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ABSTRACT 

Over the past few years, the interest in Machine Learning (ML) has grown due to its ability to improve 

solutions related to other fields. This paper explores the use of ML techniques in simulation through a 
systematic literature review of the Winter Simulation Conference proceedings from 2013 to 2023. Our 
research is focused on the Discrete-Event Simulation (DES) field, centering our attention on the Discrete-
Event System Specification (DEVS) formalism as a particular case. The research questions were designed 
to examine the most frequent contexts, applications, methods, and software tools used in these studies. As 
a result, this review reports insights into 44 research studies. The main contribution of this paper is related 

to systematically gathering, analyzing, and discussing the knowledge disseminated in these two areas (ML 
and DES), aiming to support future research and expand the literature in this field. 

1 INTRODUCTION 

Literature review is an essential feature of academic research (Xiao and Watson 2017). Since knowledge 
advancement must be built, by reviewing relevant literature following a strict review protocol, we can 
improve our understanding of the existing body of knowledge related to a specific field and, therefore, 

identify gaps to be explored.  
 A Systematic Literature Review (SLR) is a methodology to generate the theoretical-scientific basis 
needed to understand a topic through the collection, understanding, synthesis, and evaluation of a set of 
scientific articles (Levy and Ellis 2006). This paper presents an SLR designed to identify the Machine 
Learning (ML) techniques used in the simulation field to improve the design and deployment of Discrete-
Event Simulation (DES) models. Even though the scope of our research is focused on DES, we decided to 

segregate Discrete-Event System Specification (DEVS) studies as a particular case. By following this 
scope, research questions were designed to examine the most frequent contexts, applications, methods, and 
software tools used. Such questions were defined as follows (1) What are the main purposes of using ML 
in DES projects? (2) What are the main issues in DES solved with DEVS and ML? (3) What are the ML 
techniques/tools most frequently used to solve DES problems? (4) What are the results obtained for 
DES/DEVS projects? (5) To what areas do the results obtained in DES/DEVS projects refer? (6) Can these 

results be transferred to other situations? 
 Our review analyzes papers published in the Winter Simulation Conference (WSC) proceedings over 
the past 10 years. WSC is considered one of the leading events in the Modeling and Simulation (M&S) 
field, providing valuable insights into both theoretical and practical aspects of M&S and helping to shape 
the future of simulation industry. Aiming to provide a background suitable to support the next 25 years (as 
the theme of WSC'25), we believe our review provides an understanding of the latest advances in DES 

theory and applications related to ML techniques. Then, we show the current state-of-the-art on the subject, 
identifying boundaries and gaps in existing studies and providing guidelines for future works. As a result, 
this review reports insights into 44 research studies. The main contribution of this paper is related to 
systematically gathering, analyzing, and discussing the knowledge disseminated in these two areas (ML 
and DES), aiming to support future research and expand the literature in this field. 
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The remainder of this paper is structured as follows. Section 2 presents the research method used to 
support the SLR by describing how such a method was performed. Section 3 summarizes and discusses the 
results obtained during the reviewing process. Finally, Section 4 is devoted to conclusions and directions 

to be addressed in future research. Due to space reasons, considering the target audience is the M&S 
community, we decided not to include an overview of the DES/DEVS literature. Regarding the ML 
literature, we use concepts and basic notions through the sections. 

2 RESEARCH METHODOLOGY 

Denver and Tranfield (2009) indicate that an SLR should not be interpreted as a Literature Review. Indeed, 
an SLR is a research project that uses literature to respond to questions where all steps are well-defined and 

can be reproduced. Typically, these steps are defined in three stages: (1) planning the review, (2) conducting 
the review, and (3) reporting the review (Breretona et al. 2007; Kitchenham and Charters 2007). The 
planning of the review stage is devoted to defining the problem to be addressed by limiting its scope using 
a set of research questions. Once formulated, these questions are addressed in conducting the review stage 
through the analysis and synthesis of the research articles collected. Finally, at the reporting of the review 
stage, results and conclusions to the research questions are stated through descriptive statistics. 

