the listener tasks. Finally, some functions
available in the Linux version are not yet implemented in the embedded version.

While waiting for the next imminent event in real-time simulations, PowerDEVS performs a busy
waiting instead of putting the embedded device in sleep mode as in other embedded DEVS toolkits. This
is particularly relevant in embedded systems with stand-alone power supply. However, during this period,
the root-coordinator monitors the arrival of UDP messages carrying external events generated outside
PowerDEVS. Alternative mechanisms based on hardware interrupts (IRQs) and independent cores sleeping
management will be explored as future work.

3.2 Adaptations of PowerDEVS Atomic Models for Embedded Execution

The model continuity approach, central to M&S-based design methodologies for software development,
requires some atomic models to run on both PC and embedded platforms. For example, general purpose
atomic models, such as those for signals generation and UDP communication.

Most of the atomic models in PowerDEVS use parameter readers to abstract multiple sources of
model parameters, and simulation loggers for various destinations of simulation results. However, they
rely heavily on C++ libraries not fully supported by FreeRTOS. We used conditional compilation directives
to remove them from the code to run embedded. Currently, the only way to supply model parameters in
embedded PowerDEVS is via the model file (pdm), and the only mechanism for debugging and logging
is the printLog function (see Section 3.1).

3.3 Build Mechanism and Simulation Execution

The typical workflow with PowerDEVS is as follows. A PowerDEVS model is developed with the GUI,
which consists of a pdm text file containing the list of the atomic and coupled models, the model parameters,
and structural and graphical data. Then it is passed to the PowerDEVS’s Pre-processor which translates
the pdm file into a C++ header file (model.h). Finally, the file model.cpp (common to all models)
and the model.h header file for the current PowerDEVS model are built and linked with the particular
atomic models used, the engine and the needed utils, to create the simulation standalone executable file
model. This workflow changes slightly when working with embedded applications. Espressif provides its
own framework for building, flashing and monitoring embedded applications for ESP32 called Espressif
10T Development Framework or ESP-IDF for short. The whole process is handled by a Python script called
idf.py provided by Espressif. Given the growing community of users of the ESP32 development platform,
there is a lot of code available online. Espressif itself maintains a server with application components that
can be freely downloaded and used out-of-the-box in our own applications (see Section 4.3).

For the embedded software running on the ESP32, the entry point for a user’s application is the function
app_main () which is automatically invoked on startup. This function is then used to create a FreeRTOS
task called create_model (), which calls the main () function of the model executable and passes
the simulation parameters.

The ESP-IDF toolchain uses CMake, so all folders and files to compile —including PowerDEVS’
atomics, engine, and utilities— are listed in a CMakeLists.txt file. This file also excludes folders and
files not compiled for running embedded (e.g., those with unsupported libraries).

4 LIBRARY OF EMBEDDED MODELS TO INTERFACE INPUT/OUTPUT DEVICES

This section presents a PowerDEVS library of atomic models named e sp32 aimed at developing embedded
applications to monitor and interact with the environment. The ESP32 board provides a variety of peripherals
ready to use ranging from general purpose input/output ports (GPIO) to LCD and SD card interfaces, covering
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several serial communication protocols including UART, SPI, 1-Wire and I2C. The most popular hardware
available off-the-shelf for data acquisition and actuation in IoT and robotic applications can be interfaced
using GPIOs and serial communication ports.

This section presents the atomic models to interface general purpose inputs (Figure 1(b)) and outputs
(Figure 1(a)), including handlers for multiple digital inputs and outputs, pulse-width modulation (PWM)
outputs (Figure 1(c)) and a temperature sensor through an I2C communication port (Figure 1(d)). These
models can be combined to create interfaces for more complex hardware, such as H-bridges (Section 5.3)
and stepper motor drives.

Digital Output Digital Input (polling)
Input?GPIOVal {gpio_get_level()}
Input 0 Output
<bool> ta = sigma <bool>
{gpio_set_level()} Output! GPIOVal
(a) Digital Output Atomic Model. (b) Digital Input Atomic Model.
PWM Output Temperature Probe (polling)
Input? DutyCycleVal {convert_and_read_temp()}
Input 0 Output
—
<float> ta = sigma <float>
{ledc_update_duty()} Output! TemperatureVal
(c) PWM Output Atomic Model. (d) Temperature Probe Atomic Model.

Figure 1: Description of the functioning of the atomic models in the esp32 library for data acquisition
and actuation using DEVS-Graph notation. Curly braces enclose actions executed during state transitions.

