Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

BRIDGING EXPERTISE AND AUTOMATION: A HYBRID APPROACH TO AUTOMATED
MODEL GENERATION FOR DIGITAL TWINS OF MANUFACTURING SYSTEMS

Lekshmi P.!, and Neha Karanjkar!

'School of Mathematics and Computer Science, Indian Institute of Technology Goa, GOA, INDIA

ABSTRACT

We consider the problem of Automated Model Generation (AMG) for Digital Twins of manufacturing
systems, particularly those represented as stochastic Discrete-Event Simulation (DES) models. Unlike
fully data-driven approaches, where both model parameters and structure are inferred from event logs, we
propose an expert-in-the-loop approach targeting systems whose structure changes only occasionally, with
such changes being automatically detected. While machine states and parameters (such as task delays) are
continuously inferred from data, the process remains expert-tunable via a Graphical User Interface-based,
guided flow. A natural language description of system structure is translated into readable DES models using
LLMs. The model is built as an interconnection of configurable components from a lightweight, open-source
library (FactorySimPy), with parameters inferred seamlessly from data. We outline the proposed flow, its
components, and results from a proof-of-concept implementation, and provide a detailed review of existing
AMG approaches, highlighting key differentiating aspects of our framework.

1 INTRODUCTION

The concept of Digital Twins (DTs) has significantly accelerated the transformation of manufacturing
systems by providing virtual replicas that dynamically reflect the state and behavior of real-world production
environments (Matta and Lugaresi 2024). The underlying model of a manufacturing DT is typically a
stochastic Discrete-Event Simulation (DES) model, where processes and interconnected physical components
such as machines and conveyor belts are represented using process-based simulation models, and their
parameters (such as task delays) are represented by random variates whose distribution is selected to match
observed data from the real system. Traditionally, such DES models have been manually constructed by
modeling experts, a method that is labor-intensive, error-prone, and unsuitable for real-time DT applications
(Reinhardt et al. 2019a). For building responsive DTs, the underlying model needs to be adaptable, both in
terms of its parameters (ensuring continuous synchronization with real-time sensor data) and its structure
(accommodating occasional structural changes due to operational needs, such as equipment upgrades or
layout modifications). To address these challenges, Automated Model Generation (AMG) approaches
have emerged, aiming to streamline and accelerate the creation of simulation models directly from available
digital data sources. AMG is essential for enabling rapid deployment and real-time responsiveness in Digital
Twins, significantly reducing the time required to update simulation models when production environments
evolve. The term AMG in manufacturing simulation began appearing prominently in the 2010s as Industry
4.0 and Digital Twin concepts gained traction. While the term encompasses methods to ease or assist
model-building (for example, pulling system structure and parameters from digital data such as process
plans, or control logic) (Popovics et al. 2012), it also encompasses approaches using algorithmic or Al-based
techniques to infer model structure and behavior directly from data (for example, discovering process flow
rules from event logs).

Recent developments in AMG predominantly emphasize fully data-driven methodologies, leveraging
process mining techniques to infer both the structural and parametric elements directly from operational
data, such as event logs (May et al. 2024; Tan et al. 2023; Lugaresi and Matta 2023). Despite their

979-8-3315-8726-0/25/$31.00 ©2025 IEEE 2800

Lekshmi and Karanjkar

success in domains such as material flow modeling, purely data-driven approaches face some critical
challenges: limited model readability and tuning capabilities, and difficulty in systematically integrating
expert knowledge into the automated model generation flow (Lugaresi 2024). Specifically, for manufacturing
systems where the constituent components and processes are well-understood, and structural changes are
infrequent and largely planned (such as assembly lines or consumer goods production), automating the
model generation process is essential, and yet a fully automated inference from event logs might introduce
unnecessary complexity and inaccuracies (Behrendt et al. 2025). To address these challenges, we discuss
and present a prototype AMG flow that emphasizes model readability, tunability, ease of validation and
integration of expert knowledge as central elements of the inference process, leveraging recent advances
in LLM-based agentic workflows.

1.1 Guiding Principles and Motivation for an Expert-in-the-Loop Approach

* Expert domain knowledge regarding manufacturing system structure is typically well-established
and reliable. For example, factory floor operators are intimately familiar with the factory’s layout,
machinery configurations, material flow paths, operational constraints, and standard operating
procedures, even though they may not have specialized expertise in simulation modeling languages
or DES modeling frameworks. Systematically integrating this domain knowledge into the model
generation workflow can substantially reduce the complexity and ambiguities associated with purely
data-driven approaches.

* Importantly, this integration of expert input should not necessitate specialized expertise in simulation
modeling or programming from the user. Recent advancements in Large Language Models (LLMs)
have opened new opportunities to translate natural language descriptions directly into formal
simulation models (Jackson et al. 2024).

* Despite their potential, LLM-based translations that directly generate DES models may lack robust
validation routines and automated sanity checks to ensure that the generated models are both accurate
and usable. However, if model generation from coarse descriptions is framed as the composition of
pre-built, configurable components from an open-source library using well-defined interconnection
rules, the resulting models can be more easily validated and are often correct-by-construction.

e Unlike the Petri-net based models generated by process mining based AMG flows, configurable
component-based models offer superior readability, extensibility and maintainability, crucial for
practical industrial use (Heavey et al. 2014).

* While structural changes in such systems are typically infrequent and intentional, automated detection
mechanisms are essential to identify these changes promptly and solicit verified expert input for
updating the simulation model accordingly.

