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ABSTRACT

The advancement of Artificial Intelligence (Al) has accelerated the transformation of simulation from a tool
for analysis and design into a dynamic partner for decision-making and operation. As Al systems become
more capable of learning, reasoning, and adapting, simulation is evolving into an intelligent, autonomous,
and predictive framework for exploring complex futures. This paper brings together future-oriented per-
spectives from simulation scientists and Al experts to discuss the current Al-simulation integration and
both near-term and long-term outlooks for innovation, collaboration, and disruption.

1 INTRODUCTION

Advances in disciplines such as computer science, data science, and operations research in recent years
have greatly contributed to the field of Modeling and Simulation (M&S). While many people associate
simulation with computers and digital technology, its origin can be traced back to the dawn of human
civilization (Grieves and Hua 2024). Prehistoric hunters would mentally run through different scenarios
when planning their next hunt, such as how best to encircle and drive the mammoth off a cliff without harm.
As human knowledge expanded, more mathematical rigor was introduced into M&S. Pierre-Simon Laplace
used differential equations to model gravitational forces between celestial bodies, laying the foundation for
computational simulations. The invention of computers brought simulation into the modern age, where it
has been applied to increasingly complex systems. In fact, modern system complexity has reached a level
where mathematical reductionism alone is no longer sufficient to provide meaningful insights.

Artificial Intelligence (AI), on the other hand, is a more recent phenomenon closely linked to the
development of computer science. Its goal is to equip computational systems with the capability to perform
tasks that traditionally require human intelligence, such as learning, reasoning, and decision-making. Al as
a discipline traces its roots to the 1950s, built upon the work of Norbert Wiener, Alan Turing, and Claude
Shannon. In the ensuing decades, Al research has undergone cycles of unbridled optimism and periods of
tempered skepticism (“Al Winter”), reflecting its competing visions and technical challenges.

Today, both simulation and Al play critical roles in revolutionizing industries and society at large.
From a data-centric perspective, simulation can be put into action without requiring large amounts of data
a priori, whereas Al depends on Big Data. A growing convergence between simulation and Al is also
emerging: simulation can harness Al to achieve greater autonomy, while Al development can leverage
simulation to study “what-if” scenarios for safe and ethical deployment. Researchers across both fields are
collaborating to unlock the full potential of these complementary disciplines in addressing complex problems
and developing ground-breaking applications. This synergy is illustrated in Figure 1, which highlights how
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intelligent simulation arises at the intersection of realistic system representation and intelligent data-driven
automation.
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Figure 1: The convergence of simulation modeling and artificial intelligence enables intelligent simulation.

This paper summarizes the current landscape of Al and simulation and outlines a forward-looking vision
of their evolving synergy. It explores the roles these disciplines will play in advancing and safeguarding
a society increasingly embedded with intelligent, and potentially sentient, machines. The perspectives
presented reflect the authors’ own views. Throughout this paper, the term Al is used broadly to include
Artificial Intelligence, Machine Learning, and related data-driven approaches.

1.1 Simulation Principles for AI

Sound principles and theories have formed the foundation for the development of dynamical models
(McCarthy 1959; Simon 1962; Von Neumann 1966; Arbib 2012). An underpinning idea has been to
conceptualize systems as having inputs, state-based operations, and outputs that involve the passage of
time. For example, the underlying principle of event handling at arbitrary times is formalized through different
kinds of deductive models to simulate discrete-event dynamical systems (Ho 1989). Such mathematical
formalisms are grounded in domain-neutral modeling languages to develop domain-specific models.

The elemental theories and principles, founded on intuitive human knowledge and laws of physics,
make it possible to formulate and answer questions about specific systems. These models describe the inner
workings of systems, for example, as discrete- or continuous-time equations for some acceptable input
to predict the evolving (deterministic or stochastic) model’s dynamics and output. In contrast, inductive
models, such as artificial neural networks, are generated based on observed input and output data. Unlike
deductive simulation models, generative Al models often require vast amounts of data and computational
resources. Incorporating the benefits of the principles and theories embodied in simulation models into the
Al capabilities (and vice versa) may lead to more accurate, explainable, and reproducible predictions.

Indeed, there is a growing interest in inductive Al models that can incorporate various kinds of
knowledge (e.g., algebraic equations and predicate calculus) to reach or exceed the capabilities of deductive
simulation models (Von Rueden et al. 2021; Wu et al. 2022). A basic expectation for generative models is
to achieve or surpass the accuracy of simulation models, particularly for safety-critical real-time systems
such as automated transportation (Yan et al. 2025). By mid-century, combinations of simulation and
Al models may reach the capability to match the complexity and scale of their real-world counterparts.
Self-generating models could conceptualize and predict the structures and behaviors of futuristic systems
(e.g., socially aware robotic nurses) and existing systems (e.g., human biology). This highlights the need for
the development of executable models capable of (self-)reasoning for diagnostic and prognostic purposes.

