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ABSTRACT

This paper is motivated by a panel organized by the Healthcare and Life Sciences track at the 2025 Winter
Simulation Conference (WSC). We summarize the panelists’ perspectives and reflect on current trends and
future research directions for simulation applications in healthcare and life sciences. We begin with a brief
review of key methodologies and application trends from the past decade of WSC proceedings. We then
present expert insights from a range of application areas, including (bio)pharmaceutical manufacturing,
hospital operations, public health and epidemiology, and modeling human behavior. The panelists provide
diverse perspectives from academia and industry, and highlight emerging challenges, opportunities, and
future research directions to advance simulation in healthcare and life sciences.

1 INTRODUCTION

Simulation methods are widely used in healthcare and life sciences, with applications ranging from
pharmaceutical manufacturing, hospital operations management, infectious disease modeling, behavioral
models in health and humanitarian systems, among others. One of the key benefits of using simulation
is the ability to design, analyze, and optimize complex systems that are otherwise too costly, risky, or
impractical to evaluate through real-world experimentation. Simulation methods provide a variety of tools
and techniques for evaluating different scenarios, managing uncertainty, and informing policy makers and
practitioners. As the healthcare industry becomes increasingly data rich, simulation will continue to help
develop resilient, efficient, and innovative healthcare solutions.

This paper contributes to the ongoing dialogue about the future of simulation in healthcare and life
sciences (HLS) and is motivated by a panel organized at the 2025 Winter Simulation Conference (WSC).
This initiative also aligns with the broader theme of the 2025 WSC: "Looking to the Future! Simulation
2050 and Beyond". In this paper, we summarize the key perspectives of the panelists. We reflect on the
evolution of simulation research and practice in healthcare and life sciences, identify emerging challenges
and opportunities, and outline a vision for future research directions. Based on the diverse perspectives
of the invited experts, the panel spans a wide range of application domains: (1) (bio)pharmaceutical
manufacturing and supply chains (Tugce Martagan), (2) hospital operations (Anup C. Mokashi), (3) the
role of human behavior in medicine (Maria Mayorga), (4) disease simulation and epidemic prediction
(Chaitra Gopalappa). These experts provide complementary views in academic, industry, and healthcare
policy-making settings. Together, they reflect on the role of simulation research in addressing new scientific
challenges and stakeholder needs.

While the specific interests of the WSC community continue to evolve in response to emerging scientific
and societal needs, healthcare has long been an important part of the WSC. The online archive of WSC
proceedings dates back to 1968, and "health services" appeared as a recognized topic/track as early as
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1969.1 At the 2025 WSC proceedings, the HLS track received the fourth highest number of contributed
paper submissions out of 28 tracks, underscoring its continued relevance and growth within the simulation
community. In this paper, we therefore begin with a brief review of the track’s past decade, analyzing key
methodologies and application areas based on WSC proceedings from the past 10 years (Section 2). We
then present expert perspectives on current trends and future research directions in simulation for healthcare
and life sciences (Section 3). Finally, we reflect on the skills and interdisciplinary collaborations needed
to realize the full potential of simulation (Section 4).

2 A REFLECTION ON THE HEALTHCARE AND LIFE SCIENCES TRACK

We considered papers published in the last 10 years in our analysis of the evolution of the HLS track at
the WSC. As part of this, we first classified every paper published in the track from 2015 onward until
(including) 2024 as belonging to the following important subfields of healthcare modeling:

• Healthcare delivery and healthcare facility operations (HDFO): simulation studies that considered
operational aspects of healthcare systems and individual facilities.

• Public health and epidemiology (PHE): simulation studies that considered public health and/or
epidemiological impacts of healthcare interventions.

• Regulatory aspects and policy: studies that use simulation to model and optimize healthcare policy
and inform formulation of healthcare regulation.

• Other areas.

Results from the first-level classification are provided in Table 1 below.

Table 1: The Healthcare and Life Sciences track at the Winter Simulation Conference, 2015 - 2024.

Year
Total

number

Public
health &
epidemi-

ology

Healthcare
delivery &

facility
operations

Regulatory
aspects &

policy

Other
areas

2015 25 4 13 3 8
2016 25 2 18 5 2
2017 24 3 16 2 3
2018 21 2 12 3 4
2019 24 6 14 2 7
2020 21 2 16 0 5
2021 19 2 8 1 7
2022 12 2 1 0 6
2023 30 15 12 3 8
2024 25 13 10 2 5

Papers could be classified as belonging to more than one category: for example, a paper that proposed
a new method to extract clinical pathways of patients in a hospital department for use in discrete-event
simulations of the department in question could be classified as belonging to the HDFO category as well
as the "Other areas" category as it contributed more broadly to healthcare simulation methodology. The
distribution of papers by subfield across the decade is depicted in Figure 1.

