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ABSTRACT

This tutorial paper explores the applicability of Generative Al (GenAl), particularly Large Language Models,
within the context of simulation modeling. The discussion is organized around three key perspectives:
Generation, where GenAl is used to create simulation models and input data; Execution, where it supports
real-time decision-making and adaptive logic during simulation runs; and Analysis, where GenAl assists
in running experiments, interpreting results, and generating insightful reports. In addition to these core
perspectives, the paper also covers practical implementation considerations such as prompt engineering, fine-
tuning, and Retrieval-Augmented Generation. The tutorial offers both conceptual guidance and hands-on
examples to support researchers and practitioners seeking to integrate GenAl into simulation environments.

1 INTRODUCTION

The rise of Generative Al and large language models (LLMs) has revolutionized the landscape of artificial
intelligence (AI). LLMs like OpenAI’s ChatGPT and Google’s Gemini have pushed the boundaries of what
Al can achieve, transitioning from basic text generation to more complex tasks involving creativity and
multi-modal capabilities. These advancements have transformed traditional Al applications and opened up
new avenues for innovation across industries.

The initial iterations of ChatGPT were primarily designed for text generation. However, as generative
Al models have advanced, their capabilities have expanded to include image, audio, and video generation.
The rapid growth of GenAl has led to a proliferation of platforms leveraging its capabilities. Users can
now create websites using platforms like (Webflow )Webflow, design flowcharts with tools like (DrawlO
)draw.io, and develop dashboards for business intelligence using (GenBI )GenBl.co. Additionally, platforms
like Agent Laboratory facilitate the generation and review of research papers by simulating PhD-level agents
and reviewers (Schmidgall et al. 2025).

Despite these advancements, the field of simulation has yet to fully harness the potential of generative Al.
While there have been sporadic research efforts utilizing LL.Ms for simulation, most focus on agent-based
models or system dynamics. For instance, recent studies have explored integrating large language models
into agent-based modeling and simulation, discussing challenges and future directions (Ghaffarzadegan
etal. 2023). Additionally, Hu (2025) introduced ChatPySD, a novel approach that embeds system dynamics
models within ChatGPT-4 to enable users to interactively simulate and analyze models through natural
language conversations (Hu 2025).

However this highlights a clear gap in applying generative Al to discrete event simulation (DES) and
suggests a promising area for future exploration and development. This paper aims to bridge this gap
by providing a comprehensive tutorial on the integration of GenAl into simulation modeling. The key
contributions of this paper are:

* Provide a high-level tutorial on large language models and their underlying mechanisms.

* Discuss the potential integration of GenAl across different stages of simulation modeling (model
generation, execution, and experimentation).

* Present an example of the use case to offer insights.
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Please note that the terms "Generative Al" and "GenAl" are used interchangeably throughout this paper,
both referring to the same concept. While some existing works have applied and integrated GenAl with
simulation modeling, this paper intentionally focuses on the tutorial and practical aspects of such integration
rather than serving as a comprehensive literature review.

2 WHAT ARE LARGE LANGUAGE MODELS?

GenAl has been one of the most transformative developments in the recent technological history.The
release of ChatGPT by OpenAl in late 2022 brought powerful Al capabilities, such as natural conversation,
reasoning, and creative generation—into the hands of the general public. At the core of this revolution
are large language models, the technology that enables machines to generate human-like text, understand
context, and perform reasoning tasks. To understand where LLMs fit within the broader Al landscape, it’s
helpful to understand where it fits within the hierarchy of related technologies. Al refers to the general
pursuit of creating machines that can simulate human intelligence. Machine Learning (ML), a subset
of Al, focuses on algorithms that improve with experience. Within ML, Deep Learning (DL) leverages
neural networks with multiple layers to recognize complex patterns in data. Parallel to this is Natural
Language Processing (NLP), which focuses on enabling machines to understand and use human language.
As illustrated in Figure 1, LLMs sit at the intersection of these areas. It uses deep learning techniques to
perform NLP tasks at unprecedented scale and accuracy (Ewa Halejak ).

O Al- Artificial Intelligence

O ML - Machine Learning

O DL - Deep Learning

Q NLP - Natural Language Processing
O LLMs - Large Language Models

Figure 1: Relationship between LLMs and related Al concepts.