Outlook 1: A promising direction is the development of simulation-informed foundation models that
embed system constraints and governing equations into learning architectures. These hybrid models could
offer stronger generalization, particularly for physical systems where data are scarce or costly to collect.

Achieving near scale-free computation with today’s simulation engines and host platforms remains
impractical. As aresult, combining simulation and Al can enable hybrid models where each part has its own
data, operation, temporal, and spatial resolutions (Davis et al. 2000). However, hybrid modeling introduces
challenges because the composed models often differ in their structural representations, behavioral logic,
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and interpretation of time and events (Alur 2015; Zeigler et al. 2018). These challenges become even more
critical when such models are developed for safety-critical, real-time socio-technical systems.

Outlook 2: Toensure trustin hybrid Al-simulation systems, future research must focus on standardizing
model integration frameworks. This includes defining interoperability protocols, data fusion standards, and
verification and validation methods suited for multi-resolution, multi-temporal environments.

1.2 Key Enablers for AI-Driven Simulation

When discussing simulation enablers, the focus is typically on the tools and methodologies necessary
for building scenarios and explicitly understanding system limitations. For experienced practitioners, it
is important to follow a systematic process and carefully address data details, parameter definitions, and
abstraction of the system under study. This applies mainly to Discrete Event Simulation (DES), but also
broadly to Agent-Based Simulation (ABS) and System Dynamics (SD), where systems are modeled as
sequences of events that change system states at specific times. Key steps include (with potential future
enablers noted in parentheses):

1. Define Objectives and Scope, including limitations.

2. Map the Process and Identify Components (future: ontologies and tailored digital twins).

3. Collect, Provide, and Analyze Data (future: Qualified Synthetic Data (QSD) and digital twins).

4. Build the Simulation Model. Simulation software like AnyLogic or Simio is highly useful.

5. Verify the Model. Assess whether the model delivers expected results, often using simplified or
estimated data initially.

6. Validate the Model. Compare simulation outputs with real-system data to ensure accuracy.

7. Run Experiments and Analyze Results to verify or falsify experimental hypotheses.

8. Implement Findings.

A comprehensive overview of the evolution of simulation practice is given by McGinnis (McGinnis
etal. 2011; Ehm et al. 2009; McGinnis and Rose 2017). The main challenge remains how simulations relate
to real-world systems and how stakeholders interact with simulation experts to solve practical problems.

A growing implication of this evolution is the increasing convergence of Al and digital twin models.
Digital twins—digital representations of physical entities that mirror behavior and status in real or near-real
time—are becoming central to simulation, particularly in domains like manufacturing and logistics. These
models not only enable real-time monitoring but also create opportunities for Al-driven decision-making
and adaptive control.

The study by (Lugaresi and Matta 2021) explores this evolution, showing how traditional simulations
are transforming into digital twins in the manufacturing sector. Building on this, Leon highlights the need
for new modeling approaches and integrated cross-domain analyses to support digital twins, particularly for
discrete-event logistics systems. He introduces the concept of “analysis-agnostic system models” (McGinnis
2020), which are standardized system representations not tied to any specific analysis type.

Although the general approach to simulation may not change dramatically in the coming years,
fundamental shifts in how models are designed, interpreted, and integrated—especially with Al—will
significantly improve simulation practices.

Outlook 3: In the future, overarching ontologies may become as essential as today’s definitions and
entity-relationship models. An early example is the Digital Reference (DR) from the European Productive
4.0 project, which acts as a lingua franca for digitizing semiconductor supply chains, enabling human-
and machine-readable knowledge sharing.

Outlook 4: There is a growing need for Qualified Synthetic Data (QSD)—artificially generated
datasets that replace real data, reducing privacy risks and preventing irrelevant events from dominating
simulation. QSD enables faster verification and more efficient validation of simulation models.
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2 SKILL DEVELOPMENT AND WORKFORCE EVOLUTION

Al is expected to play a transformative role in the evolution of simulation. As simulation and Al practices
continue to converge, this section discusses the changing demands on simulation professionals and the
emerging roles needed to bridge the gap between traditional modeling and data-driven techniques.