* Likewise, the fitting of model parameter distributions to observed data must be continuous and
online, while also remaining expert-tunable, and allowing domain experts to guide the choice of
distribution families, specify dependencies or correlation structures, and adjust fitting parameters
as needed.

1.2 Proposed Expert-in-the-Loop AMG Framework

Motivated by these considerations, we propose an integrated AMG framework with an expert-in-the-loop
approach targeted for generating stochastic DES models whose parameters are synched continuously to
match real system data. The AMG flow decouples structural modeling, based on expert input about
components and their connections, from real-time parameter fitting. The framework comprises three core
components: DataFITR, FactoryFlow and FactorySimPy illustrated in Figure 1.

* DataFITR is an open-source tool for guided statistical fitting of real-time sensor data to probability
distributions. It provides a graphical interface and can generate Python code for random variate

2801

Lekshmi and Karanjkar

generation within stochastic DES models (Lekshmi et al. 2023). DataFITR is fully implemented
and available as a standalone, cloud-hosted tool at DataFITR page (DataFITR 2023).

When used as a component within the AMG framework, it integrates with the other modules to
continuously update model parameters based on sensor data.

» FactorySimPy is a core component of the AMG flow. It is a lightweight, open-source Python library
that provides configurable simulation models for components in manufacturing systems. Systems
are described as interconnected components with associated parameters, and the interconnection
follows well-defined rules to enable automated validation. Unlike closed-API commercial tools,
FactorySimPy features a modular and minimal design, is well documented, and is released under
a permissive BSD-style license. This makes it reusable, extensible, and suitable for integration
with AMG flows, custom visualizations, optimizers, and other workflows. An initial version is
available at GitHub repository (FactorySimPy Repository 2025), with documentation and examples
at documentation page (FactorySimPy Documentation 2025).

» FactoryFlow is the expert in the loop AMG flow that takes natural language descriptions of system
structure and employs LLM-based agentic workflows to generate process-based, readable DES
models. The resulting model is a network of parameterized component instances from FactorySimPy.
FactoryFlow includes a graphical interface for editing intermediate model representations, refining
structure and parameters, and visual validation through block diagram views. It integrates with
DataFITR to associate components with inferred parameters by matching component instance names
in data headers. A proof-of-concept implementation is available at GitHub repository (FactoryFlow
PoC 2025) and is discussed in this work. As part of future work, the framework will be cloud-
hosted, with an expanded graphical interface for performing simulations, parameter optimization,
and systematic design space exploration.

1.3 Main Contributions and Paper Organization

The primary contributions of this paper are as follows. First, we provide a comprehensive review of the
state of the art in AMG, with a focus on generating DES-based Digital Twins for manufacturing systems
(Section 2). Second, we present a case for the expert-in-the-loop approach to Automated Model Generation
(AMG), emphasizing its distinctions from and advantages over fully data-driven methods, particularly in
systems with infrequent but deliberate structural changes (sections 1.1 and 2.5). Third, we describe the
proposed AMG framework in detail (Section 3), outlining its guiding principles, modular architecture, and
integration of human input with data-driven methods. We also present the implementation and validation of
a proof of concept. Additionally, we report initial results from a scalability study (Section 4) and conclude
with a summary of the key advantages, distinguishing features and limitations of our approach in general,
and the current implementation in particular (Section 5), with a brief discussion of future work.

2 A REVIEW OF AUTOMATED MODEL GENERATION

Automatic Model Generation (AMG) encompasses methods to automatically derive simulation or digital-
twin models from operational data, metadata, and design specifications, reducing manual modeling effort.
Model generation has historically been a critical and time-consuming process, encompassing multiple
iterations of data collection, input modeling, model specification and its translation to executable models
and validation, requiring specific expertise. Recent trends such as Industry 4.0 and the opportunity to
utilize real-time sensor data to drive Digital Twins demands rapid, adaptive, and resilient model creation
for decision support and optimization. AMG flows utilize simulator interfaces and algorithmic methods
to streamline and expedite model creation (Bergmann and Strassburger 2010; Fowler and Rose 2004).
AMBG has been successfully implemented across a diverse range of target model types (including Markov
chains, Petri nets, and machine learning models), drawing inputs from a range of data sources (such as
ERP systems, routing information, event logs, sensor and PLC data for machine states), and employing

2802

https://datafitr.streamlit.app
https://github.com/FactorySimPy/FactorySimPy
https://factorysimpy.github.io/FactorySimPy
https://github.com/InferaFactorySim/FactoryFlow

Lekshmi and Karanjkar

techniques such as process mining and machine learning to infer system behavior and structure. This review
focuses on discrete-flow manufacturing systems, such as assembly lines or consumer goods production
facilities. Such systems exhibit clearly defined processes with stable structural configurations and infrequent
operational changes, making them ideal for human-in-the-loop AMG approaches. The review focuses on
discrete-event simulation (DES)-based Digital Twins (DTs) of manufacturing systems, emphasizing key
dimensions such as adaptability, validation, modularity, and the required degree of human interaction.
Literature from reputable conferences (e.g., Winter Simulation Conference, SIGSIM-PADS) and journals
(e.g., Computers in Industry, IJPR) published predominantly post-2015 is reviewed.