The HLS track has featured an average of approximately 23 papers each year, with the smallest numbers
observed during 2020-22, coinciding with the COVID-19 pandemic. Approximately half were in the HDFO
category, followed by the PHE (22%) category. Nearly 20% were classified as belonging to ‘other’ areas;

1https://informs-sim.org/
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Figure 1: Distribution of healthcare & life sciences track papers across 2015-2024.

however, this included papers classified as belonging to one of the three ‘named’ categories as well. For
example, a paper that proposed a new method for calibrating agent-based simulation models of disease
transmission, used to estimate epidemiological and public health impact of interventions designed to combat
the disease in question, could be considered as a more general ‘healthcare simulation methodology’ paper
as well as a paper relevant to the public health and epidemiology subfield (Das et al. 2021). There were
papers that resisted classification into any of the named categories as well, such as those concerned with
modeling the spread of the SARS-CoV2 infection in the human lung (Ayadi et al. 2023).

We begin with the regulatory aspects & policy subfield. While there are a relatively small number of
simulation studies over the past decade involving regulatory policy, the diversity of policy applications and
methodologies employed is substantial. Policy studies range from cost-effectiveness analyses of screening
and treatment strategies for hepatitis C birth-cohorts and of treatment options for type 2 diabetes, to the use
of simulation to assess the impact of genetic testing in optimal cholesterol treatment plans and simulation
frameworks to model and optimize the clinical trajectories of patients with sepsis in response to therapeutic
interventions. Methodologies range from agent-based and discrete-event simulation to individual-level
microsimulations and systems dynamics models. The small number of studies combined with their wide
variety indicates that this is a growing area of research, and has potential for the development of unified
simulation frameworks for specific classes of policy studies. An example is the use of simulation for
informing organ transplantation policy, which is a relatively mature area of study, and has seen the
development of broadly applicable reusable simulations such as LSAM (Blandon et al. 2024) and LivSim
(Kilambi et al. 2018) for liver transplantation.

Between 2015-2019, the HLS track featured an average of approximately four papers each year
in the PHE area. Infectious disease transmission dynamics models developed to assess the impact of
interventions on population-level outcomes formed the majority of these papers. The diseases studied
included tuberculosis, hepatitis C, HIV-AIDS, the human papillomavirus, and the Middle East respiratory
syndrome, among others, and the geographies under consideration ranged from the United States, Spain and
Colombia to South Korea and India. Agent-based models and differential equation based compartmental
and system dynamics models were the key methodologies used in these studies. In a few cases, hybrid
models combining one or more methods, such as agent-based and system dynamics models, were also
developed. Studies involving noncommunicable conditions were also considered, including the opioid and
heroin co-epidemic, urban mental health challenges and, among others, a study assessing the benefits of
providing respite care for caregivers of chronically ill patients.

868



Gopalappa, Martagan, Mayorga, Mokashi, and Ramamohan

The number of papers in this subfield increased to an average of approximately eight each year between
2020 and 2024, likely due to the increased interest in population-level modeling during and after the
COVID-19 pandemic. Interestingly, while the number of papers increased substantially, studies involving
COVID-19 did not dominate, and papers considering a wide variety of health conditions in addition to
COVID-19 were featured. However, the proportion of studies in this area reporting the use of agent-based
and individual-based models has decreased from 66% between 2015 and 2019 to 35% between 2020 and
2024. This is primarily because as the number of PHE studies have increased, the types of problems
being considered have also become more diverse, employing more methodologies than just agent-based
and individual-based models. Examples of such studies include (a) a queuing-based network model, with
individual outcome prediction models, to assess the impact of policies designed to combat recidivism among
those released from correctional facilities, and (b) a social simulation developed to identify cooperative
strategies to address health-related challenges created due to climate change.

The HDFO area contains nearly half of all papers in the track, and papers in this area can be further
divided - in multiple ways - into smaller categories. For example, papers could classified into those dealing
with operations within a single facility (such as emergency department [ED] or intensive care unit [ICU]
simulations), or into those dealing with a healthcare system as a whole (such as organ transplantation
systems or a network of primary and secondary care facilities in a region). In order to provide more insight
regarding the types of papers within this field, we further classified papers in the HDFO category into
one or more of three subcategories: (a) studies considering operations within a single facility; (b) studies
considering emergency medical services (typically involving the ED of a hospital or ambulance services)
or the ICU; and (c) those involving a health system as a whole. We performed this next-level classification
for papers featured at the WSC between 2020 and 2024, and the results are summarized in Table 2. Note
that the proportions in the table are calculated with respect to the total number of papers in the HDFO
category, and because each paper could be classified as belonging to more than one subcategory, the sum
of proportions in a row may exceed 100%.

Table 2: Types of healthcare delivery and facility operations studies featured at the Winter Simulation
Conference between 2020 and 2024.

Year Single facility studies System-wide studies EMS / ICU studies
2020 78% 39% 22%
2021 33% 44% 44%
2022 33% 25% 50%
2023 42% 42% 42%
2024 60% 30% 30%
Overall 52% 36% 36%

First, discrete-event simulation was the methodology that, as expected, was used the most in this area.
Single facility studies, for the most part, appear to form the majority of HDFO papers in the past five
years. A wide variety of facilities and units within hospitals are studied, ranging from primary care clinics
to the operating theater and the ICU and ED. System-wide studies include those that consider networks of
facilities (such as primary care clinics) in smaller regions such as a county or a district as well as deceased
donor organ allocation and transplantation systems that may span an entire nation. Unsurprisingly, there
is a preponderance of studies concerned with ED and ICU operations. These include studies that examine
common queuing-theoretic assumptions made as part of ED operations modeling studies as well as studies
that design ED operational policies that are resilient to surges in demand during natural disasters. Studies
that have a methodological bent - for example, studies that consider data synchronization approaches for
hybrid simulation models that use both historical as well as real-time data to predict wait times in networks
of EDs in a region - also have been featured in this space.
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Some key avenues of future research in this space include the development of approaches for the faster
generation of simulation models of healthcare facility networks in a region to support operational planning
during health crises, and improving the computational efficiency of hybrid simulation models developed
to model operations in large healthcare systems to facilitate the use of optimization methods and arrive at
optimal operational policy.