2.1 New Roles and Competencies for the Future Workforce

The rise of Al-integrated simulation calls for new technical competencies, particularly in relation to data,
systems modeling, and decision evaluation. The following areas highlight some of the most critical shifts
in simulation-related skill sets:

* Data Availability and Quality: Large volumes of high-quality data are essential for Al models.
There is growing emphasis on labeled data for supervised learning tasks.

*  Computational Power: Rapid progress in hardware is essential to support the increasing complexity
and size of Al-enhanced simulation systems.

* Talent and Expertise: Beyond traditional simulation skills, the workforce must now include
specialists in data labeling, model interpretation, and scenario management. New roles such as
labelers, decision reviewers, and exception handlers are becoming more prominent.

* Governance and Ethics: As Al plays a bigger role in decision-making, ethical and legal consid-
erations must guide its deployment. Understanding regulatory frameworks, explainability, and risk
boundaries is now a critical requirement.

Outlook 5: Future simulation professionals must combine domain knowledge with Al literacy.
Understanding how labeled data serves as the foundation for learning systems will be vital in ensuring
trustworthy, high-performance models.

Outlook 6: Explainability remains a core concern. Despite their impressive predictive power,
advanced models such as CNNs can produce misleading outputs. Professionals must learn to evaluate Al
suggestions critically and intervene when necessary.

Alongside these technical shifts, we anticipate the emergence of several new job profiles to address
the needs of hybrid simulation—Al environments:

*  Ontology Specialists: These professionals transform expert knowledge and conceptual representa-
tions into machine-readable semantic models. The process, sometimes called “DrOWLing” (from
“Drawing” and “OWL”), is key to formalizing knowledge across domains.

*  Ontology Integration Experts: Responsible for aligning and connecting diverse domain ontologies
to overarching semantic frameworks such as the Digital Reference used in manufacturing.

* Synthetic Data Designers (QSD Generators): Tasked with generating realistic, privacy-preserving
datasets that maintain statistical integrity. These datasets enable safe model verification and validation
where real data is unavailable or restricted.

* Labeling Professionals: Provide consistent and meaningful annotations to training data. These
annotations form the “ground truth” for Al models and directly impact simulation reliability.

* Al-Aided Decision Analysts: Evaluate the relevance and reliability of Al outputs, especially in
partially explainable systems. They act as interpreters of Al-generated recommendations.

* Exception Handlers: Operate in VUCA (Volatile, Uncertain, Complex, Ambiguous) environments.
These professionals step in when Al predictions fail or when unprecedented cases arise that require
human reasoning beyond the model’s scope.

Outlook 7: To prepare for these emerging roles, simulation professionals must gain familiarity with
semantic technologies, data synthesis techniques, and human-in-the-loop Al workflows.
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2.2 The Role of Simulation Experts for the Implementation of Models

A professional field closely related to M&S and highly impacted by the advancements in generative Al is
software engineering. Generative Al, particularly LLMs, is transforming software development workflows,
roles, and skills. The same transformation applies to simulation professionals involved in implementing
models.

We assume the model is already conceptualized, with defined entities, properties, relationships, and
processes, and is ready for implementation (i.e., coding, debugging, documenting, maintaining). Though
natural language can describe such a model, machine-readable specifications are preferable.

* Code Generation: LLMs assist in writing code by leveraging vast software development resources.
They support auto-completion, pattern abstraction, and retrieval of relevant code snippets. Advanced
use cases include transforming natural language into executable code for specific domains (Fry-
denlund et al. 2024; Jackson and Saenz 2022). While promising, further research is needed for
reliability.

» Testing and Debugging: L.LMs identify bugs (Li et al. 2024), suggest fixes with rationale, optimize
performance (Gao et al. 2024), and trace code logic. They also support creating unit and interface
tests, mapping data structures, and harmonizing program data (Santos et al. 2025).

*  Documentation: Documenting code, often viewed as burdensome, is eased with LLMs. They
detect inconsistencies (Zhang 2024), generate documentation (Luo et al. 2024), and adapt tutorial
content to learner maturity (Bhat et al. 2024; Jackson and Rolf 2023).

* Code Maintenance: LLMs simplify code, suggest structural improvements, and assist future
maintainers. Their use is critical when original developers are unavailable or models use heuris-
tics/numerical approximations (Oberkampf et al. 2002; Winsberg 2019). Digital twin-inspired
methods show promise (Peng et al. 2025), and custodial work may be reduced as LLMs act as
digital collaborators (Barry et al. 2022).

Outlook 8: By 2050, simulation engineers will shift from traditional coding to Al-assisted model
implementation. Al tools will enable executable simulations as part of pragmatically linked solution
networks.

