Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

PRODUCTIZATION OF REINFORCEMENT LEARNING IN SEMICONDUCTOR
MANUFACTURING

Harel Yedidsion', David Norman', Prafulla Dawadi', Luke Krebs'!, Derek Adams!, Emrah Zarifoglu'

'AI/ML team, Applied Materials, Salt Lake City, UT, USA

ABSTRACT

The semiconductor industry faces complex challenges in scheduling, demanding efficient solutions.
Reinforcement Learning (RL) holds significant promise; however, transitioning it from research to a
productized solution requires overcoming key challenges such as reliability, tunability, scalability, delayed
rewards, ease of use for operators, and connectivity with legacy systems. This paper explores these
challenges and proposes strategies for effective productization of RL in wafer scheduling as developed by
Applied Materials’ AI/ML team in the Applied SmartFactory® offering. In the context of this
paper, “productization” refers specifically to the engineering and system-level integration needed to make
RL solutions operational in fabs.

1 INTRODUCTION

Efficient lot scheduling in semiconductor fabs is critical but notoriously difficult to model and solve
optimally, as it is an NP-Hard problem. Heuristic dispatch rules typically have tens of tunable parameters
influencing Key Performance Indicators (KPIs). The dynamic nature of manufacturing necessitates frequent
manual tuning. Finding the best combination for each fab condition is computationally intractable. While
RL requires extensive offline training, it enables quick real-time inference, offering a potential solution.
However, productizing RL for wafer scheduling involves overcoming several challenges:

Reliability: RL models must be rigorously tested for consistent performance under various conditions
to prevent costly errors. We employ robust training and validation protocols, simulating diverse scenarios,
and implementing fail-safes to prevent catastrophic failures (Fig. 1). Scalability: The large-scale nature of
fabs requires managing vast state-action spaces. We address this using Graph Neural Networks (GNNs) for
compression (Norman et al. 2024), along with distributed computing and GPU acceleration. Ray RLIib
enables parallel training of multiple agents across environments, all updating a shared policy. Delayed
Reward: Scheduling impacts are not immediately apparent, necessitating techniques like temporal
difference learning to manage reward delays, with a focus on shorter-term problems like queue-time
management (Yedidsion et al. 2022). Ease of Use: RL solutions should feature intuitive interfaces for
operators unfamiliar with ML. We developed an intuitive Ul to automate training and evaluation, visualize
training processes, and incorporate continuous data updates for model accuracy (Fig. 2). Tensorboard is
used to visualize the training process, tracking metrics such as reward and loss. Periodically the agent’s
policy is saved as checkpoints which are evaluated on unseen scenarios to further gain understanding of the
RL agent’s performance level and select the top-performing checkpoint. Tunability: RL models often
function as black-box systems. It is important for RL models to feature adjustable parameters that can be
customized to achieve various operational goals and accommodate changes like equipment downtime and
shifts in product mix, unlike traditional black-box systems. Connectivity with Legacy Systems: Seamless
integration with existing fab infrastructure is crucial, requiring simulators supported by historical and real-
time data to train RL models effectively. We developed a connecting software layer between the RL Python
code and MES/AutoSched® simulator using Applied SmartFactory® proprietary software namely Activity
Manager® and Formatter® (Fig. 3).



Yedidsion, Norman,Dawadi, Krebs, Adams, and Zarifoglu

2 CONCLUSION

Productizing RL for wafer scheduling in semiconductor fabs presents a unique set of challenges that must
be addressed to realize its full potential. Integrating RL solutions into fab scheduling requires much more
than simply training a single agent to solve a specific scenario. It necessitates developing a comprehensive
infrastructure that automatically gathers historical and current data from Manufacturing Execution Systems
(MES), trains using simulators on distributed servers, detects distribution shifts and retrains if necessary,
evaluates the trained agent, offers an intuitive Ul for the operator, and provides tunable outcomes by using
parametrized reward weights to achieve the desired KPI tradeoff. The framework must leverage GPUs for
accelerated training and inference, incorporate GNNs to manage extensive variable inputs while
maintaining the structure and relationships among observation components, implement measures to prevent
catastrophic failures, and address delayed rewards. The RL framework developed by the AI/ML team
tackles all of these issues with the robust approach described in this paper to offer semiconductor fabs a
way to harness the power of RL to transform their scheduling processes. Our system makes RL accessible
to operators without requiring machine learning expertise, enhancing fab operations with tools to
outperform existing scheduling techniques in terms of efficiency, cost savings, and error reduction.

RL Training Workflow

Begin RL A
Training RUEpEce 10000X

Choose unique
starting conditions
and lot arrivals

|
Retrain if
conditions
change

Monitor
Performance

RL Agent

Simulator

Extract Observation
and Reward

Advance Model gEERISY 1
15min

+
Update
Release
Plan

interface that allows operators to create, train and
evaluate models easily. Each action button triggers
background processes that take care of the tasks such as
generating training scenarios, running the simulator,
providing the RL agent with observations and rewards,

Figure 1: The RL training process, featuring blue blocks
for the training framework, green blocks for the fab
simulator, and orange blocks for the RL agent. There is

one loop for episodes and another within each episode.
Each episode has unique conditions. The observation is
extracted, represented as a graph, compressed using a
GNN, and passed to the agent, which selects the next
action. This action is applied by the simulator, which
then extracts the new observation and reward.

REFERENCES

Norman, D., Dawadi, P. and Yedidsion, H., 2024. Yield
Improvement Using Deep Reinforcement Learning for
Dispatch Rule Tuning. In2024 Winter Simulation
Conference (WSC) (pp. 1865-1876). IEEE.

Yedidsion, H., Dawadi, P., Norman, D., & Zarifoglu, E. 2022.
Deep Reinforcement Learning for Queue-Time
Management in Semiconductor Manufacturing. In 2022
Winter Simulation Conference (WSC) (pp. 3275-3284).
IEEE.

monitoring the learning process, evaluating the agent
and saving KPI results in a database.

Integration - Architecture and Procedure

Training Data

I —!
See r RL Training/ A
I Perturbed Testing
Siato

Online // Time-based or \)

Agent P Condition-based retraining

/ Execution Plan
Dispatching Decisions about

SyStemioy when to release lots
Operator

Offline

Current Queue Time Management System

Figure 3: System Architecture —integrating the RL
module with the current dispatching system,

using historic data and current data to create various
training scenarios. The trained agent delivers a release
plan to the dispatching system.