4.1 Digital Input/Output atomic models

The Digital Input atomic model periodically polls the state of a given GPIO of the ESP32 board. During the
initialization, the GPIO port is set as input using the ESP32 GPIO API. This atomic model periodically sched-
ules an internal transition to read the value in the input port (with the API function gpio_get_level ()),
and fires an output event with this value through the atomic’s output port Output. Figure 1(b) illustrates
this behavior in DEVS-Graph notation. The input pin and the polling rate are supplied as parameters of
the atomic model.

The Digital Input Handler atomic model is used in connection with multiple Digital Input atomic
models to produce a single output event after having new readings from all the digital inputs it is attached
to. The number of inputs is passed as a parameter.

The Digital Output atomic model is used to write the value of an input event on a GPIO of the ESP32.
During the initialization, the GPIO port is set as output and initialized in low level using the ESP32 GPIO
API. Every time an input event is received in the atomic’s input port Input, an internal transition is
triggered in zero time and the value carried by the input event is written in the GPIO (with the API function
gpio_set_level ()) during the output function A. This behavior is shown in Figure 1(a). The pin is
supplied as parameter of the atomic model.

In case N values need to be written simultaneously in N GPIOs, we should use N Digital Output
atomic models which will schedule N internal transitions at the exact same time instant. Although the
events are scheduled at the same time, given that PowerDEVS features DEVS Classic, they will be executed
sequentially one after the other. Consequently, there will be an inevitable drift (measured in wall-clock
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time) due to the overhead needed by the root-coordinator to determine the imminent atomic model, make
the time advance (in this case, zero time) and write the value arriving to each Digital Output on the
corresponding GPIO. This drift might lead to the malfunctioning of the hardware. The simplest way to
solve this issue is to use a single atomic model that receives an input event carrying the N values to write on
all the GPIOs during the same transition function. This atomic model is named Multiple Digital Outputs
and accepts parameters to set the number of outputs N and the corresponding GPIO pins.

4.2 PWM Output atomic model

Typical actuators for the interaction with the environment in embedded applications are small DC motors
and stepper motors. The speed of a DC motor is proportional to the supply voltage and it is typically
managed with PWM signals characterized by a frequency (or period) and a duty cycle.

The PWM Digital Output atomic model makes use of the LEDC peripheral of the ESP32 to generate
PWM signals. During the initialization, the LEDC peripheral is configured using the ESP32 LEDC API,
setting the PWM frequency, the resolution for the duty cycle (13 bits) and its initial value is set to zero.
The duty cycle must be between 0 and 100 % which correspond to 0 and (2resolution 1),

Every time this atomic model receives an input event in port input carrying the value for the duty
cycle, an internal transition is scheduled in zero time to update the corresponding value for the LEDC
peripheral (with the API function 1edc_update_duty ()) during the output function A. Figure 1(c)
illustrates this behavior. This atomic model has a single parameter for the GPIO pin. It is responsibility
of the user to check that this GPIO actually features a PWM.

4.3 Temperature Probe atomic model

Some common input devices to acquire data from the environment rely on serial communication rather
than on parallel interfaces through multiple GPIOs. These interfaces are usually found on devices that
need to exchange complex dataframes. This is the case of the DS18B20 temperature probe, a widespread
off-the-shelf 1-Wire digital thermometer. Given the extensive use of this device in embedded applications
with the ESP32, we rely on third-party drivers for the DS18B20 and the 1-Wire communication based on
the Remote Control Transceiver (RMT) peripheral. For the 1-Wire communication, the ESP32 plays the
role of master, while the DS18B20 device acts as slave.

The DS18B20 is usually in idle state and every time a new temperature measurement is queried, the
master must issue a convert command. Once the measurement is ready, it is stored in the 2-byte temperature
register and the DS18B20 returns to idle state. The device indicates that a new measurement is available
and then the master issues a read command (with the driver function convert_and_read_temp () ).

We developed the DS18B20 Probe atomic model to interact with this device. During the initialization,
the RMT peripheral is set and the device is set to use the maximum resolution to take 12-bit measurements
using the ESP32 RMT API. This atomic model works similarly to the Digital Input atomic model by
polling the GPIO pin where the probe is attached to (Figure 1(d)). This pin is supplied as a parameter.