A wide variety of studies were grouped into the ‘Other areas’ category. These included, as mentioned
earlier, a few studies from each of the three named categories that had contributions beyond only the named
caetgory in question. From the HDFO category, the majority of such papers also contributed to healthcare
simulation methodology: an example is a study that utilized a combined simulation plus machine approach
for predicting whether patients on the waitlist for undergoing surgery at a large Indian hospital would
be admitted before a clinically meaningful time duration. This study presented a general methodology -
going beyond neurosurgery operations - involving the use of DESs of complex healthcare queuing systems
to generate training data for ML models that can then generate real-time delay predictions for queued
patients. Other types of studies in this area involved screening and/or treatment planning for infectious as
well as noncommunicable diseases, simulations in the biological and life sciences area, and studies using
simulation to support clinical trial design for new pharmaceutical drugs.

3 THE PANEL’S VISION FOR FUTURE RESEARCH

This section provides a brief overview of the panel’s vision for current and future research directions at
the intersection of simulation, healthcare, and the life sciences. This section focuses on a few selected
application areas based on the expertise of the panelists, including (bio)pharmaceutical manufacturing and
supply chains (Section 3.1), hospital operations (Section 3.2), the role of human behavior in disease models
(Section 3.3), disease simulation (Section 3.4) and outbreak prediction (Section 3.5).

3.1 (Bio)pharmaceutical Manufacturing and Supply Chains

Simulation is widely used to design, analyze, and improve (bio)pharmaceutical manufacturing and supply
chains. With increasing demand and competition, the competitive advantage of the (bio)pharmaceutical
industry is currently shifting towards more sustainable, robust, rapid and cost-effective production and
delivery of medicines (Martagan et al. 2024). Therefore, the simulation community will continue to play a
key role in helping the industry manage the increasing complexity of (bio)pharmaceutical manufacturing,
supply chains, and related regulatory issues.

Current industry challenges. The manufacturing of (bio)pharmaceutical products is inherently complex
and poses several challenges to the industry. For example, production processes involve a series of multiple
interdependent steps, and each production step is often subject to stringent regulatory requirements (Martagan
et al. 2023). The waiting times between production steps can be tightly constrained, as the work in progress
can degrade (sometimes within only a few hours or days) while waiting in the production system. Furthermore,
(bio)pharmaceutical manufacturing operations face various process uncertainties, such as contamination,
batch failure, and yield uncertainty. Stringent regulatory requirements on quality, safety, data collection
and process control can further complicate operational decisions. With increasing demand and competition,
end-to-end (bio)pharmaceutical supply chains are also under increasing pressure to reduce delivery lead
times and increase robustness. The COVID-19 pandemic has underscored the critical role of resilient and
reliable supply chains to ensure timely access to medicines. To address these industry needs and challenges,
simulation methodologies provide powerful and flexible tools for decision-making, as demonstrated by
several successful implementations and industry case studies, e.g., Martagan et al. (2019), Xie et al. (2019),
Martagan et al. (2023).

Future research directions. For ease of exposition and brevity, we categorize future research directions
into three main areas: process analytics, factory dynamics, and end-to-end supply chains.
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To support the industry’s initiatives on process analytics, new simulation models and methods can help
improve our fundamental understanding of the underlying chemical and biological processes, allowing for
better prediction and control of these complex production processes. For example, simulation models of
fermentation or purification processes can help identify the critical process parameters and their complex
interactions with critical quality attributes. Hybrid models that combine kinetic models from life sciences
with process data and machine learning techniques can help streamline real-time process monitoring and
control algorithms. In general, the systematic application of simulation models and methods can help
improve the transparency and explainability of the models for these complex production processes.

Future simulation research can support a variety of operational and strategic decisions at the factory level,
including the adoption of new technologies, process optimization, and production planning to reduce costs
and lead times. For example, digital twins can support new technology adoption decisions for emerging
technologies such as continuous pharmaceutical manufacturing and real-time release testing (Martagan
et al. 2024). When integrated with cost-benefit analyses and what-if scenario evaluations, digital twins
offer powerful tools to help the industry assess risks and strategically navigate the implementation of
new technologies. Future simulation research can also guide data collection efforts by identifying critical
data gaps, prioritizing data collection efforts (e.g., where to place sensors and what data to collect), and
developing adaptive control strategies based on real-time data. In the context of production planning and
control, future research can help integrate real-time process data from advanced sensors (e.g., Raman
probes) into predictive models, optimal control algorithms, and digital twins. In particular, digital twins
can help synthesize historical and real-time data to support optimal design and control, as detailed in Shen
et al. (2021). Simulation methodologies can also facilitate the integration of diverse models operating at
different levels of the production system. For example, chemical and biological process models, which
are used to estimate batch quality and yield, can be combined with factory-level planning and scheduling
decisions to reduce costs and lead times.