2.1 How LLMs Work

LLMs work by predicting the next word or token in a sequence, a process made possible by training on
massive corpora of text data. The architecture that powers modern LLMs is the Transformer, introduced
by a group of Google scientists in the 2017 paper “Attention Is All You Need” (Vaswani et al. 2017).
Unlike earlier models that processed text sequentially, Transformers use a mechanism called self-attention,
allowing the model to weigh and relate words across an entire sequence, regardless of their position. This
ability to dynamically focus on relevant parts of the input makes Transformers especially powerful for
capturing complex dependencies and generating coherent outputs.

Consider an example where an LLM is tasked with completing the sentence: "Artificial Intelligence is
transforming the ..." To do this, the model must understand both the context and the structure of the input.
As illustrated in Figure 2, the prediction process unfolds in three main stages:

(i) Embedding: The input sentence is first tokenized into individual units such as "Art", "ificial”,
"Intelligence”, "is", "transforming", and "the". Each token is mapped to a unique token ID (e.g., 8001 for
"Art", 9345 for "Intelligence") and then converted into a dense vector representation. A positional encoding,
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Figure 2: Visualization of the Transformer architecture in action. This figure is adapted from the interactive
explainer by (Cho et al. 2025) and the original model explanation website at Repository Website.

which encodes the token’s position in the sequence (e.g., 0 through 5), is added to each embedding to
preserve word order. This combined embedding is what enters the Transformer (Figure 3a).

(ii) Transformer Block: Each Transformer block contains two main components: a Multi-Head Self-
Attention mechanism and a feedforward neural network (MLP), both wrapped in residual connections
and followed by normalization. In the self-attention mechanism, each token generates a Query (Q), Key
(K), and Value (V) vector. Intuitively, the Query represents what a token is trying to understand, the Key
represents the information each token offers, and the Value holds the content that may be passed on. For
example, in the sentence "Artificial Intelligence is transforming the ...", the token “transforming” might
query the earlier words to understand what is being transformed. It may find a strong match with the Key
vector from “Intelligence” and use the Value from “Intelligence” to better contextualize its meaning.

These vectors are used to compute attention scores (1) through dot products between the Query and
Key vectors. These scores are then scaled, optionally masked, and passed through a softmax layer to
determine how much attention each token should pay to the others. The resulting weights are applied to
the Value vectors, producing contextualized representations of each token. These representations are then
passed to subsequent layers for further refinement and understanding. Here, dpoqel 1S the dimensionality
of the embedding space (e.g., 768 in BERT-base or 1024 in GPT-2).

dmodel
OKVij = ( Z Embeddingi’d-Weightsd’j> + Bias;. (1)
d=1

(iii) Output Probabilities: After processing through several Transformer blocks, the model generates
a probability distribution over the next token. In Figure 3b, we see that the word "way" is predicted with
the highest probability. The model uses strategies like softmax and Top-k filtering to finalize this decision.

For a deeper understanding, we encourage readers to explore the interactive visualization at the following
link (Cho et al. 2025) Transformer Explainer.

2.2 Controlling LLM Output with Temperature and Top-k/Top-p Sampling

One of the defining features of LLMs is their probabilistic nature, which enables them to generate creative,
varied, and context-sensitive responses. This behavior stems from the fuzziness inherent in language
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(a) Token embedding and positional encoding. (b) Softmax output probabilities.

Figure 3: Transformer components: (a) Embedding layer, (b) Output layer.

modeling, where predictions are made not deterministically, but based on learned probability distributions
over possible next tokens.

A key parameter in LLMs that controls the fuzziness and probabilistic nature of their output is
temperature. This setting adjusts the randomness in predictions during sampling. Lower temperatures
(e.g., 0) make the model highly focused and deterministic, favoring only the most likely next token. In
contrast, higher temperatures (e.g., 10) flatten the probability distribution, enabling more varied and creative
outputs. This effect is visualized in Figure 4, where the model’s prediction shifts from a dominant token
("way") at low temperature to a more even spread across multiple options at high temperature.

70.1%

29.9%
23.6% 23.2%
18.4% 17.5% 17.3%

0.0% 0.0% 0.0%
way world lives field future way world lives field future
(a) Temperature = 0 (b) Temperature = 10

Figure 4: Comparison of token probabilities at two temperature settings.
In addition to temperature, two other parameters help control output diversity:

* Top-k Sampling: Restricts the next-token candidates to the top k highest-probability tokens. For
example, Top-5 limits selection to only the five most likely tokens.

*  Top-p (Nucleus) Sampling: Dynamically includes the smallest set of top tokens whose cumulative
probability exceeds a threshold p (e.g., p =0.9). This is more adaptive than Top-k and balances
coherence with diversity.