 This paper is based on the review process discussed in (Xiao and Watson 2017). From the SLR 
perspective, the objective was defined as i) explore how DES/DEVS and ML have been collaboratively 
used in the past 10 years of the WSC, ii) analyze and synthesize the findings by answering a set of well-
defined research questions, and iii) discuss the results by identifying boundaries and gaps along with 
guidelines to be addressed in the future. The following sections describe how each step of stages 1 and 2 
was conducted to perform the reviewing process. Then, Section 3 presents the results obtained at stage 3. 

The data supporting these results is available in Appendix A. 

2.1 Planning the Review 

2.1.1 Formulate the Problem (Step 1) 

Research questions drive the entire literature review process (Kitchenham and Charters 2007). According 
to Cronin et al. (2008), a common mistake is selecting a research question that is too broad. To avoid any 
issues related to the definition of research questions, we decided to define our research questions based on 
the Context, Intervention, Mechanism, and Outcomes (CIMO) framework (Denyer and Tranfield 2008). 
 The CIMO framework allows structuring and analyzing practical problems and solutions by helping to 

understand how different elements interact in a given context. By designing propositions using CIMO, 
several aspects of the research problem can be addressed as i) Context: Conditions or environment in which 
the problem occurs; ii) Intervention: Action, change, or strategy implemented to address the problem; iii) 
Mechanism: The underlying processes explaining how the intervention works to produce the desired 
outcomes; and iv) Outcome: The results or effects of the intervention. Following these guidelines, Table 1 
summarizes the CIMO research questions used to guide the review. 

2.1.2 Develop and Validate the Review Protocol (Step 2) 

The review protocol to be employed for the systematic review was fully validated (goals, research 

questions, inclusion criteria, search strategies, quality assessment criteria, and so on) to keep the study on 
track. This step is essential to ensure a successful revision of the articles with sound results and conclusions. 

2.2 Conducting the Review 

2.2.1 Search the Literature (Step 3) 

The quality of a systematic literature review is highly dependent on the literature collected for the review 
(Xiao and Watson 2017). Electronic databases are commonly used to collect the set of potential papers to 
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be reviewed. Such collection is obtained by an advanced search executed using a well-defined string in a 
search engine. Table 2 presents the string employed in our search, explaining each part as a statement related 
to the goals of the review. 

 The advanced search was performed on the IEEE Xplore database on April 24, 2024. Such a search 
was configured to match the string with all the metadata and full text of articles to find as many results as 
possible. The meta-search for articles resulted in 1971 articles. 

Table 1: Research questions designed using CIMO framework. 

# CIMO Research Question 

1 Context What are the main purposes of using ML in DES projects? 

2 Intervention What are the main issues in DES solved with DEVS and ML? 

3 Mechanism What are the ML techniques/tools most frequently used to solve DES problems? 

4 Outcome What are the results obtained for DES/DEVS projects? 

5 Outcome To what areas do the results obtained in DES/DEVS projects refer? 

6 Outcome Can these results be transferred to other situations? 

Table 2: String used in an advanced search over the IEEE Xplore database. 

Full String 

("Discrete Event Simulation" OR "DEVS" OR "Discrete Event System Specification" OR "Discrete-Event System 

Specification") AND ("Machine Learning" OR "ML" OR "Artificial intelligence" OR "AI" OR "Computational Intelligence" 

OR "Deep Learning") AND ("goal” OR "application" OR "problem" OR "algorithm") 

Part Explanation 

("Discrete Event Simulation" OR "DEVS" OR "Discrete Event 

System Specification" OR "Discrete-Event System Specification") 

Abbreviations and alternative spellings were defined for the 

search terms “Discrete Event Simulation” or “DEVS”. 