In the context of end-to-end (bio)pharmaceutical supply chains, digital twins will continue to play a
critical role in enhancing the robustness and resilience of patient access to medicines. This is particularly
relevant for the growing field of personalized medicine, which presents new opportunities and challenges
for simulation-based modeling and analysis. Supply chains for personalized therapies (such as gene and cell
therapies) are often highly specialized, time sensitive, and patient-specific. Unlike traditional pharmaceutical
supply chains, which typically follow a linear flow of standardized products from manufacturer to patient,
personalized medicine supply chains involve complex, bidirectional flows of information and materials:
tissue samples (such as blood, cells, or bone) are first collected from the patient, then used to develop
individualized treatments, and finally returned to the same patient. These complex and patient-specific
supply chains require dynamic coordination between multiple stakeholders. Adjusting to the fast pace of
personalized medicine supply chains will require a fundamental re-thinking of current industry practices.
Digital twins and other simulation-based tools will be essential to enable the industry to design, monitor,
and optimize these unique supply chains.

In the future, simulation models can play a more proactive role in facilitating communication and
collaboration between regulators and industry stakeholders. For example, simulation can support model
validation and maintenance by aligning data standards, control strategies, and decision support tools.
Simulation models can help increase transparency and accelerate regulatory alignment. Simulation models
can also inform what data should be collected at what frequency to maintain stringent safety and quality
standards. New simulation research can support optimal timing and frequency of interactions between
regulators and manufacturers at different stages of the drug lifecycle. In addition, regulators themselves
can use advanced simulation methods to streamline compliance, monitoring, and standardization globally.
New research can also help harmonize international guidelines for the use of artificial intelligence in drug
manufacturing and delivery.
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3.2 Hospital Operations

Simulation models have been widely used as operational decision-support tools in healthcare systems for
several decades. With advancements in simulation software, development of dedicated operations research/
data science teams in healthcare institutions, and improved access, standardization, and quality of healthcare
data, simulation will continue to be leveraged (either on a standalone basis, or in combination with other
operations research/machine learning techniques) to deliver meaningful, actionable insights pertaining to
increasingly complex hospital systems.

Current challenges faced by healthcare organizations: Some of the key financial challenges faced
by hospital systems in the United States are outlined in American Hospital Association (2025). Increasing
labor costs to avoid high turnover, and high year-over-year expense growth rates are limiting the ability
for hospitals to reinvest in infrastructure upgrades and expand their outreach to under-served populations
within their catchment areas. Changes in demographics over the past two decades have resulted in a
greater proportion of Medicare patients, and an increase in the volume of patients being treated for chronic
conditions. These have contributed to longer lengths of stay and reduced reimbursement as compared to
the cost of care per patient.

Operationally, a hospital system is comprised of several distinct components, each with unique char-
acteristics in terms of patient flow patterns, critical resources, staffing needs, data repositories, etc. such as
emergency departments, peri-operative spaces, pharmacy, inpatient and critical care units, infusion centers,
and outpatient facilities. Additionally, hospital resources are also divided based on clinical specialties
such as pediatrics, surgery, pathology, radiology, etc. A patient’s treatment journey often requires them
to interface with multiple components of this system. However, in many cases, these distinct subsystems
operate independently resulting in disruptions to patient flow due to less-than-ideal communication, and lack
of an integrated approach to resource allocation/capacity planning. Additionally, in recent years, healthcare
systems worldwide have experienced the impact of sudden unexpected changes to their operations resulting
from natural disasters such as pandemics, hurricanes, earthquakes, etc.

Thus, hospital systems are required to provide the best-in-class care and adhere to the healthcare quality
and patient safety standards set by institutions such as The Joint Commission, while balancing financial
constraints and limited resources. As a result, healthcare organizations have sought to adopt the practices
of High Reliability Organizations (HROs) in order to build resilience and increased sensitivity into their
operations (Carroll and Rudolph 2006; Phillips et al. 2021). Increasingly, hospital systems are also taking
a proactive approach to resource and capacity planning through design and implementation of clinical
growth strategies (i.e., taking a structured, proactive, and analytical approach to growing certain clinical
specialties, expanding into new geographical areas to increase outreach to new patient populations, etc.).

Improving the adoption of simulation-based solutions in healthcare: In a review of Operations
Research and Management Science literature focused on integrated planning of different resources in
hospitals, Rachuba et al. (2024) note that “successful implementations of integrated planning approaches
in practice are still rare.” They observe that simulation methods dominate the approaches that showcase
practical implementations due to their ability to incorporate considerations around the complexities of the
underlying systems.