Together, these parameters give users powerful control over how confident, precise, or imaginative a
model’s responses should be—making them essential tools for tailoring LLM behavior to different tasks
or audiences.

3 EXAMPLE USE CASE: EMERGENCY ROOM MODEL

This Emergency Room (ER) simulation model represents the patient flow in a hospital’s emergency
department. Patients arrive randomly and are assigned a severity score upon triage. Depending on their
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severity, they are directed either to CriticalCareBeds (for severe cases) or StandardBeds (for moderate cases).
Treatment times are modeled using triangular distributions based on the bed type: for CriticalCareBeds, the
treatment time follows Triangular(20, 30,45) minutes, and for StandardBeds, it follows Triangular(10, 15,25)
minutes. Patients wait in queues if beds are not immediately available, and selection for treatment is based
on either a First-In-First-Out (FIFO) rule or a Shortest Expected Treatment Time rule. The system collects
key performance metrics such as waiting time, service time, and resource utilization. Figure 12 illustrates
the patient journey through the ER system. Throughout this paper, the implications of Generative Al within
this ER model are explained in the Case-in-Point boxes to provide insights and practical context.

Critical Bed

( Patient Arrival ]—{Triage Checking

Patient Discharge

Severity <7 Standard Bed

Figure 5: Exemplary ER flowchart.

4 GENAI-DRIVEN SIMULATION: A NEW FRONTIER

Building a high-fidelity simulation model is a time-intensive task that often requires domain-specific
knowledge, strong modeling and coding skills, and a deep understanding of optimization techniques (Belsare
et al. 2022). Generative Al has the potential to automate and accelerate this process by learning from
historical data, technical documentation, or existing models to generate complex, behavior-rich simulation
environments. While simulation has long relied on structured logic and rules, recent advances in Generative
Al are introducing new levels of flexibility and creativity. Figure 6 presents a comprehensive framework
illustrating how Generative Al can transform the traditional simulation modeling lifecycle through three
sequential phases. The Creation (Phase 1) leverages GenAl for foundational activities, including concept
ideation to generate modeling approaches, input data modeling to address data scarcity through intelligent
parameter suggestions, and automated model generation via "vibe coding" techniques. The Execution
(Phase 2) integrates GenAl during runtime operations, enabling real-time simulation narration for improved
transparency, dynamic process orchestration for adaptive decision-making, and outcome forecasting to predict
system bottlenecks. Finally, the Experimentation (Phase 3) employs GenAl for post-simulation analysis,
including automated results interpretation, scenario generation for comprehensive what-if analysis, and
optimization recommendations. This linear progression demonstrates how GenAl can enhance simulation
modeling from initial conception through final optimization.

» Concept Ideation » Simulation Narration » Results Analysis
» Input Data Modeling » Process Orchestration » Scenario Generation
» Model Generation » Outcome Forecasting » Optimization
[ ecuion
° o ®

Figure 6: How Generative Al can enhance the simulation modeling process: from Creation and Execution
to Experimentation.
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S CREATION

In the Creation phase, Generative Al supports early-stage modeling by suggesting potential system structures,
filling data gaps with smart parameter estimates, and generating initial code frameworks using intuitive,
example-based methods.

5.1 Concept Ideation

Based on a study conducted by Harvard, ideation is identified as one of the top use cases for GenAl
(Zao-Sanders 2025). This underscores the importance of GenAl in generating ideas and novel approaches
to challenges, fostering creativity and enabling innovative problem-solving. In the context of simulation
modeling, regardless of the specific approach, GenAl acts as a co-pilot for decision-makers and practitioners
by supporting the development, refinement, and enhancement of ideas for generating simulation models.
This assistance includes, but is not limited to:

*  Model Complexity Selection: Deciding whether the model should be simple, detailed, or a hybrid,
depending on the problem requirements and data availability (e.g., a basic ER model vs. a full
hospital system simulation).

* Process Identification: Identifying the key processes and events to include in the model, such as
patient triage, resource allocation, queue management, or treatment stages.

* Decision Variables and Optimization Goals: Clarifying the variables that influence outcomes
and defining optimization objectives (e.g., number of available beds, scheduling, minimizing wait
times).

e Input Data Modeling: Suggesting relevant data types and statistical distributions for modeling
uncertainty (e.g., exponential distribution for inter-arrival times, triangular distribution for service
durations).

* Platform and Method Recommendation: Recommending appropriate simulation platforms or
modeling paradigms based on complexity and user needs (e.g., SimPy for custom code-based
models, AnyLogic for hybrid simulation needs).

