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ABSTRACT

A narrow threshold voltage distribution is essential to ensure uniform performance among parallel -
connected power MOSFETs. This work analyzes threshold voltage variation in trench MOSFETs using
real data and proposes the use of machine learning models to improve manufacturing uniformity.

1 INTRODUCTION

Power MOSFETs play a critical role in high-performance electronic systems, particularly in automotive
applications that require reliable parallel operation. A narrow threshold voltage distribution among parallel
devices ensures uniform switching, thermal stability, and efficiency. However, deviations in semiconductor
process parameters introduce a threshold voltage variation. This work identifies such influencing factors
and applies machine learning techniques to model and mitigate these deviations, ultimately aiming to
improve the uniformity of the threshold voltage across wafers.

2 METHODOLOGY

2.1 Data Collection and Analysis

The dataset was collected using Infineon’s internal tools and databases, focusing on a specific field plate
trench II MOSFET technology. Threshold voltage measurements, gate oxide thickness, source width, and
implant machine type were collected from different databases. The final dataset was constructed at the
wafer level by aggregating the mean values of the chip-level measurements.

In order to avoid data skew from production outliers, early manufactured wafers with anomalous behavior
were excluded during preprocessing. Based on the conclusions, a set of parameters was selected as the
features of the machine learning model.

2.2 Machine Learning

The task was formulated as a regression problem, with the selected parameters after data analysis as features
and the threshold voltage as the target variable. Three regression algorithms were selected: Linear
Regression, Random Forest Regression, and K-Nearest Neighbors (KNN). To ensure fair evaluation and
prevent data leakage, the models were validated using two strategies: Leave-One-Out Cross-Validation
(LOOCYV) and Stratified 75:25 Train-Test Split. Random Forest and KNN models were further optimized
through grid search-based hyperparameter tuning, while Linear Regression was used with default settings
due to its simplicity and robustness for linear relationships.
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3 RESULTS

The dataset consisted of 2215 wafers with varying availability of inline measurements. Four key parameters
were initially considered: two measurements of gate oxide thickness, source width, and implant machine
type. To explore their relationship with threshold voltage, scatter plots were generated and visualized.
Notably, a distinct positive linear trend was observed between the second gate oxide thickness measurement
and the threshold voltage, whereas the other parameters showed weak or no apparent correlation. Based on
this insight and the supporting correlation matrix, the second gate oxide measurement was selected as the
sole feature for modeling.

Among the models, Linear Regression produced the lowest mean squared error (MSE = 0.0188),
outperforming even the tuned versions of Random Forest and KNN. Also using LOOCYV as the validation
method, linear regression showed the lowest error (MSE = 0.0198). The results further validate the
assumption of a predominantly linear relationship between the oxide thickness and the threshold voltage.

4 CONCLUSION

4.1 Optimization Approach

A theoretical optimization strategy was proposed using the Linear Regression model to adjust implant doses
during fabrication. Threshold voltage predictions based on the measured gate oxide thickness are compared
against predefined upper and lower bounds (e.g., 9.6 V and 9.8 V). Wafers with predicted values outside
this range would receive a slightly modified implant dose, either increasing or decreasing the dose to
compensate. The simulation of this strategy showed a visible narrowing of the threshold voltage
distribution.

4.2 Summary and Outlook

This study presents a data-driven methodology for reducing threshold voltage variability in trench
MOSFETs. Using minimal data and lightweight ML models, a strong and actionable correlation was
identified, with Linear Regression proving most effective. Future work could integrate additional features,
automate implant dose adjustment, and implement feedback loops directly in production tools for real-time
optimization. Future work could utilize data models and business processes for effective benchmarking, as
it enables a standardized framework for data collection and analysis for this use case, facilitating more
accurate and meaningful comparisons across different departments involved in the improvement of yield.
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