Decision makers in a healthcare operations setting comprise of a group of representatives from the
clinical domain such as physicians, nurses, as well as non-clinical areas such as supply chain, facilities
management, hospital administration etc. In recent years, there has been a significant increase in the
availability of commercial as well as Free and Open-Source Software (FOSS) packages that have enabled
analysts to develop and deploy user-facing, web-based/desktop applications that are based on a combination
of machine-learning, forecasting, and optimization models, which can be used by these operational leaders
with minimal analytical support. While there have been similar advancements in commercial and open-
source simulation software, they do not always integrate seamlessly with the ecosystem that is currently in
use by data scientists at healthcare institutions. Additionally, development of complex simulation models
in healthcare, especially using FOSS packages requires a greater level of programming effort as compared
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with other analytical methods, which introduces challenges to knowledge transfer and wider adoption of
simulation-based solutions. Thus, development of FOSS simulation software requiring a reduced level of
programming effort and offering seamless integration with other analytical techniques would greatly help
increase the utilization of simulation-based solutions. Developing frameworks such as those proposed in
Monks et al. (2024) could help with sharing and reuse of simulation models among different healthcare
organizations and guide the development of standardized approaches for simulation-based solutions.

Future research directions: In light of emerging challenges and trends in healthcare operations
management, it is worthwhile to highlight the research opportunities for integrated systems modeling,
and integration of artificial intelligence/machine learning (AI/ML) models with simulation to improve the
accuracy of recommendations.

Large-scale integrated-system simulation models that can capture the impact of dependencies between
various components of a hospital system can be extremely valuable for strategic capacity planning decisions.
For example, using an integrated systems modeling approach, the impact of patient growth forecasts over
time can be translated into the projected increase in outpatient-and urgent-care visits in a hospital system,
and can also be used to plan for the need for additional inpatient beds, operating rooms, clinic space, and
staffing needs. Integrated systems modeling could also assist with the development of best practices and
guidelines for clinical growth strategies that could be shared among distinct healthcare systems.

Ferdousi et al. (2023) showcase several AI/ML models in use in healthcare. Some examples include
models that can provide real-time predictions of estimated wait times in emergency departments, projections
for hospital census based on current/future inpatient admissions, prediction models for mortality of admitted
patients with chronic conditions, etc. Incorporation of AI/ML model outputs into the simulation modeling
framework as inputs can help improve the accuracy and utility of simulation-based tools for short-term/
real-time decision support, due to the inclusion of considerations around several sensitive variables that
have a diminished effect when it comes to strategic planning. Digital twin solutions based on simulation
and AI/ML methods can help hospital systems build resilience to short-term disruptions, deliver consistent
quality of care to patients, and work toward achieving the goals of HROs.

3.3 Modeling Human Behavior

Personalized, or precision medicine, is the idea that instead of a “one-size-fits" all approach to medicine,
we should provide each patient with the right treatment at the right time. That is, healthcare interventions
should be tailored to an individual’s characteristics. Often, emphasis is placed on an individual’s genetic
profile (Institute 2025), although some definitions recognize that phenotype and lifestyle play a key role
when considering targeted prevention, diagnoses, or treatment (Council 2003). Simulation modeling has
been used extensively in personalized medicine, to optimize treatment for individuals (Jacquemyn et al.
2024; Marrero and Yi 2024), for example.

Fewer studies, however, acknowledge the key role that human behavior plays in medicine. Individuals
have preferences which may lead them to choose one treatment over another, or they may face barriers which
hinder their ability to adhere to or comply with recommended actions or treatments. Without explicitly
considering individual patient preferences or choices, it may not be possible to obtain accurate estimates
of the effectiveness of interventions. For example, for colorectal cancer (CRC) the US Preventive Services
Task Force recommends that average-risk individuals ages 45-75 be screened for CRC using one of several
modalities including colonoscopy or a fecal immunochemical test (FIT) test (U.S. Preventive Services Task
Force 2021), yet as of 2021 less than 73% of individuals were up-to-date with CRC screening guidelines,
despite substantial efforts over the last decade to reach 80% up-to-date. Previous studies have included
choice of modality and compliance with CRC screening to simulate the impact of interventions on long
term health outcomes, such as cancer cases averted (Lich et al. 2017; Lich et al. 2019; Powell et al. 2020).
In these cases, patient choice of modality and adherence were modeled based on statistical models which
consider patient demographics (Wheeler et al. 2016). Other work provides guidance on how to estimate
future CRC screening behavior based on past patient behavior (Townsley et al. 2022). Human behavior
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is complex, and in some cases, such as with the spread of an infectious disease, it is crucial to capture
individual behavior as well as the interaction between individuals to accurately estimate health outcomes.

Grounding in health behavior theories: Behavior theories represent theoretical frameworks that
propose factors that predict behavior. These frameworks delineate how these factors interact and mechanisms
through which their interactions culminate into specific individual actions. These factors are defined as
psychological constructs, which are abstract concepts that encompass a set of human cognitions or behaviors.
There are many classical theories commonly used in the literature to explain health behaviors. Some of
the more well-known theories include the Health Belief Model (HBM), the Protection Motivation Theory
(PMT), the Theory of Planned Behavior (TPB), and the Social-Cognitive Theory (SCT). These theories have
been used to explain protective health behaviors for respiratory diseases such as acute respiratory syndrome
(SARS), H1N1 and H5N1 flu, COVID-19, and sexually transmitted diseases (STDs) such as the human
immunodeficiency virus (HIV). Target behaviors studied include non-pharmaceutical interventions (such as
wearing a face mask, social distancing, and self-isolation) for respiratory diseases, engaging in protective
behaviors to prevent STDs, and pharmaceutical interventions such as drug treatments and vaccines.