("Machine Learning" OR "ML" OR "Artificial intelligence" OR 

"AI" OR "Computational Intelligence" OR "Deep Learning") 

Abbreviations, alternative spellings, and related terms were 

defined for the search term “Machine Learning”. 

("goal” OR "application" OR "problem" OR "algorithm") Part defined to collect data linked to the research questions. 

2.2.2 Screen for Inclusion (Step 4) 

The screening step was conducted considering the following inclusion criteria: (a) the paper must be a full 
article published in the Proceedings of the Winter Simulation Conference; (b) the paper was published, at 

most, 10 years ago (i.e., 2013 to 2023); (c) have the full article available in IEEE Explore or WSC Archive; 
and (d) the article must not be a review, survey, or discussion paper. As a result, 1837 articles were excluded 
from the search (i.e., 134 articles were considered for quality assessment, as shown in Figure 1a). 

2.2.3 Assess Quality (Step 5) 

In this step, the researchers evaluated each remaining article to analyze its quality for future data extraction. 
Additional inclusion criteria were defined: (e) the paper must be focused on DES/DEVS and ML/AI, and 

(f) the paper must enunciate the ML paradigm or technique employed as complementary of DEVS/DES. 
 As a result, 90 papers were excluded since they failed to meet at least one of the criteria (e) and (f). For 
example, 12 articles were excluded since they use the term “ML” in a discrete-event simulation model as 
an abbreviation of a term not related to machine learning (e.g., machine line and modeling language). Figure 
1b summarizes the decisions made regarding article exclusions, showing that 44 of the 134 articles were 
selected for data extraction (Appendix A). 

2.2.4 Extracting, Analyzing, and Synthesizing Data (Steps 6 and 7) 

Figure 1c shows the interest in the proposed subject has stood out in the past 10 years of WSC. The data 
confirms a growing trendline on DES and ML as complementary techniques to address several problems. 
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Figure 1: (a) On the left side, the pie chart shows the results of the screening for inclusion step. (b) In the 
center, the bar chart shows the number of articles excluded due to the quality assessment step (pink bars). 
The green bar is the number of articles selected for data extraction. (c) On the right side, annual scientific 

production related to DES/DEVS and ML/AI in WSC from 2013 to 2023 (considering only the articles 
selected for data extraction). The dashed yellow line depicts the trendline. 

 The 44 articles were evaluated on 11 items divided into two categories (features and methods) to answer 
the research questions. The features category investigates the main features of articles through the type of 
problem addressed (industry or academia), main domain of the problem (simulation or artificial 
intelligence), type of result (approach, framework, research, methodology, development, tutorial or 

heuristic), improvement addressed (optimizing, estimating, etc.), application field, and level of generality 
in the application field. On the other hand, the methods category deals with the methods used to get results 
in the articles through the level of generality in the simulation field (simulation type, formalism), machine 
learning technique used, machine learning software tool used, and simulation software tool used. 
Relationships between categories and research questions to support data extraction are summarized here.  
 Descriptive statistics and analysis were performed after data extraction. In the following section, we 

present the results and conclusions obtained (i.e., step 8). 

3 RESULTS AND DISCUSSION 

To analyze the purposes of using ML in DES projects, we decided to study the relationship among the type 
of problem addressed, the main domain of the problem, and improvement addressed categories. Figure 2 
summarizes the articles' classification due to the analysis performed based on these categories. As the figure 
shows, optimization, decision-making, and scheduling are the top three domains where improvements were 

addressed with both ML and simulation techniques. 

 

Figure 2: Articles by type of problem addressed, main domain of the problem, and improvement addressed. 