2.3 Challenges of Al in M&S education

Teaching, learning, and practicing modeling and simulation invariably depend on creating useful abstractions.
LLMs, as teaching machines, should be introspective and retrospective in addition to being pedagogical.
They should be skilled in core modeling, simulation, and computing subjects, but also disciplinary (e.g.,
cancer biology) and multidisciplinary subjects (e.g., built-natural-social systems of systems). Rigorous and
repeatable studies of teaching machines should demonstrate that their questions and answers to them are
explainable and understandable in educational settings, including university classrooms. Incomplete and
contradictory knowledge can mislead instructors and students alike to believe the needed skills are taught
and gained to develop correct and useful M&S artifacts.

Inclusion of Al in educational settings is complicated — it involves students, curriculum, accreditation,
assessment, teachers, and a myriad of policies and rapidly changing infrastructures and technologies for
content delivery (National Science and Technology Council 2023). Studies in computer science (Meyer,
Bertrand 2023) and M&S (Yan et al. 2024; Tolk et al. 2023; Lesage et al. 2024) show varying understandings
and expectations of Al, such as its use in personalized and team learning. Either way, the practical use
of Al in educational settings should be grounded and demonstrated with useful and measurable studies
with outcomes such as assignments, exams, and projects that require critical thinking as part of the Bloom
taxonomy. Al can bring useful change to education when its knowledge and the means to deliver it can be
shown to complement what has been the foundation of education. AI models should be subject to external
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audit and evaluations as is currently possible through bodies such as the Certified Modeling & Simulation
Professional (CMSP) certification program.

Al as teachers (or teaching assistants) should have soft skills and common-sense reasoning in addition
to technical skills. Teaching machines are likely to be highly specialized. However, they may prove to
be revolutionary in teaching the knowledge and practice for inter-/trans-disciplinary M&S research and
development.

Anecdotal teaching experiences in a graduate-level modeling & simulation and research suggest that
student learning using Al tools is confined to simple and well-understood knowledge (e.g., facts, examples,
and procedures). Currently, the models, code, and examples lack evidence of correctness, explainability,
and repeatability, making them unsuitable for use in educational settings. Looking into the future, on the
one hand, Al may reach a stage to serve teachers, students, and researchers to gain sound M&S knowledge.
Teachers, on the other hand, may be unaware that students are learning materials that lack scientific rigor
and are impractical to measure.

Outlook 9: Al will transform M&S education through intelligent tutors and assistants, but only if
their outputs are auditable, explainable, and grounded in sound pedagogical practices. Otherwise, they may
hinder rather than enhance deep learning.

3 FUTURE PERSPECTIVES ON AI-SIMULATION INTEGRATION

As Al capabilities expand and simulation systems evolve, their convergence will influence not only
technological tools but also the roles of practitioners, workflows, and organizational strategies. This
section explores emerging perspectives on how Al-driven simulation may transform modeling practices
and ecosystem dynamics in the years ahead.

3.1 Impact of AI and Simulation Merging on Users in the Next 5 to 25 Years

There are three primary applications with the merging of Al and simulation as follows:

1. Generative Al (GenAl) to augment/perform model and experiment generation.
2. Reinforcement Learning (RL) to find optimal input parameters for a simulation model.
3. Neural Networks (NN) embedded in a simulation model to optimize decision-making.

In the following sections we will discuss the challenges and promises of these primary use cases.

3.1.1 Generative Al for Building Models and Running Experiments

The idea of asking Al to build models and run experiments to answer questions seems a bit far-fetched, but
just a few years ago so did the idea of asking Al to drive a car, write papers, create art/videos, write poems,
or write computer programs. A lot has changed in a short time, and the pace of change remains high.
Over the past few years there has been dramatic progress in the development of AI/ML, particularly in the
advancement of Generative Al and Large Language Models (LLMs) that are trained on massive amounts
of data, with an underlying Transformer comprised of a set of Neural Networks that provide an encoder
and decoder with self-attention capabilities. GenAl can understand a wide variety of inputs including text,
voice, pictures, and videos, and can summarize and generate new content in a variety of formats. A key to
the rapid progress has been the ability to train ML algorithms with extremely large data sets using massively
parallel data training centers. Given the broad and rapid success of GenAl, the natural question is: Can it
create simulation models, and design and run simulation experiments to answer specific questions?
GenAl is being applied today in simulation studies to perform specific project tasks that were done
manually in the past. Here are some example prompts that might be used in a simulation study:

»  "Write me a Python program to pull the first 500 records from an Excel spreadsheet with columns
named Material and Quantity and write them off in a CSV file for input to my model."
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*  "Write me a program in C# that I can call from my model to send a message to an MQQT broker
to specify an AMR name of type string to move to a destination location of type string."”