Sheeran et al. (2017) provide a summary of the main factors used in health behavior theories and
synthesize descriptions into a unified conceptual definition. They group constructs into four categories:
perception about the health threat, perception about the target behavior, volitional factors (related to the will
to perform an action) and implicit perceptions. Perceptions about the health threat and the target behavior
are commonly found in classical behavioral theories; whereas, volitional factors and implicit perceptions
are proposed in more novel theories. Because of their flexibility in representing individual agents and
accounting for agent-to-agent interactions, Agent-Based Models (ABMs) have been a natural choice for
incorporating human behaviors grounded in behavioral theories into simulation models. For example,
Grefenstette et al. (Grefenstette et al. 2013) developed FRED, an agent-based simulation framework that
incorporates the application of the HBM proposed by Durham and Casman (Durham and Casman 2012).
de Mooij et al. (De Mooij et al. 2023) developed a large-scale agent-based simulation framework that
incorporates the attitudes of the agents as input for their decision-making process. In a recent study which
models COVID-19, Rodriguez-Cartes et al. (Rodriguez-Cartes et al. 2024) demonstrate how to incorporate
human behavior accounting for personal beliefs and perceptions by using the HBM within an ABM to
drive an agent’s decision to wear a face mask.

Challenges in modeling human behavior: There are several challenges to incorporating human
behavior in an ABM, or any simulation framework. Badham et al. (2018) name model specification as
one of these challenges; that is, the modeler must decide which psychological constructs to consider, how
these determine the behavior of the agent, and how these can be represented in the simulation environment.
The most appropriate behavior theory will depend on the problem context, the purpose of the study and
the research question of interest. Authors should conduct a literature search to identify which theories
have been employed to model the target behavior. For example, the HBM and PMT frameworks are often
used when considering risk perception and perceived severity. Then, there are many ways to incorporate
these constructs into a simulation model. A recent review by Hamilton et al. (2024) cataloged studies that
had endogenously incorporated behaviors into models of COVID-19 transmission. They found that most
studies used feedback loops while a substantial number used game or utility theory and a few studies used
a model of information or opinion spread.

The next challenge is finding data associated with the behavior. The most common way to measure
psychological constructs is through survey instruments. The usual approach is to employ Likert scale ques-
tions, where participants respond to statements that relate to specific constructs. For example, the Preventive
Health Survey: COVID-19 Beliefs, Behaviors & Norms Survey conducted by MIT and Facebook asked
questions that measured beliefs and perceptions in relation to COVID-19 and protective behaviors (Collis
et al. 2022). Rodriguez-Cartes et al. (2024) used responses from from this survey to map to specific
constructs in the HBM framework to model an agent’s decision to wear a mask. While survey design is
usually guided by the chosen behavioral theory and the behavior studied, these surveys are not usually
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designed with simulation modeling in mind. Longitudinal studies allow researchers to assess changes in
perception over time, which helps to examine the effects of variations on behavior. However, longitudinal
studies are more challenging to execute due to the need for continued engagement from respondents. In
contrast, cross-sectional studies provide a simpler approach to collecting data but lack information on how
behaviors may change over time. The information collected from survey instruments or other empirical
studies helps to inform the effect of each construct in predicting behavior. Statistical models (i.e., linear
and logistic regressions, structured equation modeling) are useful for quantifying these relationships and
assessing the importance of each psychological construct.

Other challenges in modeling behaviors in simulation models include operationalizing behaviors using
data or information endogenous to the simulation study and calibrating simulation parameters. For example,
if social norms are important in determining vaccination decisions, one may model perceptions about the
vaccination behaviors of connected agents, and parametrize how much influence agents have on each
other depending on their closeness (e.g. agents within a household may influence an individual more than
agents within a community). ABMs require extensive parameter calibration, especially when incorporating
multiple psychological constructs, leading to increased computation complexity.

Future research directions: Despite the rich literature that exists in behavioral theories that propose
the main factors driving behavior from the psychology and social science fields, there is a lack of clear
guidelines for incorporating health behaviors into simulation models. It would be useful to have a unified
framework to aid in the operationalization of agent actions grounded in behavioral theories. Furthermore,
while it may be important to incorporate human behavior into some health models, due to computational
complexity, this must be done only when it necessary to answer the research question of interest. There
is a trade-off between simple representations of behaviors that may adequately capture population level
estimates and models with high granularity and heterogeneous behavior that can accurately represent what
is happening at the individual level. Meta-modeling, or equation learning may offer a happy medium, where
realistic ABMs are used to capture complex individual behaviors and are then are abstracted to be represented
as simpler models. For example, equation learning can be used to derive ordinary differential equations,
like the classic SEIR model which can provide easily interpretable results for decision-makers (Nardini
et al. 2020). Machine learning and other techniques such as artificial neural networks can be used either
to directly create meta-models, or for equation learning itself. There are many challenges associated with
meta-modeling techniques, such as how to capture the stochasticity within simulation models, how to
choose the right level of granularity and how to adapt to changes in the underlying disease dynamics.
While incorporating human behaviors in simulation modeling is challenging, accurately capturing these in
models of disease spread will allow decision-makers to test and tailor interventions to better alter individual
behaviors, ultimately making interventions more efficient and effective.