AMG frameworks have found applications across manufacturing (Reinhardt et al. 2019b; Psarommatis
and May 2023; Liu et al. 2019), logistics and supply chains (Ivanov 2024; Jackson et al. 2024), automotive
and transportation (Huang et al. 2011), and dynamic industrial processes (Tan et al. 2023). Schwede
and Fischer (2024) presents a review of the advances in simulation-based DTs in a discrete material
flow system. AMG workflows reported in the literature can be broadly categorized into two classes:
(1) purely data-driven approaches, which include process mining methods that rely on event logs, and
machine learning-based techniques that infer machine states and behavior from sensor data; (2) hybrid or
expert-in-the-loop approaches, which combine automated inference with domain expert input for improved
interpretability and control. These include emerging methods based on Natural Language Processing (NLP)
and Large Language Models (LLMs), which aim to generate model structure and parameters from coarse
descriptions.

2.1 ML and Process Mining-based Methods

Process mining emerges prominently in AMG methods, facilitating automatic model generation by lever-
aging operational data. Lugaresi and Matta (2021a) propose a framework for automatic DES model
construction from event logs, inferring both structural and parametric model elements. Lugaresi (2024)
discuss methodological challenges and research directions within process mining. Similarly, May et al.
(2024) combine process mining with machine learning and deep learning to infer resource allocation and
sequencing logic. Friederich et al. (2022) introduce a conceptual framework integrating process mining with
machine learning techniques to create Petri-net simulation models semi-automatically, requiring manual
event labeling. Adaptive methods addressing evolving systems are relatively uncommon but critical. Tan
et al. (2023) utilize timed-event logs to continuously adapt Petri-net models, employing data assimilation
methods to discard outdated structures.

2.2 NLP and LLM-based Approaches

LLMs have recently emerged as promising tools for enhancing various stages of the AMG workflow. Jackson
et al. (2024) propose an NLP-driven approach that translates textual system descriptions into simulation
models, with final validation performed against real system behavior. Giabbanelli (2023) survey the potential
roles of LLMs in simulation workflows, including the generation of conceptual models, summarization of
simulation results, visualization narration, and debugging. Hattori et al. (2024) explore LLM integration
within multi-agent simulation contexts, showcasing their utility in configuring agent behaviors through
natural language. Carreira-Munich et al. (2024) introduce a two-stage LLM-assisted framework that
transforms high-level natural language descriptions into executable DEVS models in PythonPDEVS.

2.3 Hybrid and Expert-in-the-loop Methods

Overbeck et al. (2024) propose adaptive simulation frameworks that automatically detect structural and
parametric changes, necessitating human intervention only during discrepancies. Although the significance
of validation in AMG has been highlighted in several flows (Overbeck et al. 2024; Lugaresi et al. 2023;
Onggo and Currie 2024; Hua et al. 2022; Lugaresi and Matta 2021a), integrating human validation and
input systematically at each step remains challenging in such flows. Expert input may be integrated only

2803

Lekshmi and Karanjkar

during initial stages, such as event labeling (Friederich et al. 2022) or parameter specification (Krenczyk
et al. 2016; Vaidya et al. 2024). GUI-based, and cloud-hosted AMG solutions are less common. One such
example is proposed by Heavey et al. (2014) to utilize ERP and MES data to generate DES models using
the SimPy-based ManPy library. However, this work does not address dynamic parametric or structural
adaptability required for DTs.

Systematically integrating expert input, generating readable, maintainable and extensible model descrip-
tions, and real-time adaptivity of the model are oftentimes conflicting requirements. Considering a subset
of applications in order to make simplifying assumptions can be the key to addressing this challenge. For
example, (Novdk and Vyskocil 2022) suggests a decoupling of parameter extraction and model description;
using a formal representation and static model of production operations while parameters such as operation
duration times are acquired through process mining techniques. A similar strategy is employed the AMG
flow we propose in this paper that decouples the structural modeling (which is eased using LLMs), and
parameter fitting (which is real-time, and yet expert tunable through a systematic GUI), whist generating
highly readable and self-validating models through an open component library (FactorySimPy).

2.4 Other Relevant Aspects of AMG

1. Open-Source and Commercial Simulation Platforms: Several frameworks depend on commercial
simulation software like FlexSim (Burnett et al. 2008) or Arena (May et al. 2024). Platforms such
as Tecnomatix and MindSphere also provide visual feedback and system monitoring (Overbeck
et al. 2024; Lugaresi et al. 2022). AMG workflows reported in recent literature leverage either
commercial (e.g., FlexSim, Arena, AnyLogic) or open-source (e.g., ManPy, Salabim, JaamSim)
simulation tools. Commercial solutions offer user-friendly graphical interfaces but are often limited
by closed or custom APIs (in contrast to popular programming languages for scripting or model
generation) and can be expensive, offering limited opportunity for customization, and integration
with automated workflows. Open-source tools provide flexibility but often lack application-specific
component libraries (Huang et al. 2011).

2. GUlI-based and Cloud-hosted Flows: Few AMG frameworks offer fully cloud-hosted workflows.
Heavey et al. (2014) and Vaidya et al. (2024) (AWS-based) represent rare examples. Many
GUI tools are primarily offline utilities aiding visualization rather than comprehensive modeling
platforms (Burnett et al. 2008).

2.5 Comparison Between Data-driven and Expert-In-The-Loop Flows

The primary distinction between fully data-driven approaches (particularly process-mining based methods
that generate DEVS or Petri-Net models) and Expert-In-The-Loop (EITL) methods such as ours lies in
their underlying assumptions, application suitability, and resulting model characteristics.