5 CASE STUDIES

This section covers some case studies using M&S to develop embedded applications with the esp32
library introduced in Section 4. The design methodology starts with a pure virtual simulation stage on
PC to verify correct functioning via simulation logs. Then, the same model is deployed and tested in
hardware during the real-time embedded simulation stage, replacing models representing the environment
by interfaces to the real hardware. The first example is a Blinky LED application, where the onboard LED of
the ESP32 microcontroller blinks at a configurable frequency —serving as a canonical Hello world! for
embedded systems. This example is further extended to show how to use the udpcomm library alongside
with the esp32 to communicate simulations running concurrently on different platforms (embedded and
PC) via UDP sockets. The next two examples illustrate M&S-based design of discrete-event controllers
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for: (a) a temperature controller and (b) a line-follower robot. All the examples are available in a git
repository SEDLab (2025a), including the controller for a stepper motor that is not shown here due to
space restrictions. All these embedded applications (strictly speaking, PowerDEVS models) were tested
in real-time on an ESP32-Wroom-32 development kit with 38 pins.

5.1 Blinky LED and Distributed Blinky LED

This model is built by simply combining a Square atomic model from the sources library, which
periodically generates output events alternating values 0 and 1 at a frequency set by the user, and a Digital
Output, which receives those events and writes their values on the corresponding GPIO pin. Figure 2(a)
illustrates the Blinky LED coupled model. In this example, we make use of the ESP32 onboard LED
connected to the GPIO pin 2 (see Figure 2(d)), therefore the parameter of the Digital Output was set to 2.
An excerpt of the simulation logging is shown in Listing 1.

ReadUuDP DigitalOutput
i,
Square SendUDP
Square DigitalOutput
blinky [£] I distributed_blinkly [ |
(a) Stand-alone Blinky LED model. (b) Distributed Blinky LED model. (c) LED Off. (d) LED On.

Figure 2: Snapshots of PowerDEVS’ GUI for the Blinky LED examples: (a) Stand-alone Blinky LED, (b)
Distributed Blinky LED. ESP32 Onboard LED: (c) Off, (d) On.

The Blinky LED example was extended to test inter-simulation communication, where two (or more)
independent executions of PowerDEVS running on different platforms exchange data in runtime. In this
case, there are two Blinky LED coupled models running in two different ESP32 boards. The Square atomic
model in one simulation periodically generates events for the Digital Output atomic model in the other
simulation using the Send UDP and Read UDP atomic models in-between, and vice versa. Send UDP and
Read UDP atomic models belong to the udpcomm library and use the UDP communication mechanism
described in Section 2.2. Figure 2(b) shows a snapshot of this model. Both boards must be connected to
the same WiFi network. An excerpt of the simulation logging is shown in Listing 2 (Device 1, listens to
UDP port: 6000 and sends to IP: 192.168.234.94 and UDP port: 5000) and Listing 3 (Device 2, listens
to UDP port: 5000 and sends to IP: 192.168.234.37 and UDP port: 6000). However, this example is not
limited to embedded simulations, and it can also be tested to communicate two simulations running on an
ESP32 board and a PC. In this last case, the Digital Output atomic model should be replaced by a GNU
Plot atomic model to plot the incoming events.

Listing 1: Simulation logging from the Blinky example.

[DigitalOutput] Simu Time: 1693.00, Dext function
[DigitalOutput] Simu Time: 1693.00, Output function, Write Value: 0 in GPIO pin: 2
[DigitalOutput] Simu Time: 1693.00, Dint function
[DigitalOutput] Simu Time: 1694.00, Dext function
[DigitalOutput] Simu Time: 1694.00, Output function, Write Value: 1 in GPIO pin: 2
[DigitalOutput] Simu Time: 1694.00, Dint function
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Listing 2: Simulation logging from Device 1. Listing 3: Simulation logging from Device 2.
[ReadUDP] Requesting UDP port: 6000 [ReadUDP] Requesting UDP port: 5000
[SendUDP] Init UDP:5000, IP:192.168.234.94 [SendUDP] Init UDP:6000, IP:192.168.234.37
[SendUDP] Simu Time: 15.00, Msg:0, IP [SendUDP] Simu Time: 15.00, Msg: 0, IP:
— :192.168.234.94, UDP:5000 <~ 192.168.234.37, UDP: 6000
[sendNET] Sent data: 0 to IP:192.168.234.94, [sendNET] Sent data: 0 to IP: 192.168.234.37,
— UDP:5000 <~ UDP: 6000
[netHandler] Received: 0 on UDP:6000 [netHandler] Received:0 on UDP:5000
[ReadUDP] Simu Time: 15.21, Rcv Msg: 0 [ReadUDP] Simu Time: 15.15, Rcv Msg: 0
[SendUDP] Simu Time: 16.00, Msg: 1, IP [SendUDP] Simu Time: 16.00, Msg: 1, IP:
— :192.168.234.94, UDP:5000 — 192.168.234.37, UDP: 6000
[sendNET] Sent data: 1 to IP:192.168.234.94, [sendNET] Sent data: 1 to IP: 192.168.234.37,
— UDP:5000 <~ UDP: 6000
[netHandler] Received: 1 on UDP:6000 [netHandler] Received: 1 on UDP: 5000
[ReadUDP] Simu Time: 16.38 Rcv Msg: 1 [ReadUDP] Simu Time: 16.28, Rcv Msg: 1