3.4 Mechanistic modeling social determinants of health (SDH) into disease simulations

Disease simulation models play a critical role as disease prediction and intervention decision-analytic
tools to inform national or global public health strategies or clinical guidelines. The general mechanistic
approach is to simulate the direct mechanisms or pathways to disease risk, such as health behaviors or
other health conditions. For example, infectious disease simulations model transmissions as functions of
behaviors that influence contact networks, and infectiousness of infected contacts, and chronic disease
simulations model disease risk as a function of healthy lifestyles, pre-existing health conditions, and/or
screening behaviors. Accordingly, intervention analyses have focused on pharmaceutical and/or behavioral
interventions. However, numerous studies have shown that social-economic-demographic features, such as
race, geography, income-level, insurance-status, and housing and food insecurity, etc., are core predictors of
disease risk or health outcomes, challenging the approach of focusing on pharmaceutical and/or behavioral
interventions alone. These factors, simply referred to as social determinants of health (SDH) given their
significant associations with a wide range of diseases and multi-comorbid (i.e., multiple co-occurring)
health conditions (Álvarez Gálvez et al. 2023), highlight the need for structural interventions, alongside
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pharmaceutical and behavioral interventions, as a critical component of public health response. In addition,
there are correlations between diseases due to common behavioral mechanisms or biological interactions.
As these associations can influence the cost-effectiveness of interventions, there is increasing interest in
integration of the associations between SDH and diseases, and between diseases, into intervention decision
analytic models to inform public health resource allocation strategies.

Broadly, there are two types of models used in above analyses, dynamic simulations and statistical
methods. While statistical methods help identify associations between SDH, behaviors, and disease risk,
or evaluate effectiveness of structural interventions using data from controlled studies, they have two
interrelated challenges. First, they do not model the mechanisms between SDH, behaviors, and disease
risk, and are thus unsuitable for intervention analyses. Second, measuring joint intervention effects through
controlled studies become infeasible as the number of features (e.g., SDH, behavioral, or health conditions)
to experimentally control increase. While dynamic simulation methods can address these gaps, challenges
had included high computational burden and model parametrization. With the availability of high compute
and data, recent literature has seen a growth in simulation studies that jointly model SDH and related
diseases. We provide some examples below on methods used for model parameterization.

Estimating mechanisms between SDH, behavior, and disease-risk: Models under the Cancer Inter-
vention and Surveillance Modeling Network (CISNET) traditionally simulated natural disease progression,
measuring the impact of screening and treatment combinations on disease progression to inform screening
and treatment guidelines. In recent work, motivated by bias in data and barriers to screening access, they
additionally incorporated screening and treatment access into the modeling framework, to infer through the
simulation, the causal factors (biological v. SDH) of disparities in cancer mortality by race (Mandelblatt
et al. 2023). Another example are studies by the Progression and Transmission of HIV (PATH 4.0) modeling
group. They incorporated copula probability theory with machine learning probabilistic graphical modeling
to integrate disparate datasets (from literature studies and large national surveys) to first infer the joint
distributions of SDH and sexual behaviors, and subsequently to parameterize a mechanistic simulation
of HIV and STIs (Khosheghbal et al. 2024; Zhao and Gopalappa 2023), to enable joint evaluation of
pharmaceutical, behavioral, and structural interventions.

Joint modeling related diseases and intervention effectiveness: One study developed a model to
collectively evaluate the impact of blood pressure control on stroke, cardiovascular diseases, and dementia
(Burke et al. 2024). They parameterized the model using a combination of statistical methods, meta-analyses
of randomized control trials, well-characterized prospective cohort studies, and multiple population surveys
to generate risk, state transitions, and treatment effects. A second study developed a model to evaluate
the impact of combinations of behaviors such as physical activity, healthy diet, smoking, and screening
on multiple interacting health outcomes such obesity, CVD, hypertension, cancers, and chronic pulmonary
disease (Clennin et al. 2022). They parametrized the casual structure using associations from the literature
and subject matter expertise. A third group developed a joint STI model, to quantify the biological v.
behavioral mechanisms for high risk of HPV and cervical cancer among women with HIV, and the impact
of structural interventions on HIV, HPV, and cervical cancer outcomes (Zhao and Gopalappa ) developing
a deep-learning assisted hybrid agent-based and compartmental model to overcome the parametrization
challenges of modeling diseases of varying epidemiological scales (Eden et al. 2021; Gopalappa et al.
2023).