(a) 

(b) 

(c) 

2721

http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2025/06/CategoriesAndRQs.png


Döning and Blas 
 

 

 For optimization subcategory (placed at #1), articles devoted to time (Feng et al. 2018, Biller et al. 
2022), earth moving operations (Shitole et al. 2019), inventory (Afridi et al. 2020), emergency rooms 
(Rashwan et al. 2018, Prabhu et al. 2023), and lot dispatching (Stöckermann et al. 2023) optimization were 

found. Most of these articles are devoted to industrial applications, centered on ML techniques 
complemented with DES to support minor features of the model. This pattern is repeatedly exhibited in all 
improvement subcategories except for data cleaning, customer service, and time estimation, where both 
ML and simulation are employed on an equity basis. It is easy to see that neither academia/simulation nor 
industry/simulation are predominant fields using ML as complementary techniques for minor features. 
 A deeper analysis regarding the type of problem addressed and the improvement addressed following 

the machine learning technique used and the level of generality in the simulation field is presented in Figure 
3a. As the reader can see, most articles using DES and ML are applied to industry, while just a few articles 
deal with academic research problems. However, when analyzing the same features for the DEVS portion, 
the proportion regarding academia/industry is reversed (i.e., most DEVS and ML learning papers are based 
on academic applications instead of addressing real-life industry issues). 

 

Figure 3: Distribution of DES articles by type of problem addressed, improvement addressed, machine 
learning technique used, and level of generality in the simulation field. (a) On the left, the green shape 
illustrates the number of articles dealing with a specific type of problem using a predefined ML technique 
in an industrial environment. The blue shape illustrates the same number but for academic applications. (b) 

On the right, the article distribution only considers DEVS papers (i.e., a subset of the DES articles 
considered in Figure 3a). 

 Figure 3a details the ML techniques employed to support the domains described in Figure 2. Following 
domain leadership in industry, optimization and decision-making problems are outstanding other domains 
employing deep reinforcement learning and supervised learning algorithms on top of other ML techniques. 
Specifically, deep reinforcement learning algorithms were used combined with DES, for example, to 

support real-time scheduling of flexible job shop production (Lang et al. 2020), to develop adaptive 
scheduling algorithms for production lines (Woo et al. 2021), to provide real-time decision making in 
manufacturing processes (Gros et al. 2020, Cheng et al. 2023), and to develop task selection in warehouses 
(Li et al. 2019). Regarding these combinations of industry, deep reinforcement learning, and DES, the three 
articles stand out from the others: 

 

• A combination of both techniques for controlling a flexible flow shop using a gantry robot system 
as the transportation unit (Zisgen et al. 2023). Here, the agent learns autonomously the control 
policy to move the carriages. Such an agent is trained using iteratively a DES model of the 
manufacturing system and the Deep-Q-Network. 

(a) (b) 
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• A conceptual approach to handle logistic deadlocks with artificial neural networks implemented 
with an agent built with reinforcement learning techniques based on deep Q-networks (Müller et 
al. 2022). In this article, a DES of an automated guided vehicle system is used as the learning 

environment. As a result, the authors conclude that artificial neural networks can learn to handle 
deadlock in logistic systems with low complexity. 

• The control of automated guided vehicles (AGVs) in modular production systems through 
reinforcement learning algorithms combined with simulation (Feldkamp et al. 2020). As in the 
previous case, the reinforcement learning algorithm is trained using a simulation model of a 
production system. 

 
 On the other hand, supervised algorithms were used to support manufacturing lead time predictions 
(Smith and Dickinson 2022), reducing response times (Pappert and Rose 2022), and building an 
infrastructure for a virtual factory (Jain et al. 2019), among other things (Rashwan et al. 2016, Singh et al. 
2016, Rashwan et al. 2018, Shitole et al. 2019, Pappert and Rose 2022). An interesting approach is presented 
in (Jackson and Velazquez-Martinez 2021), where authors introduce a classification approach for getting 

candidate solutions in simulation models of logistic systems. 
 From Figure 3a, it is also worth mentioning the combination of the optimization domain with DES and 
genetic algorithms in industry. Using genetic algorithms as the optimization algorithm, (Ma et al. 2014) 
proposed parallel simulation-based optimization for scheduling a semiconductor manufacturing system. 
Can and Heavy (2016) use genetic programming and effective process time to predict cycle time using a 
DES model of a production line. Likely, Adan et al. (2022) and Ghasemi et al. (2022) promote the use of 