5.2 Design of a Temperature Controller

This section covers the design of a closed-loop discrete-event controller to maintain a heating system’s
temperature within predefined high and low thresholds. Such on-off controllers with hysteresis are common
in HVAC and level control systems, where a variable of interest must remain between set limits.

B kettle_controller *

Temperature Controller

T<Tmin? Output! Tmin<T<Tmax?

{1,0,1}

T ' Output —* —*
+ Output! 1 Output! -
—> 1 {0,1,0} P10 W

<double> <vector> .
DS18B20 KettleController Multiple

Cooling Digital
------ Outputs
ta = inf Output!
TminsT<Tmax? {0,0,1} T>Tmax? —‘I I LI
kettle_controller [ | |
(a) Temperature Controller atomic model. (b) Kettle Controller coupled model.

Figure 3: Temperature controller: (a) DEVS-Graph for the Temperature Controller atomic model, (b)
Snapshot of the PowerDEVS’ GUI for the Kettle Controller coupled model.

The temperature controller in this section will be tested on an electric kettle. This controller is
implemented as an atomic model named Kettle Controller. To close the loop, we need measurements of the
temperature from the system under control. To interface with a DS18B20 probe installed on the electric
kettle, we make use of the DSI8B20 Probe atomic model. Upon receiving an input event carrying the
current temperature, the Kettle Controller checks if it is inside the desired range set by the user and triggers
an output event with the controller action for a heating device (actuator). The heating device in this case
is a relay to turn on/off the electric kettle. In addition, a visual indication is provided by two additional
outputs of the controller connected to Digital Output atomics, which write on two GPIO pins wired to a
green LED (temperature is in-range) and a red LED (temperature is out-of-range), see Figure 4(b).

The Kettle Controller atomic works as follows: if the temperature T is below the lower threshold Tiy;,
the heating device and the red LED are turned on; if the temperature T is above the upper threshold Ti,«
the heating device is turned off and the red LED is also turned on; if the temperature 7 is in range but
rising the heating device and the green LED are turned on; while if the temperature is in range but falling
the heating device is turned off and the green LED is turned on. This behavior is shown in Figure 3(a)
using DEVS-Graph notation. To simplify this notation, we assume that: (a) the temperature value received
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Kettle Controller (Tmin=70°C, Tmax=85°C)

100 + — |

60 1
—— Temperature
~—— Relay

404

Temperature [°C]

0 500 1000 1500 2000 2500 3000 3500
Real Time [s]

(a) Logged data. (b) LEDs.

Figure 4: Embedded execution of the Kettle Controller (with Ty, = 70°C and Tpx = 85°C): (a) Measured
temperature and actuated relay, (b) green LED (T is in-range) and red LED (7 is out-of-range).

by the controller is pre-processed to generate a discrete event every time one of the following conditions is
met: T < Tiin, T > Tmax and Tiyin < T < Thax, and (b) the value of an output event is a 3-tuple <heating
device, green led, red led>. The Kettle Controller takes T, and Tp,.x as parameters. The Kettle
Controller coupled model is shown in Figure 3(b), which corresponds to a snapshot of the PowerDEVS’
GUI. Figure 4(a) shows the logged data from the embedded execution of Kettle Controller.

5.3 Design of a Line-follower Robot Controller

This section covers the design of a closed-loop discrete-event controller to make a 2-Wheel Drive (2WD)
robot follow a black line in the ground. This application is commonly known as line-follower robot.

o 1 — J . -

|n|pg|:t 1 |:| — . .
Digital Digital

Digital Car Wheels Output 1 Output 0

Output Input Controller  Controller

wheels_controller

Car Controller

IR sensors

Handler
A e N §
Duty PWM Digital  Digital
Cycle % Digital Qutput 3 Output 2
Output -
4| | »
wheels_controller [£]
(a) Car Controller atomic model. (b) Line-Follower Controller coupled model.