* Experimentation Strategy Design: Assisting in defining how experiments should be set up, such
as choosing replication sizes, defining experimental factors, or setting performance metrics (e.g.,
comparing FIFO vs. priority-based patient selection strategies).

* Constraint and Assumption Framing: Helping users frame reasonable assumptions and constraints
for the model (e.g., assuming constant staff availability, ignoring patient transfers between hospitals).

This phase often involves conversational prompting with tools like ChatGPT or Gemini to iteratively
explore and refine modeling options. Please note, although using GenAl for idea generation is gaining
popularity, it is important to recognize that the innovation level of current GenAl models is not extraordinary.
As a reminder, LLMs are trained on existing human knowledge, and while they can recombine information
in novel ways, their outputs are fundamentally grounded in pre-existing data. Consequently, while GenAl
can enhance the quantity and diversity of ideas, the originality and disruptive innovation of those ideas may
remain limited. Several recent studies have pointed out these constraints, including observations that GenAl-
augmented ideation tends to produce familiar or incremental variations rather than truly groundbreaking
concepts (Sun et al. 2024).

5.2 Input Data Modeling

Input data modeling is one of the most critical, yet often most challenging steps in simulation model
development, especially when real-world data is unavailable, incomplete, or difficult to obtain. Traditional
approaches for addressing data scarcity typically rely on expert opinion, rough estimations ("guestimation"),
or using historical analogies to define input parameters and distributions.
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Generative Al offers a powerful alternative in these situations. Given that LLMs are trained on vast and
diverse datasets, they can serve as intelligent fillers, proposing plausible input assumptions when empirical
data is lacking. GenAl can support practitioners by suggesting distribution types, parameter values, or
reasonable approximations based on contextual prompts, making it a valuable complement or substitute
for traditional input modeling methods in data-scarce environments.

Case-in-Point 1: Generating Patient Attributes with LLMs

U An LLM was used via API for two main purposes in the ER simulation (Figure 7):

* Patient Profile Generation: As soon as an entity (patient) is created, an API call is
made to ChatGPT to generate their profile. Only the patient ID is predefined. All other
characteristics—first name, last name, gender, age, and vital signs like blood pressure,
temperature, and symptoms—are generated by the LLM.

e Arrival Pattern Prediction (Optional): While the simulation currently uses an exponential
distribution (mean 10 minutes) for inter-arrival times, LLMs could estimate these based on
contextual factors such as day of the week, time of day, and ER crowding—introducing
realistic, context-aware arrival dynamics.

U This approach enhances realism and individuality of simulated patients. Detailed profiles support
more context-aware decisions, such as triage prioritization, care assignment, or estimating patient
length of stay.

§" Vital Signs

2=
}\\ Inter-arrival Time ——<» 2=} > 2@ Personal Information

Patient Data +\
3[5 Reported Symptoms
<> LLMAPI

Figure 7: Key categories of patient data generated by the LLM.

\. J

5.3 Model Generation

Developing discrete-event simulation models has traditionally been a complex and time-consuming task,
often requiring specialized knowledge and substantial coding effort. Even when using commercial off-
the-shelf (COTS) simulation tools, practitioners may face steep learning curves or the need to adapt to
proprietary interfaces and scripting languages. These challenges can discourage domain experts without
strong programming backgrounds from engaging in simulation modeling.

The emergence of Generative Al (GenAl) has opened new pathways to streamline this process. Popular
GenAl models, such as OpenAl’s ChatGPT and Anthropic’s Claude, are capable of producing high-quality
code from structured natural language prompts. These models support a wide range of programming
languages, including Python, C#, and HTML, enabling both technical and non-technical users to generate
functional applications with minimal barriers.

These capabilities have given rise to a new programming style known as vibe coding, where users
rely entirely on natural language prompts to generate code without writing it manually. The term vibe
coding was popularized by Karpathy in early 2025 (Karpathy ), describing a shift toward prompt-driven
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programming logic. In simulation modeling, this opens the door for intuitive, conversational generation of
fully functional simulation environments. Accordingly, the simulation community can benefit from GenAl
through two primary approaches: (i) Vibe Coding, which refers to prompt-based, LLM-guided model
generation; and (ii) Agentic AI, which involves automatic model generation using coordinated Al agents.
These two approaches are discussed in detail below.