genetic algorithms for scheduling in manufacturing. More recently, Montevechi et al. (2023) propose a 
method based on several techniques (i.e., Latin hypercube design, hyper-parameters optimization, bagging, 
and genetic algorithm) for optimization of an acquisition function. In this field of research, a different 
approach is presented by Shrestha and Behzadan (2017). Such an article proposes a scientific methodology 
for generating more stable simulation models using an evolutionary algorithm that produces clean datasets 
by processing and significantly reducing noise in imperfect data (in this case, obtained from sensors). 

 Just a few articles are identified in Figure 3a for academic applications. It is easy to see that these papers 
work with supervised and unsupervised algorithms for decision-making and optimization domains 
(Bergmann et al 2015, Mayer et al. 2018, Cao et al. 2021, Feldkamp et al. 2022, Biller et al. 2022). These 
papers deal with more generic applications than industrial applications. We use the term “generic 
applications” to refer to solutions that can be translated to other domains besides the one they emerge from. 
For example, (Cao et al. 2021) and (Biller et al. 2022) propose a solution applicable to digital twins in 

general (not in particular). In (Bergmann et al. 2015), the authors study the suitability of several data mining 
and supervised machine learning methods for emulating job scheduling decisions by introducing binary 
decisions. The article presents a new step to effectively use data mining methods in the context of automatic 
simulation model generation. As evident, this is a common problem with generic domain applications. 
Additionally, Feldkamp et al. (2022) investigate the suitability of explainable artificial intelligence methods 
in real-world applications by using a DES model of a production line as a case study. However, the results 

are generic and can be used to support any DES model. Finally, Mayer et al. (2018) investigate a simulation-
based supervised learning approach to determine the suitability of a particular algorithm from a set of 
algorithms for a given problem based on a set of characteristics. As described, the contribution of this paper 
is universal. 

Figure 3b shows the subset of articles devoted to DEVS specifically. As the figure shows, most papers 
are devoted to academic applications centered on supervised learning, reinforcement learning, deep 

reinforcement learning, and genetic algorithms. In (Kessler et al. 2017), the authors propose a DEVS-based 
approach allowing the use of hierarchical Markov Decision Processes and reinforcement learning to solve 
planning or decision problems. Another example is (Sarjoughian et al. 2023). In such an article, the authors 
aim to use ML to study and predict the dynamics of discrete-event systems through the development of 
Parallel DEVS models. 
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 Following our research analysis, Figure 4 uses the classification built over the machine learning 
technique used, the level of generality in the simulation field, and the machine learning software tool used 
to depict how ML techniques and tools are used for DES projects. By analyzing Figure 4a, it is easy to see 

that most articles do not have any data regarding the software tool used to support the ML technique. Then, 
three “tools” are used more frequently than others: Python (leading the ranking), Java, and Matlab.  

 

Figure 4: Distribution of DES articles by machine learning technique used, level of generality in the 

simulation field, and machine learning software tool used. (a) On the left: The distribution of machine 
learning tools used in the 44 articles analyzed. (b) In the middle: A detailed distribution centered on the use 
of Phyton (i.e., the software tool most used in the papers) from Figure 4a. (c) On the right: A detailed 
distribution centered on the use of Java (i.e., the second most used tool in the papers) from Figure 4a. 

 Python itself is just a programming language. When applied to ML, Python-based software tools (IDE, 
libraries, or frameworks) are used (Figure 4b): 

 
• Scikit-learn is a popular open-source Python library used for ML and data mining. It allows the 

programmer to build supervised and unsupervised learning models. Articles using this tool are 
(Smith and Dickinson 2022, Sarjoughian et al. 2023). 

