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ABSTRACT

Inverse optimization involves finding values of problem parameters that would render given values of decision
variables optimal. For finite-state, finite-action Markov decision processes (MDPs), inverse optimization
literature has focused on imputing two types of inputs: reward parameters and transition probabilities. All
published work focuses on discrete-time MDPs. We study inverse optimization in semi-Markov decision
processes (SMDPs) with continuous-time MDPs (CTMDP) as a special case. Specifically, we wish to find
reward parameters that are as close as possible to given estimates and that render a given policy optimal.
We utilize Bellman’s equations for the forward SMDP to present a formulation of this inverse problem.
This formulation is often convex. Simulation results on a batch manufacturing problem are included.

EXTENDED ABSTRACT

We study inverse optimization (Ahuja and Orlin 2001) in semi-Markov decision processes (SMDPs). SMDPs
are an extension of continuous-time MDPs (CTMDPs), where times between state-transitions can have
general distributions (Bertsekas 2005). We consider a discounted finite-state finite-action infinite-horizon
SMDP. Assuming that the inter-transition distributions are well-behaved, an optimal stationary deterministic
policy exists. Such an optimal policy is formed by actions that attain the maxima in Bellman’s equations.

Our inverse problem is an extension of the CTMDP work in Nguyen and Ghate (2025). A target policy
is given and we seek reward parameters that make it optimal. Specifically, rewards upon choosing action
a € Ain state s € S are characterized by parameters § € R¥. Here, S is the state-space with |S| = n
and A is a finite action-space. We denote rewards by (s, a;6). Assume the set © C R¥ of possible ¢
values is compact, and (s, a;6) is continuous in #. We are given an estimate 6 € O, a vector 3 € RF of
positive weights, and a stationary deterministic policy 7. We wish to find § € © such that the given policy
7 is optimal to the SMDP with rewards (s, a; ), and the 3-weighted sum of absolute componentwise
differences between 6 and @ is the smallest possible. All other problem-attributes are known. We formulate
this as
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The first two constraints ensure that V' satisfies Bellman’s equations and that actions 7(s), for all s € S,
attain the maxima therein. This guarantees that V' is the optimal value function and policy 7 is optimal.
Quantities of the form mg;(a) in these constraints are given by a standard formula that depends on the
continuous-time discount factor v and parameters of the inter-transition distribution. It plays a role similar
to discounted transition probabilities in discrete-time MDPs.



Nguyen and Ghate

We illustrate with an example adapted from Bertsekas (2005). A manufacturer receives orders with
inter-arrival times i.i.d. uniformly distributed on [0, Tyax]. While unfilled, each order incurs a waiting cost
of ¢ > 0 per unit time. A fixed setup cost of K > 0 is incurred immediately upon filling any orders, no
matter the batch size. The state s equals the number of waiting orders. The manufacturer cannot accumulate
more than n — 1 orders. We are given cost estimates ¢, K that belong to known intervals [cr, cy| and
[K1, Kg]. A particular stationary deterministic policy 7 is also given. This 7 has an intuitive threshold
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structure: process all accumulated orders if s > 7 and wait if s < 7. For brevity, let « = [ %dT
=0
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and p = 1;& Then the above generic inverse formulation reduces to the convex problem
max
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V(s)=—acs+puV(s+1), s=0,...,n—1
V(s)=—-K+uV(1), s=nn+1,....,n—1
Vis) > -K+uV(1), s=1,...,a—1

V(s) > —acs+puV(s+1), s=nn+1,...,n—2

We report simulation results here. First, we solved multiple instances of the forward problem with ¢ =1
fixed and different 10 < K < 200 to obtain a set of optimal thresholds. For each unique optimal threshold
n”*, we then solved the inverse problem with » = n*, ¢ = c =1, and K = 100. Figure 1a shows that, for
each n*, the imputed K is the closest value to K within the set of K for which n* was optimal. This is
consistent with our objective of minimizing distance to the estimate. We repeated these simulations for
variable 1 < ¢ < 20, ¢ = 10, and fixed K = 100, with similar results (Figure 1b).
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(a) Fixed ¢ =1 and 10 < K < 200. (b) Fixed K =100 and 1 < ¢ < 20.

Figure 1: Simulation results for imputing one cost while holding the other fixed.
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