Gaps and future research directions: Though there are many other significant work in recent years,
and we highlight only a few studies above as samples of recent research topics, there are many open
challenges and opportunities for research. First, there are significant gaps in methods to identify causal
structures. As the casual pathway between behaviors and health risk are biological mechanisms, they can be
inferred through controlled studies. However, estimating the casual pathway between SDH and behaviors is
a complex area of research, as they are highly heterogeneous, influenced by factors such as socio-economic,
social context, systemic racism, and stigma, which are difficult to measure. Thus, most studies typically
focus on associations and not on casual structures. A multidisciplinary approach, drawing from concepts
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from behavioral psychology, social sciences, community-based health sciences, and data sciences (Bedson
et al. 2021), used in conjunction with simulation modeling to incorporate temporal or spatial dynamics,
could be one direction of research. The second challenge is with data availability. Individual-level data are
most suited for casual inference, and thus, studies that infer casual structures between SDH predominantly
use randomized control trials, individual-level longitudinal surveys, or individual-level electronic health
records (EHR). Individual-level surveys are only available for a subset of SDH and behaviors, and only for
some subgroups. There is no consistency in EHR record keeping for SDH (ICD codes for SDH are only
now being considered and not universally adopted), and additionally, can be biased towards populations
with higher access to healthcare. One direction of research could be methods to combine evidence and
data from disparate datasets (health, behavioral, and SDH), including surveys and surveillance systems
that are regularly administered, to add community context. Third, effectiveness of structural interventions
from controlled studies typically do not scale in a realistic setting. To address these gaps one direction
of research could be methods to estimate intervention effects from ongoing public policies and programs,
using longitudinal and spatial program data in conjunction with other population and individual-level data.
Along with multidisciplinary research to learn from concepts from behavioral psychology, social sciences,
community-based health sciences, and data sciences (Bedson et al. 2021), innovative use of AI and
simulation could play a role in addressing the above gaps. Use of artificial intelligence (AI) in public health
for disease risk prediction and epidemic forecasting, intervention analyses, identifying associations between
SDH and diseases, or extracting knowledge graphs from literature are rapidly evolving. While there is
potential for AI to play a critical role in achieving the complex challenges described here, there are multiple
issues related to robustness, interpretability, reliability, and ethical and privacy issues that are barriers to be
addressed. Suitable directions of research could include innovative use of AI for scalability and methods
from mathematical sciences (including causal inference methods, simulation, and reinforcement leaning)
for robustness, interpretability, and reliability.

3.5 Contact network generation using multi-modal data for rapid detection of disease outbreaks

Contact network generation in simulation models are a critical component of epidemic prediction. However,
they are challenging to generate given the complexity of temporal and spatial dynamics (mobility) and spatial
scale (geographical spread), that can make it computationally intractable. Taking advantage of scalability
of machine learning methods, there is significant growth in recent work in use of multi-modal data such
as from mobility, contact tracing, behavioral surveys, and household co-residence datasets. Among these,
a subsection of studies that are gaining high interest, because of their ability for rapid detection of new
outbreaks, are those that combine molecular methods of contact generation.

Molecular methods use nucleotide sequences of the virus isolated from persons with infection to identify
transmission networks (molecular clusters). As viruses mutate, the difference between two viruses’ nucleotide
sequences, called genetic distance (GD), indicates how closely they are related in transmissions. Network
clusters are detected by applying a threshold on GD; any sequence within a given GD of at least one other
sequence is considered part of a cluster. Unlike other surveillance methods, as molecular clusters directly
detect networks of rapid transmissions and are not restricted by demographic or geographic boundaries, it
helps early, rapid, and targeted intervention response. Recognizing its critical role in outbreak detection
and response, public access to data has rapidly increased in recent years through worldwide initiatives, e.g.,
SARS-Cov-2 (virus that caused COVID-19) saw an unprecedented amount of data made available in a short
time. Molecular cluster detection is increasingly used for detection and response to outbreaks of not only
newly emerging viruses, but also chronic infectious diseases including sexually transmitted infections (e.g.,
HIV, Gonorrhea), intravenously transmitted infections (e.g., Hepatitis C (HCV)), and respiratory infections
(e.g., tuberculosis(TB), COVID-19).

Gaps and future research directions: As molecular cluster detection can only be applied to diagnosed
cases with sequence, they have certain limitations. First, infections with long asymptomatic durations, e.g.,
HIV, COVID, tuberculosis, hepatitis C, gonorrhea, and human papilloma virus, have delayed diagnoses,
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and thus, ‘detected’ clusters are only the tip of an iceberg, i.e., part of a larger ‘full’ cluster (iceberg)
of unknown composition. Second, barriers to testing, diagnoses, and sequencing can limit sequence
availability, and thus, response operations could be biased towards populations with higher access, adding
to health disparities. Third, it is retrospective, detects outbreaks in the past but cannot predict networks
at-risk of future outbreaks, i.e., may miss opportunities for prevention. Combining molecular methods with
simulation modeling to address above gaps is a newly emerging area in the epidemic modeling literature
(applied to COVID-19, Hepatitis C, TB, and HIV) (Fujimoto et al. 2023; France et al. 2024), however they
are limited in geographical scale. Nationally or globally scalable models are critical for rapid detection
and response in the event of new and emerging infectious diseases. Combining model-based methods with
data-driven AI could enable development of scalable tools for rapid response.

4 CONCLUSIONS

In this paper, we synthesize domain-specific insights and reflect on the evolving role of simulation in
healthcare and life sciences. As challenges grow in scale and complexity, advancing the field will require
multidisciplinary approaches that integrate expertise in modeling, machine learning, optimization, and
healthcare. Close collaboration with stakeholders in government, industry, academia, and clinical settings
will help ensure that simulation models remain timely, relevant, and impactful. Finally, university curricula
that emphasize rigorous simulation training will continue to play an important role in preparing a workforce
equipped to address future challenges in healthcare care.
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