* Suitability: Data-driven approaches are well-suited when the manufacturing environment is highly
dynamic. Examples include job shops, reconfigurable cells, or make-to-order lines where prod-
uct mix, routing, and resource states change unpredictably. In such contexts, event logs allow
process-mining algorithms to discover emergent flow paths, update resource allocation rules on
the fly, and keep the model synchronized with reality. When the plant layout is stable, such as
assembly lines, packaging lines, or semiconductor fabs, repeatedly rediscovering an essentially
fixed topology becomes wasteful. EITL flows use expert knowledge (for example, the station list
or conveyor graph) and automation focuses on parametric calibration, detection of change and
incremental updates. This approach lowers data-collection overhead, shortens model-generation
time, and avoids fluctuation-induced noise. In systems where equipment layout resembles a mesh
or line, process mining spends compute to rediscover obvious routes. Expert specification removes
this redundancy, focusing automation on parameter fitting and stochastic calibration rather than
topology discovery. Case studies show that structure inference time drops significantly when expert

2804

Lekshmi and Karanjkar

templates are used, with no loss in KPI fidelity (Cimino et al. 2025; Heavey et al. 2014). However
EITL flows may be a poor choice for systems where routing changes frequently and dynamically
as expert input will be sought each time a structural change is detected.

* Model Readability, Maintainability, and Tunability: Data-driven methods typically generate
Petri-net, Markov Chain, DEVS or similar formal models, resulting in opaque, difficult-to-interpret
structures. Complex data-driven models frequently require additional manual tuning to mitigate
excessive expressiveness, often labelled the “spaghetti effect” (Castiglione 2024; Lugaresi and
Matta 2020). EITL can produce modular, structured simulation code that domain engineers can
readily inspect and maintain. These models are inherently more tunable and less prone to redundant
complexity.

» Ease of Model Validation: In data-driven methods that generate formal models such as Petri-Nets,
Markov Chains or DEVS, outlier events, insufficient event logs or dynamic changes in the system
structure can lead to models containing loops, deadlocks or livelocks that are extremely difficult to
detect and require post-simulation debugging. FactoryFlow generates models as a composition of
pre-validated configurable components. Deadlocks in the generated model are still possible with
certain system descriptions, but easier to spot, visualize and rectify. Human checkpoints built into
EITL flows detect and correct structural or parametric anomalies early.

* Data Requirements: Data-driven methods often require large, high-resolution logs for discovering
the entire structure and state-space of the system. An example of an event log required for model
generation is present in (Bayomie et al. 2022). Model accuracy can degrade when logs are sparse or
noisy. EITL such as FactoryFlow decouple structural description and fitting of individual parameters.
Parameters associated with longer data streams will be fitted with greater accuracy. The data streams
can be much smaller, targeted for unknown or dynamically changing aspects of the system.

* Recognition of Production Policies and Patterns: Data-driven methods struggle to capture schedul-
ing rules such as first-available or round-robin dispatching which statistically look similar to a
uniform discrete distribution, and yet lead to significantly different model behavior (Lugaresi 2024).
Consequently, operational nuances critical to realistic behaviour may be missed. Manual and hybrid
flows such as FactorySimPy formalises resources and operations explicitly.

* User Interface: Many data-driven pipelines run offline in batch mode and offer limited interactive
refinement. EITL flows depend heavily on an intuitive, interactive GUI where engineers iteratively
adjust structure and parameters and receive immediate feedback. The quality of the interface can
often be a bottleneck in the effectiveness of such a flow.

Fully data-driven AMG is most effective for data-rich systems that undergo frequent, unpredictable routing
changes, while EITL flows are better suited to stable plants where structure changes rarely and transparency,
tunability, and low modelling overhead are the primary concerns. Hybrid flows meet the central challenge
of creating adaptable, stochastic DES models for manufacturing digital twins by combining automated
parameter inference with domain expertise. A current gap exists for GUI-based tools that can integrate
expert-input with real-time parameter-inference, using open-source component libraries.

3 FACTORYFLOW

In this section, we describe how the key design principles underlying our expert-in-the-loop approach outlined
in Section 1.1 are operationalized in the design and implementation of the FactoryFlow framework. The
FactoryFlow framework consists of the following main components, introduced in Section 1.2 and illustrated
in Figure 1:

* DataFITR is responsible for guided parameter fitting and input modeling, from real-time streaming
data. It can automatically infer input distributions (univariate as well as joint), estimate their
parameters and correlation structures, and generate Python routines for random variate generation

2805

Lekshmi and Karanjkar

Real System

Sensor data

Historical |
data
@ Operator/
A Domain expert
— Automated
— Manual

[DataFITR H FactoryFlow FactorySimPy ’

Netlist ™

System
Descri ptiﬂ’l

system data
Structure
Description

To operator/ domain expert

Structural updates

Distribution Simulation
Parameters component Library

Simulation, Control,

Simulation,Validation, 1‘_ i o Performance

Change detection @) estimation, Design
i &) exploration

Model Description
Figure 1: Core components and their integration in FactoryFlow.

to be used within a stochastic DES model. A standalone cloud-hosted version, with a Streamlit-based
GUI interface is freely available. The current implementation accepts historical data in CSV format.
Integration with real-time databases for supporting streaming data is ongoing.

FactorySimPy is a lightweight, open-source component-based simulation library for manufac-
turing systems built using SimPy. It is minimal, well-documented and provides pre-validated
and configurable models of components (such as machines, splits, conveyor belts and other item
transportation mechanisms) that can be connected together using well-defined rules to generate
correct-by-construction models.