* "I have exported output data for multiple responses from my model into a CSV file. Write me a
Python program to display a histogram of each response along with the 10, 25, 50, and 75, and
90 percentile values."

Although there are valuable and time-saving benefits from working with existing GenAl tools, these
tools are not currently capable of building a simulation model or designing and running experiments to
answer specific questions. Consider, for example, the following prompts to a GenAl system.

* "l have as input a 3D CAD drawing of my factory along with Enterprise Resource Planning (ERP)
data and Manufacturing Execution System (MES) historical production data. Create a model of
my factory that allows me to evaluate changes in demand and the impact of system changes or the
introduction of new products.”

* "l have a model of a new factory, and I am selecting between Autonomous Mobile Robots (AMRs)
with differing prices and performance characteristics. Run an experiment to determine which AMR
model I should choose and how many units I need to purchase to deliver 99% of orders on time
with 99% confidence."

The question is, how close are we to having GenAl tools that can accept prompts like these that build
our models and run our simulation experiments, and what challenges do we face in getting there? Will we
see this capability in the next 5 or 25 years?

Outlook 10: Within the next two decades, Generative Al will evolve from task-specific assistants to
full simulation collaborators, capable of interpreting complex system inputs and autonomously generating
valid simulation models and experiments. While current tools fall short, the trajectory of GenAl suggests
a future where simulation modeling becomes prompt-driven, interactive, and significantly more accessible
to non-experts.

3.1.2 Reinforcement Learning for Simulation Optimization

Reinforcement Learning (RL) is a type of ML where an agent learns to make decisions by interacting with
its environment, taking actions, receiving rewards/penalties, and then adjusting its behavior to improve
performance.

RL has shown compelling results in board and computer games, receiving considerable attention for
potential simulation applications (Belsare et al. 2022). A key advantages is that it does not require
massive amounts of labeled training data since it learns from its environment, real or simulated. Due to
the challenges with creating a reward/penalty for embedded decision making, RL has primarily served
as an alternative to classic search methods for simulation optimization (Wang and Liao 2023; Lim and
Jeong 2023; Castrignano et al. 2024), finding optimal decision variables to maximize/minimize objective
functions such as throughput or cost. Here, the RL reward function is straightforward: the improvement
in the Key Performance Indicator (KPI) of the system being modeled.

In this application, RL competes with existing simulation optimization search tools such as OptQuest.
Optimization search tools and RL simulation optimization applications share many similarities: both explore
an unknown search space and adjust their decisions based on that exploration. RL and tools like OptQuest also
compete with running large simulation experiments of the full solution space, which becomes increasingly
practical with advanced statistical methods reducing required replications and expanded access to massively
parallel cloud-based data centers. Despite its successful applications with simulation optimization, RL faces
challenges achieving broad success. For example, PathMind, a well-funded startup specialized in RL for
simulation optimization with interfaces to several commercial simulation tools, shutdown after years of
effort and tens of millions in funding due to lack of progress.
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Outlook 11: RL will continue to evolve as a complementary approach to traditional simulation
optimization methods, particularly in domains where labeled data is scarce but well-defined reward structures
exist. While challenges remain, future advancements in reward shaping and hybrid integration with classical
search methods may unlock broader adoption of RL in simulation contexts.

3.1.3 Neural Networks for Optimal Decision Making

Neural Networks for decision logic and simulation are ideally suited for each other. On the one hand,
Neural Networks excel at making predictions and optimizing decisions, but are handicapped by requiring
massive amounts of high-quality labeled data for training, since a Neural Network model is only as good as
the training data on which it is based. On the other hand, simulation models require high-quality decision
logic to optimize the system performance, but can generate endless synthetic training data. Hence, the
appeal of embedding Neural Network models for decision optimization within a simulation model and
using the simulation model to self-train the Neural Network. This area has already had some success, and
is one of the most promising short-term opportunities.

Decision logic is often a major component of a simulation model, created with significant modeling
effort. For example, some typical decision logic that must be built into a manufacturing simulation model
includes logic for:

1. Selection of the next job to work on at a workstation.

2. The selection of a production line for a new job.

3. Deciding if a job can be released now and be completed within a maximum makespan (otherwise
it expires).

Decisions such as example 1 can be done with standard rules such as Critical Ratio (i.e., remaining
processing time divided by the remaining slack time). However, rules are not easily created for examples
2 and 3, as the correct choice depends on many factors such as the number and mix of work orders, the
required product changeovers at all the downstream stations in product routing, and operator and material
availability. Building good custom rules to handle these cases is difficult and time consuming to do, but,
as we will discuss in Section 4.1.3, it is easily done using a Neural Network by transforming the selection
problem into a prediction problem.