• TensorFlow is an open-source ML framework based on Python developed by Google. It is designed 
to make it easier to build, train, and deploy ML models (particularly, neural networks). Articles 

using TensorFlow are (Feldkamp et al 2020, Gros et al 2020) 
• Keras is a high-level API built on top of TensorFlow. It provides full control of the models using 

clean and simple Python code. For example, Keras is used to develop supervised and unsupervised 
learning in the article (Cao et al. 2021). In other cases, Keras is used as a complement to 
TensorFlow (Feldkamp et al. 2020, Smith and Dickinson 2022). 

• Autokeras is an open-source Automated ML library built on top of TensorFlow and Keras. It helps 

automate the process of designing and training deep learning models. Hence, high-performing 
models can be built with minimal coding and ML expertise. In the paper (Pappert and Rose 2022), 
for example, the authors use Autokeras to implement supervised learning and evolutive algorithms. 

 
 Like Python, Java is a popular programming language over which ML models can be built by using 
specific libraries, such as: 

 
• Pathmind: Focused on reinforcement learning for real-world applications, Pathmind offers tools 

and platforms that help developers resolve complex optimization problems using machine learning 
techniques. E.g., it is used in (Farhan et al. 2020). 

• RL4J is a reinforcement learning library for Java. It implements several well-known reinforcement 
learning algorithms, such as DQN (Deep Q-network), A3C (Asynchronous Advantage Actor-

Critic), DDPG (Deep Deterministic Policy Gradient), and PPO (Proximal Policy Optimization). 
E.g.: (Afridi et al. 2020). 

(a) (b) (c) 
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 Finally, Matlab is a high-level programming language and environment primarily used for numerical 
computing, data analysis, algorithm development, and visualization. It allows for building ML algorithms 
and models as in, for example, the paper (Feng et al. 2018). 

 Moving forward, Figure 5 shows the analysis regarding the type of results produced in the articles. In 
general, approaches are the most proposed (as a guide for researchers to solve a problem), followed by 
methodologies (a set of methods, principles, and rules to guide how specific research should be conducted). 
 For each type of result, Figure 5 details the ML techniques employed in the proposal and the simulation 
software tool combined with the ML technique under analysis. As the figure shows, several combinations 
were found: i) the same ML tool used for distinct types of results with different simulation tools, ii) the 

same simulation tool for the same type of result combined with different ML techniques, and iii) the same 
simulation tool with same ML technique for DES providing different types of result. An example of ii) is 
(Dodge et al. 2023), where the authors use DES with SimPy combined with genetic and evolutive 
algorithms. Similar cases are (Rabe and Dross 2015, Rashwan et al. 2016, Shitole et al. 2019, Gros et al. 
2020, Jackson and Velazquez-Martinez 2021, Cao et al. 2021, Pappert and Rose 2022). On the other hand, 
in (Rashwan et al. 2018), DES is worked with AnyLogic by combining a supervised learning algorithm to 

produce both an approach and a framework also (i.e., this is an example of iii)). 

 

Figure 5: Distribution of articles by type of result, machine learning technique used, level of generality in 
the simulation field, and simulation software tool used. 
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 At this point, it is important to note that, in some cases, the same programming language is used to 
support the ML technique and the DES. For example, Jackson and Velazquez-Martinez (2021) use Python 
for both the creation and execution of the required simulation model and to develop the genetic algorithm 

and supervised learning model needed to support their study. 
 Regarding DEVS, only approaches and frameworks are reported. The tools used to support the 
development of DEVS studies are DEVSSimPy (https://github.com/capocchi/DEVSimPy), MS4Me 
(https://rtsync.com/ms4me), and DEVS Suite (https://acims.asu.edu/devs-suite/). These are some of the 
most popular software tools for DEVS. Specifically, DEVSSimPy is Python-based, while MS4Me and 
DEVS Suite are Java-based. 

 Finally, Figure 6 shows the analysis regarding the main domain of the problem, application field, and 
level of generality in the application field. As the figure illustrates, several application fields are attached 
to the articles studied, such as logistics, inventory, warehouses, etc. This list is quite like well-known 
domains where DES has been employed over time. A deeper analysis of DEVS articles reveals that the 
correlation between DEVS and the application field is preserved as in DES highlighting the AI contribution 
as the primary technique used. 