FactoryFlow is the overall AMG flow proposed in this work. A proof-of-concept implementation is
available as open-source and is described here. It uses LLMs to translate coarse structural descriptions
(in plain english) to executable models described as an interconnection of parameterized components
from FactorySimPy. The parameter values are automatically inferred by DataFITR and associated
with component instances using their IDs (instance names) from the data stream. The model
descriptions are highly readable. A screenshot of the GUI provided in the PoC is shown in Figure
2. A block diagram is also generated to enable user validation and correction. The GUI supports
direct editing of the generated model at each intermediate step. The current implementation uses
Gemini 2.5 Pro model accessed via API calls, with custom prompt strategies to extract component
and connection information from natural language.

FactoryFlowSim is a guided, GUI-based flow for simulation, optimization and design-space ex-
ploration which is planned to be implemented and integrated with FactoryFlow. Users can either
download the simulation model for local execution or run it in the cloud by specifying parameters
like run length or termination conditions. It also supports visual validation and operator feedback
loops. The module compares key performance indicators (KPIs) such as cycle time, resource
utilization, and throughput between those generated by the simulation and the ones obtained from
real system data. Deviations beyond thresholds trigger an alert for expert input. This module, and
a guided GUI interface is currently under development.

2806

Lekshmi and Karanjkar

FactoryFlow

Enter system description

A machine "Primaryprocessor” is connected to a "Splitter”. "Splitter” is connected to "Inspection”
and "Rework" machine. "Inspection” is connected to "Sinkl". "Rework" is connected to "Sink2",
"Source” is connected to "Primaryprocessor” using "RawMaterial_buffer”. "Intermediate_buffer”
connects "Primaryprocessor” to "Splitter”. "Qualitychecker_buffer” and "Rework_buffer” connects
"Splitter” to "Inspection” and "Rework” machines. “Final_buffer” connects "Inspection” to "Sink1"

and "Faulty_buffer” connects "Rework" to "Sink2". Machines have a blocking behavior.

Create model

Click to expand ~

Intermediate model description (component list)

[{'id": 'Source’, ‘type": ‘Source’, ‘out_edges": ['RawMaterial_buffer']}, {'id": '"RawMaterial_buffer’,
‘type’: 'Buffer’, 'delay': 0, 'src_node': "Source’, 'dest_node’: 'Primaryprocessor’, ‘'mode’: "FIFO’,
‘store_capacity': 10}, {"id": ‘Primaryprocessor’, ‘type': 'Machine', 'processing_delay':

M e Prncmercae dalad! Ha adenct Tl abaci =l b dFoe! Maasnckond mnadoeial bl a1

L]

Frimnr}prtmmur}—-||mpnmﬂimp 'hufﬁ"r|_-| Splitter Qualitychecker. huﬁ!r}——||msp-n|:l1'al|-—- Fimal M.qu-'—'\——l Sinkl |
m Rework_butfor == Rework

Faulty hllHi_-r'—f\-
Reworked_material buffer|

Generate simulation model

Figure 2: A Screenshot of the PoC Implementation of FactoryFlow.

4 VALIDATION AND SCALABILITY

We present results of an initial validation and scalability study for the PoC implementation. The study aims
to understand current issues, accuracy and extent of KPI match for the generated models and to project
how the effort (both, human and automation) would scale with model size, complexity and number of
parameters. To do this, we consider three reference systems of increasing size and complexity:

Model A represents a small model, and is a linear sequence of 10 machines connected over buffers.
The individual machines have diverse distribution types and parameter values for their task delays,

work capacities, output port selection policies and also the number of buffers connected in parallel
between them.

2807

Lekshmi and Karanjkar

* Model B represents a model that is larger (100s of machines) but homogenous (low complexity).
It simply consists of 10 parallel instances of the linear sequence of 10 machines (similar to model
A) connected through a common source and sink. Although the parallel sequence instances are
structurally similar, their parameter values are different and unique.

* Model C represents a model that is both large and complex. It has the same number of machines

(and parameters) as Model B but a non-regular, heterogenous interconnection structure that merits
a longer system description.

For each reference model, we build a ground-truth simulator that generates synthetic sensor data. DataFITR
uses these data streams and coarse textual descriptions from FactoryFlow to infer parameters and create
executable models in FactorySimPy, denoted A_gen, B_gen and C_gen. KPI accuracy is assessed by
comparing matched distribution parameters and KPI values for each pair (A versus A_gen, B versus B_gen,
C versus C_gen) and the results are summarised in Table 1. The KPIs show good agreement indicating an
acceptable level of accuracy in the generated models. The same reference models were used to understand
and quantify scaling of human effort, processing time, and description length (see Table 1). Decoupling
structural description from parameter fitting lets the flow scale to large systems with regular topologies,
while fitting cost remains proportional to the number of parameters. The trends in the time required by an
expert for model description and that taken by the flow highlight the distinct advantage of using an AMG

flow in contrast to manual model creation using simulation tools or programming that can take hours to
days.