Outlook 12: Neural Networks will become integral to simulation-based decision-making by leveraging
self-generated synthetic data from simulations. This synergy allows complex, data-hungry models to be
trained without external datasets and enables simulations to evolve beyond rule-based logic into prediction-
driven optimization engines.

3.2 The Convergence of Simulation, AI, and Engineering Disciplines

Several publications already investigate the benefit of close collaborations among various disciplines, such
as (Onggo et al. 2018; Taylor et al. 2021; Mustafee et al. 2023; Tolk 2024). As discussed in (Mustafee
et al. 2017), a hybrid is the result of merging two or more components of different categories, combining
their characteristics into something more useful.

In addition to the potential of AI methods discussed in the previous sections, Large Language Models
(LLMs) promise to converge a variety of engineering disciplines, becoming a "melting pot of cross-
disciplinary ideas." Following the argument discussed in (Tolk et al. 2021), this requires the conceptual
alignment of the models being used and the interoperability of their implementation. It is worth pointing
out that different engineering disciplines all follow this principle of conceptualization and implementation,
where conceptualization is the creative process of creating a model of the object of interest within its
context, while the implementation focuses on creating an executable artifact representing this object in a
computer. For example:
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e In M&S, the modeling part results in the conceptualization while the simulation part implements
this model.

e In Al the various algorithms and heuristics work on models of the objects of interest, not on the
real-world object.

* Digital twins use digital models and their implementation to implement their functions.

* Big data works on data models that are implemented in data products. In more recent approaches,
such as the data mesh, it is a common semantic understanding, a conceptualization, that allows to
find, share, and mediate the different implementations to each other (Dehghani 2022).

As discussed in (Giabbanelli et al. 2025), LLMs have the potential to become universal translators
between implementations if they have access to the underlying conceptualizations. This capability can
support the convergence of several engineering principles, but aligning the different conceptualizations
remains an open challenge for the human expert.

Nonetheless, the use of standardized ontological methods combined with the ever-increasing power of
GenAl will augment human experts’ capabilities in this creative process as well. For simulation, some ideas
already are discussed in (Benjamin and Akella 2009), and there are promising recent developments in the
integration of ontology methods. Ontologies allow us to communicate conceptualizations in a standardizable
and unambiguous form, which is needed by generative Al to access them.

Furthermore, a white paper by the Google DeepMind group (Novikov et al. 2025) describes how their
AlphaEvolve approach combines the creativity of an LLM with algorithms that can scrutinize the model’s
suggestions to filter and improve solutions, supporting many disciplines.

These observations motivate the notion that we will continue to witness the convergence of many
engineering disciplines, in which simulation expertise needs will likely shift to the conceptualization tasks.
By 2050, the role of a simulation engineer may have changed into a conceptualist for computational
sciences, as envisioned in the Keynote for the 2018 Summer Simulation Multi-Conference (Tolk 2018).

Outlook 13: Engineering disciplines will converge through Al-mediated conceptual alignment, with
simulation experts evolving into computational science conceptualists who focus on model abstraction and
cross-disciplinary integration rather than implementation details.

4 TECHNICAL CHALLENGES AND SOLUTIONS

This section highlights the key obstacles and bottlenecks in implementing Al within simulation frameworks,
along with emerging techniques to overcome them.

4.1 Near-Term Impediments and Solutions for AI in Simulation Models

This analysis considers impediments for advancing these three areas for merging Al and simulation.

4.1.1 Challenges with Generative AI and Simulation

In most Al applications, the biggest implementation challenge is the quality labeled training data, and
the same is true with merging GenAl and simulation. If the goal is to create a GenAl tool for building
simulation models and running simulation experiments to answer specific questions, training the GenAl
model will require a labeled training set with a massive number of models and experiments, with detailed
textual descriptions of each. This approach would also require separate large datasets for each modeling tool
that needs support. The current set of LLMs could be trained using billions of documents available on the
web, but it is not clear where massive datasets of models/experiments can be found, since most industries
consider their models to be proprietary. As a result, progress towards a generic GenAl solution is expected
to be slow and will require the creation of large datasets of sample models with detailed descriptions.
Progress may occur first in specific application domains or with specific modeling tools. A simulation
tool that is designed for a narrowly defined application area may see earlier progress. Although a generic
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LLM is challenging because it requires massive amounts of quality labeled data, much can be done with
Small Language Models (SLMs) that are more narrowly focused. In the near term, simulation-specific
SLMs will likely emerge that are trained using simulation textbooks, simulation software user manuals,
example models, etc., to enhance the learning and building of simulation models. Users can then ask SLM
questions such as: How do I model reneging from a queue?