 Figure 6a highlights the importance of AI through ML in all domains. Factory systems solutions 
(Pappert and Rose 2022, Zhang et al. 2023) are higher than other domains since this type of dynamic system 
is well-represented by DES approaches. By using ML over such approaches, the studies produce more 
flexible, scalable, and efficient models than before. 
 On the other hand, Figure 6b uses the level of generality of the proposed solution in the application 
field to analyze if the proposal can be reused or translated to other fields. As the figure shows, in all domains, 

most solutions are domain-specific. However, by combining the subcategories reusable in similar problems 
and domain-general, there is a higher number of articles proposing solutions that can be translated to other 
situations. For example, articles (Biller et al. 2017, Jain et al. 2018, Biller et al. 2019, Devanga et al. 2022) 
indicate that the solution is developed at a general level and, therefore, can be translated to other domains. 
On the other hand, other articles indicate that the proposed solution can be employed to solve similar 
problems (e.g., (Leon et al. 2022)). 

 

Figure 6: Distribution of articles by main domain of the problem, application field, and level of generality 
in the application field. (a) On the left, the chart illustrates the problem domain vs. the application field. (b) 
On the right, the chart illustrates the problem domain vs. the level of generality in the field.  

4 CONCLUSIONS AND FUTURE DIRECTIONS 

Simulation provides an understanding of the design, planning, and operation of complex systems in 
commerce, industry, and society. The SLR proved to be a satisfactory technique for exploring existing 

literature on DES/DEVS and ML. The purpose of this paper was not to conduct exhaustive research of all 
articles on the topic, but rather to systematically analyze WSC contributions from 2013 to 2023 to 
understand the information available and identify how the combination of both fields can grow in the future. 

(a) (b) 
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 The following conclusions have been reached concerning our Research Questions (RQ). Using ML 
techniques as part of the optimization solutions is the most popular use (RQ1). Most research is supported 
by AI and applied to different industrial domains (RQ1/RQ6). This is also evidenced by the available 

software tools in the ML field that allow building ML models, mainly deep reinforcement learning models, 
without needing any background on ML (RQ3).  
 On the other hand, several types of results in several domains are achieved by combining DES and ML 
(RQ4/RQ5). Most of them use supervised, unsupervised, and deep-reinforcement learning combined with 
DES solutions. Evidence shows that ML techniques have been used as complementary approaches for 
solving traditional DES problems (RQ5). Here, the most common software tools used for simulation 

purposes are SIMIO (https://www.simio.com/es/), AnyLogic (https://www.anylogic.com/), and FlexSim 
(https://www.flexsim.com/) (RQ3/RQ4). 

For academic applications, DEVS formalism is still highly used (RQ2). We believe that DEVS is not 
used in the industry field due to the level of knowledge required to use DEVS formalism for building 
models. Also, this is probably related to the software tools available to build DEVS models in a way that 
can be combined with ML models. Since DEVS models are formally defined but developed in general-

purpose programming languages (or libraries based on these), the combination of DEVS models and 
simulators with ML models is not straightforward. This is easier if the modeler uses the same programming 
language to support both simulators and ML models, as in the cases of Python and Java (RQ3/RQ4). 
Moreover, the results of DEVS proposals are mainly domain-general, meaning that can be applied to other 
domains (RQ6). More generically, the academic proposals are all domain-general, while industrial 
applications are mainly domain-specific (or applicable to similar contexts). 

The conclusions highlighted above were derived from the insights observed by the authors during this 
research. Of course, the reader can use our findings to obtain a more detailed explanation of these. For space 
reasons, we cannot provide a detailed answer to all research questions. However, the main features related 
to such questions have been addressed in Section 3. 

A SYSTEMATIC LITERATURE REVIEW DATA 

The data supporting this paper is available here. 
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