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ABSTRACT 

A narrow threshold voltage distribution is essential to ensure uniform performance among parallel-

connected power MOSFETs. This work analyzes threshold voltage variation in trench MOSFETs using 

real data and proposes the use of machine learning models to improve manufacturing uniformity. 

1 INTRODUCTION 

Power MOSFETs play a critical role in high-performance electronic systems, particularly in automotive 

applications that require reliable parallel operation. A narrow threshold voltage distribution among parallel 
devices ensures uniform switching, thermal stability, and efficiency. However, deviations in semiconductor 

process parameters introduce a threshold voltage variation. This work identifies such influencing factors 
and applies machine learning techniques to model and mitigate these deviations, ultimately aiming to 

improve the uniformity of the threshold voltage across wafers. 

2 METHODOLOGY 

2.1 Data Collection and Analysis 

The dataset was collected using Infineon’s internal tools and databases, focusing on a specific field plate 

trench II MOSFET technology. Threshold voltage measurements, gate oxide thickness, source width, and 
implant machine type were collected from different databases. The final dataset was constructed at the 

wafer level by aggregating the mean values of the chip-level measurements. 
In order to avoid data skew from production outliers, early manufactured wafers with anomalous behavior 

were excluded during preprocessing. Based on the conclusions, a set of parameters was selected as the 
features of the machine learning model. 

2.2 Machine Learning 

The task was formulated as a regression problem, with the selected parameters after data analysis as features 

and the threshold voltage as the target variable. Three regression algorithms were selected: Linear 
Regression, Random Forest Regression, and K-Nearest Neighbors (KNN). To ensure fair evaluation and 

prevent data leakage, the models were validated using two strategies: Leave-One-Out Cross-Validation 
(LOOCV) and Stratified 75:25 Train-Test Split. Random Forest and KNN models were further optimized 

through grid search-based hyperparameter tuning, while Linear Regression was used with default settings 
due to its simplicity and robustness for linear relationships. 
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3 RESULTS 

The dataset consisted of 2215 wafers with varying availability of inline measurements. Four key parameters 

were initially considered: two measurements of gate oxide thickness, source width, and implant machine 
type. To explore their relationship with threshold voltage, scatter plots were generated and visualized. 

Notably, a distinct positive linear trend was observed between the second gate oxide thickness measurement 
and the threshold voltage, whereas the other parameters showed weak or no apparent correlation. Based on 

this insight and the supporting correlation matrix, the second gate oxide measurement was selected as the 
sole feature for modeling. 

 Among the models, Linear Regression produced the lowest mean squared error (MSE = 0.0188), 
outperforming even the tuned versions of Random Forest and KNN. Also using LOOCV as the validation 

method, linear regression showed the lowest error (MSE = 0.0198). The results further validate the 
assumption of a predominantly linear relationship between the oxide thickness and the threshold voltage. 

 

4 CONCLUSION 

4.1 Optimization Approach 

A theoretical optimization strategy was proposed using the Linear Regression model to adjust implant doses 

during fabrication. Threshold voltage predictions based on the measured gate oxide thickness are compared 
against predefined upper and lower bounds (e.g., 9.6 V and 9.8 V). Wafers with predicted values outside 

this range would receive a slightly modified implant dose, either increasing or decreasing the dose to 
compensate. The simulation of this strategy showed a visible narrowing of the threshold voltage 

distribution. 

4.2 Summary and Outlook 

This study presents a data-driven methodology for reducing threshold voltage variability in trench 
MOSFETs. Using minimal data and lightweight ML models, a strong and actionable correlation was 

identified, with Linear Regression proving most effective. Future work could integrate additional features, 
automate implant dose adjustment, and implement feedback loops directly in production tools for real-time 

optimization. Future work could utilize data models and business processes for effective benchmarking, as 
it enables a standardized framework for data collection and analysis for this use case, facilitating more 

accurate and meaningful comparisons across different departments involved in the improvement of yield.  
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