5 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

Automated Model Generation (AMG) is set to play a critical role as an enabler for Digital Twins of manu-
facturing systems, particularly those using stochastic Discrete-Event Simulation (DES) models. Traditional
manual modeling approaches are too slow and rigid to support the adaptability and responsiveness that
Digital Twins require. At the same time, fully data-driven AMG approaches face challenges related to the
systematic integration of expert knowledge, data availability and the readability and extensibility of the
generated models. This is particularly relevant for systems where structural changes are infrequent and
deliberate, such as in production assembly lines. This paper made the case for a hybrid, expert-in-the-
loop approach to Automated Model Generation (AMG), and presented an outline and proof-of-concept

Table 1: A summary of the validation and scalability results. Details, model descriptions, and full comparison
results are available at GitHub repository (FactoryFlow PoC 2025).

Model A | Model B | Model C
Num of machines 10 100 100
. . Num of connections 14 140 145
Model size and complexity Model parameters 20 200 200
System description size (characters) 603 1087 1616
. . . System description 5-6 10-12 14-15
Modeling Effort i(:l:::ils:::e:ppmx}mate time DataFITR guided parameter fitting 2-3 2-3 2-3
Model visual validation 2-3 4-5 8-9
Parameter fitting delay (DataFITR) <1 4.45 4.98
Automated Model Generation Effort LLM based translation time in FactoryFlow <1 4.98 56
(time in minutes) (including API calls delay) ’ ’
Input token size (including prompt) 900 2594 2789
Output token size 8393 20509 14425
Simulation Execution Time in seconds (for simulation time of 10%) 48.97 429.15 348.45
Model Generation Accuracy Avg system throgghput (items processed per second) | 0.25 % 0.12% 2.40%
. Avg cycle time (averaged across all items) 0.60% 0.49% 3.60%
(relative error between the KPIs generated -
. . Total num of items processed 0.25% 0.12% 2.40%
by simulating the reference model and the —— - ———
enerated model, for simulation time=10*) Avg time spent by MS5 in processing state 0.41% 1.02% 2.60%
g ’ Time avg occupancy of Buffer B_4_5 4.20% 1.20% 0%

2808

https://github.com/InferaFactorySim/FactoryFlow

Lekshmi and Karanjkar

implementation of FactoryFlow, a framework we have developed that embodies this idea. The framework
consists of three key modules: DataFITR, for guided, online statistical modeling of system parameters;
FactoryFlow, an LL.M-based module that translates natural language descriptions into formal model struc-
tures; and FactorySimPy, a lightweight, open-source simulation library used by FactoryFlow to assemble
models through rule-based interconnections of configurable components. The resulting models are modular,
human-readable, and easily extensible, while being adaptive to real-time sensor data via on-line parameter
fitting.

While the proposed framework demonstrates the effectiveness and utility of an expert-in-the-loop
approach, there are certain limitations, both in the current implementation and in the approach itself. From
an implementation standpoint, the framework currently supports only historical data via CSV uploads
for parameter inference; integration with streaming data sources is ongoing. FactoryFlow depends on
commercial LLM APIs (specifically Gemini 2.5 Pro), which may restrict access and reproducibility.
Updates or changes to the LLLM by the provider can result in glitches and a need for re-tuning the prompt.
This can be overcome by transitioning to open-source, locally hosted LLM models such as LLaMA to offer
competitive performance while eliminating licensing fees, and is planned as future work. FactorySimPy
presently supports only discrete item flows (in contrast to material or fluid flows). Support for material flows
(using hybrid simulation) and more complex behaviors is planned. Furthermore, while a web interface exists
for parameter fitting and model generation, the simulation and design exploration interface (FactoryFlowSim)
is still in progress and not fully integrated into the pipeline. From a broader methodological perspective,
the framework requires expert input for describing structural changes in the system. While this supports
flexibility and interpretability, it is suited for systems with largely static structures. Additionally, extending
the component library in FactorySimPy or introducing new system behaviors requires expertise in simulation
modeling and Python development, which may not be available to all users. These challenges are being
addressed to improve accessibility, automation, and robustness of the framework in future iterations.

In summary, this work demonstrated a viable alternative to fully data-driven AMG approaches by
combining human expertise, structured modeling abstractions, and advances in LLM-based Al tools to
produce interpretable, adaptive, and validated DES models for manufacturing Digital Twins.

REFERENCES

Bayomie, D., K. Revoredo, S. Bachhofner, K. Kurniawan, E. Kiesling, and J. Mendling. 2022. “Analyzing
Manufacturing Process by Enabling Process Mining on Sensor Data”. In Workshop of the Practice of
Enterprise Modelling, PoOEM 2022, November 23-25. London, UK.

Behrendt, S., T. Altenmiiller, M. C. May, A. Kuhnle, and G. Lanza. 2025. “Real-To-Sim: Automatic
Simulation Model Generation for a Digital Twin in Semiconductor Manufacturing”. Journal of Intelligent
Manufacturing:1-20.

Bergmann, S., and S. Strassburger. 2010. “Challenges for the Automatic Generation of Simulation Models for
Production Systems”. In Proceedings of the 2010 Summer Computer Simulation Conference, SCSC10,
545-549. San Diego, CA, USA: Society for Computer Simulation International.

Burnett, G. A., D. J. Medeiros, D. A. Finke, and M. T. Traband. 2008. “Automating the Development of
Shipyard Manufacturing Models”. In 2008 Winter Simulation Conference (WSC), 1761-1767 https:
//doi.org/10.1109/WSC.2008.4736264.

Carreira-Munich, T., V. Paz-Marcolla, and R. Castro. 2024. “DEVS Copilot: Towards Generative Al-
Assisted Formal Simulation Modelling based on Large Language Models”. In 2024 Winter Simulation
Conference (WSC), 2785-2796 https://doi.org/10.1109/WSC63780.2024.10838994.