4.1.2 Challenges with Reinforcement Learning

RL applications in simulation optimization face challenges from the well-developed competitive alternatives
in search algorithms such as OptQuest, as well as the evolving competitive alternative of running the full
experiment with statistical pruning on a parallel bank of processors.

Although most RL applications in simulation have been for simulation optimization, it is also possible
to implement RL for embedded decision logic (Kuhnle et al. 2021; Liu et al. 2022). For RL applications
in decision logic within a model, RL eliminates the need for having a large dataset of labeled training data,
but replaces it with the challenge of devising a reward structure and associated decision rule that will lead
to an optimal strategy. For example, in selecting the next job to work on at a workstation, it is difficult to
measure the reward for each candidate action, since the decision impacts not only on the selected job, but
on all the other jobs in the system, and is only known once all jobs have been completed. A reward that
only looks at the short term impact on the selected job may lead to sub-optimal performance.

4.1.3 Challenges with Neural Networks for Decision Logic

A Neural Network takes a set of numeric inputs and generates a set of one or more outputs. In many
cases, the outputs are probabilities that each candidate is the correct choice, and the highest probability is
selected. This structure aligns well with decision logic in simulation models, where a system state is used
to choose the best option—such as the next job or production line.

However, generating labeled training data is a challenge. To know the “correct” decision, one would need
to simulate every possible choice, which becomes impractical for large models with numerous embedded
decision rules. A more scalable strategy is to recast selection problems as prediction problems—using the
Neural Network to predict a value (e.g., makespan), and choosing the option with the optimal predicted
value.

To support this approach effectively in simulation, the following are key:

* Self-training from synthetic data: Use simulation to generate inputs (e.g., current workstation
states) and true outcomes (e.g., actual makespan), enabling Neural Network training.

*  One-hot encoding and feature capture: Handle categorical variables (like job type or material)
using one-hot encoding and track all input states required for accurate prediction.

* Prediction-first mindset: Focus Neural Networks on predicting values, not direct selection, to
simplify training and integration.

*  Model generalizability: Allow use of ONNX format to import externally built ML models.

* Operational logic separation: Use broader data during training and apply decision logic constraints
(e.g., shift end checks) only during live simulation.

Compared to other Al-simulation integrations, Neural Networks for embedded decision logic offer the
most natural fit and can be incrementally adopted using self-generated data within the simulation.

Outlook 14: Overcoming Al-simulation integration challenges will require domain-focused ap-
proaches. Small, targeted models and simulation-generated synthetic data can help address the lack of
large training sets, while hybrid strategies may simplify reward design and decision logic.
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4.2 Architectural Principles for Simulation-AI Hybrid Systems

The principles of architectural complexity, including hierarchy, choice of components, and intra-/inter-
component linkages, are omnipresent in natural and artificial systems (Simon 1962). Simulation models,
built on these principles, are created as a collection of interacting components. These principles help tame
model complexity and enable scalability, at the cost of longer simulation time and increased computational
and communication demands. They should also serve as the foundation for composing simulation and Al
models.

There exists an extensive body of theories on the composability of continuous-discrete time models
(Alur and Henzinger 1997; Lynch et al. 2003; Zeigler et al. 2018). Simulations of such hybrid models are
supported using High Level Architecture (HLA) and Functional Mock-up Interface (FMI) interoperability
standards. The composability and interoperability are distinct—the former for creating composable models,
the latter for managing separate simulation protocols. Standards should provide services like data, time, and
ownership management. Domain-specific hybrid models can be developed by mapping domain knowledge
onto continuous and discrete models simulated with interoperability implementations. Higher layers for
domain-specific and neutral models, combined with lower layers for interoperability and computing hosts,
provide a foundation for conceptualizing, constructing, and verifying models through simulations, validation,
and evaluations in an autocatalytic process.

The heterogeneity between inductive Al models and deductive simulation models presents unique
challenges. While component-based simulation models have formal structures for inputs, outputs, and
interactions, time-series ML models remain black boxes. New principles are needed to bridge these
paradigms, particularly since hybrid simulation models combine continuous and discrete time bases,
suggesting Al models should support continuous time as well.

Heterogeneous composition of simulation and Al models requires coordinated mechanisms to preserve
model integrity and interactions. Key considerations include (Sarjoughian 2006):

* Data Transformation: Align diverse data formats between simulation and AI models.