Figure 5: Line-follower robot controller: (a) DEVS-Graph for the Car Controller atomic model, (b)
Snapshot of the PowerDEVS’ GUI for the Line-Follower Controller coupled model.

In this case the control loop is closed with measurements of the relative position of the 2WD robot
with respect to the dark line in the ground. To this end we use two off-the-shelf TCRT5000 infrared (IR)
sensors, where an IR LED emits infrared light and a photosensitive device receives the reflected light in an
object placed in front. Both sensors are placed beneath the robot facing ground. The object to be detected
is the black line contrasting with a white background. If the sensor is over the line there is no light reflected
and its output will be a high level (1), while it will be a low level (0) if it is over the white background.

The discrete-event controller for the line-follower robot works as follows. If the two IR sensors are
placed over the white background with the black line in-between the robot will move forward. If the right
sensor is over the black line and the left sensor is over the white background the robot will turn clockwise,
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while in the opposite case it will turn counter-clockwise. Finally, if both sensors are on the black line the
robot will stop. The Car Controller atomic model implements this behavior (see Figure 5(a)).

The two wheels of the 2WD robot are managed with two independent small DC motors attached to
the ESP32 through an off-the-shelf double H-bridge driver (L298n). Using the drive/coast operation mode,
this driver is managed by three digital inputs per motor, one for setting the speed (with a PWM signal) and
two for setting the direction of rotation. To make the 2WD robot move forward, both wheels must rotate
clockwise with same speed. To make the robot rotate clockwise, the left wheel has to rotate clockwise
while the right wheel has to remain stopped. To make the robot rotate counter-clockwise, it is the other
way around. The Wheels Controller atomic model features a look-up table which receives the action to
be applied to the 2WD robot (in {FW,CW,CCW,STOP}) and generates the values for the four digital output
pins connected to the input pins of the L298n driver to set the wheels’ direction of rotation.

Figure 5(b) shows the coupled model for this application. Two Digital Input atomic models are used
to read the IR sensors, a Digital Input Handler atomic model is used to generate a single output event
after the arrival of new measurements in both IR sensors, the Car Controller atomic model receives the
measurements of the IR sensors and decides how the 2WD robot has to move, then the Wheels Controller
atomic model translates the controller action to rotation commands for the wheels, and four Digital Output
atomic models are used to write on the inputs of the motors driver. There is also a PWM Output atomic
model to generate a PWM signal for the motors driver to set a fixed speed on both motors. Figure 6 shows
some snapshots of the behavior of the line-follower robot in closed-loop, taken from SEDLab (2025b).

O

(a) Time = 01:20:00 (b) Time = 01:30:00 (c) Time = 01:38:00

Figure 6: Snapshots of the Line-Follower Robot in closed-loop with the embedded controller model
simulated in real-time. Timestamps in min:sec:millisec.

6 CONCLUDING REMARKS AND FUTURE WORK

This paper presented the adaptations addressed on the PowerDEVS simulation toolkit to run embedded
simulations on top of the FreeRTOS real-time operating system on an ESP32 development kit. It also
introduced the esp32 library of atomic models for the development of embedded applications targeting
robotics and IoT applications. The availability of atomic models for interacting out-of-the-box with the
environment promotes the rapid development of embedded applications based on M&S.

A series of simple but representative case studies of increasing complexity have been developed using
this library, covering applications in both areas. The applications presented in this paper showed that the
adaptations were effective and allowed the execution of the same DEVS model in both PCs and embedded
environments and in both virtual and real-time.

Next steps include the development of more complex real-world-sized applications which will require
the growth of the e sp32 library with atomic models to interface with typical hardware found in robotics and
IoT applications. Moreover, the models need to be posed under exhaustive testing to ensure the robustness
and reliability of DEVS models running in real-time on embedded hardware.
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Available ESP32 sleep modes need to be analyzed to replace the use of busy waiting by the root-
coordinator to wait for the next imminent event in real-time simulations compatible to the monitoring
of the arrival of external messages to PowerDEVS. Moreover, specific parameter readers and simulation
loggers targeted to embedded applications, complementary to those available for Linux simulations, need
to be developed.
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