Castiglione, C. 2024. “Automated Generation of Digital Models for Manufacturing Systems: The Event-
centric Process Mining Approach”. Computers and Industrial Engineering 197:110596.

Cimino, A., M. Elbasheer, F. Longo, G. Mirabelli, V. Solina, and P. Veltri. 2025. “Automatic Simulation
Models Generation in Industrial Systems: A Systematic Literature Review and Outlook towards
Simulation Technology in the Industry 5.0”. Journal of Manufacturing Systems 80:859-882.

2809

https://doi.org/10.1109/WSC.2008.4736264
https://doi.org/10.1109/WSC.2008.4736264
https://doi.org/10.1109/WSC63780.2024.10838994

Lekshmi and Karanjkar

DataFITR 2023. “A Tool for Input Modeling”. Accessed 09" September.

FactorySimPy Documentation 2025. “Documentation of the Package with Examples”. Accessed 09
September.

Fowler, J., and O. Rose. 2004. “Grand Challenges in Modeling and Simulation of Complex Manufacturing
Systems”. Simulation 80:469-476.

Friederich, J., D. P. Francis, S. Lazarova-Molnar, and N. Mohamed. 2022. “A Framework for Data-Driven
Digital Twins of Smart Manufacturing Systems”. Computers in Industry 136:103586.

Giabbanelli, P. J. 2023. “GPT-Based Models Meet Simulation: How to Efficiently use Large-Scale Pre-
Trained Language Models Across Simulation Tasks”. In 2023 Winter Simulation Conference (WSC),
2920-2931 https://doi.org/10.1109/WSC60868.2023.10408017.

Hattori, H., A. Kato, and M. Yoshizoe. 2024. “Integrating Large Language Models into Agent Models
for Multi-Agent Simulations: Preliminary Report”. In 2024 Winter Simulation Conference (WSC),
230-241 https://doi.org/10.1109/WSC63780.2024.10838923.

Heavey, C., G. Dagkakis, P. Barlas, I. Papagiannopoulos, S. Robin, M. Mariani ef al. 2014. “Development
of an Open-source Discrete Event Simulation Cloud Enabled Platform™. In 2014 Winter Simulation
Conference (WSC), 2824-2835 https://doi.org/10.1109/WSC.2014.7020124.

Hua, E. Y., S. Lazarova-Molnar, and D. P. Francis. 2022. “Validation of Digital Twins: Challenges and
Opportunities”. In 2022 Winter Simulation Conference (WSC), 2900-2911 https://doi.org/10.1109/
WSC57314.2022.10015420.

Huang, Y., M. D. Seck, and A. Verbraeck. 2011. “From Data to Simulation Models: Component-based
Model Generation with a Data-driven Approach”. In 2011 Winter Simulation Conference (WSC),
3719-3729 https://doi.org/10.1109/WSC.2011.6148065.

Ivanov, D. 2024. “Conceptualisation of a 7-element Digital Twin Framework in Supply Chain and Operations
Management”. International Journal of Production Research 62(6):2220-2232.

Jackson, I., M. J. Saenz, and D. Ivanov. 2024. “From Natural Language to Simulations: Applying Al
to Automate Simulation Modelling of Logistics Systems”. International Journal of Production Re-
search 62(4):1434-1457.

Krenczyk, D., B. Skolud, and M. Olender-Skéra. 2016. “Semi-automatic Simulation Model Generation of
Virtual Dynamic Networks for Production Flow Planning”. IOP Conference Series: Materials Science
and Engineering 145.

Lekshmi, P., N. Karanjkar, and T. Lone. 2023. “DataFITR: An Open, Guided Input Modeling Tool for
Creating Simulation-Based Digital Twins”. In Proceedings of the 13th International Conference on
Simulation and Modeling Methodologies, Technologies and Applications, SIMULTECH 2023, Rome,
Italy, July 12-14, 2023, edited by G. Wagner, F. Werner, and F. D. Rango, 279-286: SCITEPRESS.

Liu, Q., H. Zhang, J. Leng, and X. Chen. 2019. “Digital Twin-driven Rapid Individualised Designing of Auto-
mated Flow-shop Manufacturing System”. International Journal of Production Research 57(12):3903—
3919.

Lugaresi, G. 2024. “Process Mining as Catalyst of Digital Twins for Production Systems: Challenges and
Research Opportunities”. In 2024 Winter Simulation Conference (WSC), 1-12 https://doi.org/10.1109/
WSC63780.2024.10838896.

Lugaresi, G., S. Gangemi, G. Gazzoni, and A. Matta. 2022. “Online Validation of Simulation-Based
Digital Twins Exploiting Time Series Analysis”. In 2022 Winter Simulation Conference (WSC), 2912—
2923 https://doi.org/10.1109/WSC57314.2022.10015346.

Lugaresi, G., S. Gangemi, G. Gazzoni, and A. Matta. 2023. “Online Validation of Digital Twins for
Manufacturing Systems”. Computers in Industry 150:103942.

Lugaresi, G., and A. Matta. 2020. “Generation and Tuning of Discrete Event Simulation Models for
Manufacturing Applications”. In 2020 Winter Simulation Conference (WSC), 2707-2718 https://doi.
org/10.1109/WSC48552.2020.9383870.