* Communication Protocols: Define clear interaction rules via Knowledge Interchange Brokers.

* Execution Regimes: Allow models to run with independent prediction horizons rather than lock-step
execution.

As an example from semiconductor supply chains (Huang et al. 2009):

* Discrete-event modeling manages manufacturing operations step by step.
*  Model-Predictive Control handles tactical decisions over short timeframes.
* Linear programming guides strategic planning across long horizons.

LLM time-series models, such as Temporal Fusion Transformers (TFT) and Temporal Convolutional
Networks (TCN) (Pendyala et al. 2024), can achieve high accuracy with rich datasets and extensive training.
These models are orders of magnitude faster than simulations but lack fine-grained event handling, operating
on discrete time bases. This suggests small LLMs may assist with individual parts, while computation-
intensive components can be replaced with ML counterparts (Sarjoughian et al. 2023). However, inaccuracies
in ML proxies can ripple across hybrid systems, affecting fidelity.

LLMs are also proposed for generating simulation models from text (Jackson and Saenz 2022).
Frameworks like agentic LLM-assisted DEVS show potential (Carreira-Munich et al. 2024), but require
expert oversight for model creation and verification. While careful selection of sample models may
improve correctness, assembling them remains challenging for complex, multi-scale domains. Ensuring
logical reasoning and explainability is critical for domains such as cyber-physical systems, where precision
and validation are essential.
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Real-time execution adds another layer of complexity. Models supporting near real-time operation are
vital for live digital twins. AI/ML models must address worst-case execution time to align with diverse
simulation and environmental constraints.

Outlook 15: Composing simulation and Al models requires frameworks that balance temporal
accuracy, interoperability, and real-time responsiveness. Domain-aware solutions, integrating component-
based simulations with AI/ML proxies, will be key to enabling robust hybrid systems for applications like
digital twins.

5 LONG-TERM OUTLOOK AND STRATEGIC INSIGHTS

As this paper concludes, this final section presents the strategic opportunities emerging from Al-simulation
integration and examines the critical challenges that will define the future of trustworthy Al adoption in
simulation contexts.

5.1 Current Insights and Strategic Outlook

The integration of simulation and Al in recent years has led to a flourishing of applications, opening
new horizons in model development and decision-making. Although we are still at the infancy of GenAl,
its rapid rise has introduced many application-specific tools that are beginning to reshape simulation
modeling practices. LLLMs show promise as “universal translators,” enhancing cross-domain integration
and collaboration. As these technologies mature, they are expected to play an increasingly critical role in
supporting decision-making and improving the efficiency of simulation modeling across industries.

In the next five years, Al will provide new automated techniques and methods—along with frameworks
and tools—to develop and evaluate simulation models more efficiently. The expanded use of simulation-
embedded neural networks will optimize decision-making within models, such as selecting the best job to
process next or determining the appropriate production line for a given job. Additionally, specialized SLMs,
trained on specific modeling tools, will assist simulation practitioners in learning concepts and building
models more effectively. Al will also significantly increase the automation of running and evaluating
simulation experiments in collaboration with stakeholders, streamlining both analysis and decision support
processes.

Looking ahead to the next 25 years, GenAl is expected to evolve to the point where it can autonomously
build complete simulation models directly from system sketches, problem descriptions, and enterprise data.
It will be capable of designing and executing simulation experiments needed to answer complex analytical
questions without human intervention. However, this advancement may come at the cost of diminishing the
trust traditionally placed in simulation models, as the growing complexity of Al-driven solutions challenges
transparency and explainability. Despite this, the use of Al in simulation will likely continue to grow,
requiring new standards for validation and responsible adoption.

5.2 Speculative Challenges and Quality Standards

This section speculates on what standards, expectations, and technologies might emerge to ensure the
trustworthy use of Al in simulation contexts by 2050.

When considering the quality requirements for Al or Al-based simulations, the fundamental question
arises: What level of quality is acceptable? Humans tend to accept malfunctions more easily when a
responsible person can be held accountable. However, the closer we approach scenarios involving potential
casualties, the higher the required quality standard becomes.

In cases involving legal prosecution or mourning, the quality standard should be up to ten times higher.
Significantly more research and resources are needed in this area. This will benefit both those advocating
for the implementation of AI—who often face resistance despite Al frequently outperforming classical
methods on average—and those who hesitate to accept Al solutions.
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Defining a clear threshold for how much better Al needs to perform compared to classical approaches
under specific circumstances would greatly facilitate transparent communication and informed decision-
making.
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