2810

https://doi.org/10.1109/WSC60868.2023.10408017
https://doi.org/10.1109/WSC63780.2024.10838923
https://doi.org/10.1109/WSC.2014.7020124
https://doi.org/10.1109/WSC57314.2022.10015420
https://doi.org/10.1109/WSC57314.2022.10015420
https://doi.org/10.1109/WSC.2011.6148065
https://doi.org/10.1109/WSC63780.2024.10838896
https://doi.org/10.1109/WSC63780.2024.10838896
https://doi.org/10.1109/WSC57314.2022.10015346
https://doi.org/10.1109/WSC48552.2020.9383870
https://doi.org/10.1109/WSC48552.2020.9383870

Lekshmi and Karanjkar

Lugaresi, G., and A. Matta. 2021a. “Automated Manufacturing System Discovery and Digital Twin Gen-
eration”. Journal of Manufacturing Systems 59:51-66.

Lugaresi, G., and A. Matta. 2023. “Automated Digital Twin Generation of Manufacturing Systems with
Complex Material Flows: Graph Model Completion”. Computers in Industry 151:103977.

Matta, A., and G. Lugaresi. 2024. “An Introduction to Digital Twins”. In 2024 Winter Simulation Conference
(WSC), 1281-1295 https://doi.org/10.1109/WSC63780.2024.10838793.

May, M. C., C. Nestroy, L. Overbeck, and G. Lanza. 2024. “Automated Model Generation Framework for
Material Flow Simulations of Production Systems”. International Journal of Production Research 62(1-
2):141-156.

Novik, P., and J. Vyskocil. 2022. “Digitalized Automation Engineering of Industry 4.0 Production Systems
and their Tight Cooperation with Digital Twins”. Processes 10(2):404.

Onggo, B. S., and C. S. M. Currie. 2024. “Extending Simulation Modeling Methodology for Digital
Twin Applications”. In 2024 Winter Simulation Conference (WSC), 3058-3069 https://doi.org/10.1109/
WSC63780.2024.10838633.

Overbeck, L., S. C. Graves, and G. Lanza. 2024. “Development and Analysis of Digital Twins of Production
Systems”. International Journal of Production Research 62(10):3544-3558.

FactoryFlow PoC 2025. “GitHub Repository”. Accessed 09" September.

Popovics, G., A. Pfeiffer, B. K4dar, Z. Vén, L. Kemény, and L. Monostori. 2012. “Automatic Simulation
Model Generation Based on PLC Codes and MES Stored Data”. Procedia CIRP 3:67-72.

Psarommatis, F., and G. May. 2023. “A Literature Review and Design Methodology for Digital Twins in the
Era of Zero Defect Manufacturing”. International Journal of Production Research 61(16):5723-5743.

Reinhardt, H., M. Weber, and M. Putz. 2019a. “A Survey on Automatic Model Generation for Material
Flow Simulation in Discrete Manufacturing”. Procedia CIRP 81:121-126.

Reinhardt, H., M. Weber, and M. Putz. 2019b. “A Survey on Automatic Model Generation for Material
Flow Simulation in Discrete Manufacturing”. Procedia CIRP 81:121-126. 52nd CIRP Conference on
Manufacturing Systems (CMS), Ljubljana, Slovenia, June 12-14, 2019.

FactorySimPy Repository 2025. “GitHub Repository”. Accessed 09" September.

Schwede, C., and D. Fischer. 2024. “Learning Simulation-Based Digital Twins for Discrete Material Flow
Systems: A Review”. In 2024 Winter Simulation Conference (WSC), 3070-3081 https://doi.org/10.
1109/WSC63780.2024.10838729.

Tan, W.J., M. G. Seok, and W. Cai. 2023. “Automatic Model Generation and Data Assimilation Framework for
Cyber-Physical Production Systems”. In Proceedings of the 2023 ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, SIGSIM-PADS 23, 73-83. New York, NY, USA: Association for
Computing Machinery.

Vaidya, R., A. Mittal, and G. Nanaware. 2024. “Cloud based Simulation Platform (CSP): A Novel Way
to Democratize Simulation Based Experimentation”. In 2024 Winter Simulation Conference (WSC),
1446-1456 https://doi.org/10.1109/WSC63780.2024.10838992.

AUTHOR BIOGRAPHIES

LEKSHMI P is a Ph.D. candidate in the School of Mathematics and Computer Science at the Indian
Institute of Technology Goa (IIT Goa). Her areas of interest include discrete-event simulation and Digital
Twins. Her email address is lekshmi20231101 @iitgoa.ac.in.

NEHA KARANJKAR is an Assistant Professor in the School of Mathematics and Computer Science at
the Indian Institute of Technology Goa (IIT Goa). Her research interests include discrete-event simulation,
parallel simulation and hybrid (mixed discrete-continuous) simulation. She is an IEEE senior member and
has served as a member of the ACM India Education Committee. Her email address is nehak @iitgoa.ac.in
and her website is https://nehakaranjkar.github.io.

2811

https://doi.org/10.1109/WSC63780.2024.10838793
https://doi.org/10.1109/WSC63780.2024.10838633
https://doi.org/10.1109/WSC63780.2024.10838633
https://doi.org/10.1109/WSC63780.2024.10838729
https://doi.org/10.1109/WSC63780.2024.10838729
https://doi.org/10.1109/WSC63780.2024.10838992
mailto://lekshmi20231101@iitgoa.ac.in
mailto://nehak@iitgoa.ac.in
https://nehakaranjkar.github.io

	233-satwcon109s3-file1