5.3.1 Vibe Coding: Prompt-based (LLM-guided) model generation

One of the most effective frameworks for discrete-event simulation in Python is SimPy, a process-based
open-source library. SimPy allows users to model active components such as customers, vehicles, or patients
using Python generator functions. It also includes shared resource constructs like servers and counters to
simulate capacity-constrained operations. Its clarity and modularity make it an ideal match for integration
with LLMs such as ChatGPT.

In this approach, users define the model structure and its parameters using natural language. For example,
a user might prompt: "Simulate a 2-server ER triage system with patient arrivals every 10 minutes." The
LLM then generates a corresponding SimPy model with parameterized logic, modular design, and inline
documentation—greatly reducing the modeling burden.

Case-in-Point 2: Generating an ER Model via Vibe Coding

U The simulation ER model developed in this study is entirely generated using GenAl via vibe
coding. The user simply provided descriptive prompts, and the LLM produced a complete, executable
SimPy model. All source code is available at this GitHub link. Figure 8 illustrates a structured
prompt consisting of five key components.

Role Assignment — Modeling Goal — Scenario Description — Modeling Requirements — Expected Output

This structured prompt enabled the model to automatically generate a full SimPy implementation.
U For experienced modelers, writing this simulation by hand may take 30—40 minutes. Using GenAl,
the same result was achieved through just a few prompt iterations.

Although vibe coding can significantly reduce the effort required to build simulation models, it still
requires careful refinement to ensure high-quality outputs. This refinement process is known as prompt
engineering, which involves crafting, testing, and optimizing instructions given to the LLM.

Figure 9 illustrates the Prompt Engineering Cycle. This process is essential in simulation modeling, where
vague or poorly structured prompts can lead to flawed logic or incomplete implementations. Systematic
prompt engineering ensures that GenAl produces robust and realistic simulation models. For readers
interested in further understanding the role of prompt design, we refer to the framework proposed by Sahoo
et al. (Sahoo et al. 2024).

5.3.2 Agentic AI: Automatic Model Generation

As GenAl capabilities grow, future systems will likely support automatic simulation generation via collab-
orative Al agents. For example, agent-based frameworks such as LangChain or CrewAl can orchestrate
multiple specialized agents to construct simulation models based on high-level user input.

In this paradigm, users may specify their model intent through natural language, structured forms
(e.g., "2 servers, 3 queues, 1 resource pool"), or even upload images of process layouts. A team of agents
then translates this information into structured components; one agent may parse specifications, another
generates SimPy code, while another validates the logic.

1204


https://simpy.readthedocs.io/
https://github.com/mdehghani86/GenAI_Sim_Tutorial

Dehghanimohammadabadi, Belsare, and Sadeghi

ROLE: You are a simulation modeling expert and Python programmer specialized in discrete-event
systems.

GOAL: Generate a clean, modular SimPy-based simulation model of an Emergency Room (ER) for
experimentation, instructional use, and performance analysis.

SCENARIO DESCRIPTION: Patients arrive to the ER following an exponential inter-arrival
distribution (mean = 6 minutes) .

Each patient is immediately triaged and assigned a severity score (1-10). Based on the score:
- Severity > 7 — CriticalCareBeds
— Severity < 7 — StandardBeds

Treatment durations follow triangular distributions:
— Critical: triangular (20, 30, 45 minutes)
- Standard: triangular (10, 15, 25 minutes)

All major events (arrival, triage, queue entry, bed assignment, treatment start, treatment
end) must be logged with time, patient ID, and description. Logs should be human-readable and
traceable.

REQUIREMENTS :

— Define two SimPy resources: CriticalCareBeds, StandardBeds with configurable capacities.
- Patients must be uniquely identified (ID) and tracked throughout the simulation.
- Implement a function select_next_patient (waiting_ list, strategy) that can use:
« "FIFO"

« "ShortestExpectedTreatment" (use severity-based proxy)

— Modularize logic with reusable components:

+ patient_process ()

« treat_patient ()

« run_single_simulation (settings)

+ run_experiment (settings)

— Track performance metrics:

« Per patient: time in system, wait time, treatment time

« Per resource: utilization rate, queue length, patient served count

- Allow user to configure via a settings dictionary:

« Arrival rate, bed counts, selection strategy, number of replications, duration

EXPECTED OUTPUT:

— A single Python script using SimPy that runs without modification.

- Executes a full simulation run (default: 1 replication, 500 simulated minutes) .
— Produces structured log output and summary statistics.

— Designed for readability, extensibility, and reuse in simulation education.

Figure 8: Structured prompt for generating a SimPy-based ER simulation using Generative Al

Figure 13 illustrates a conceptual architecture where a pipeline of specialized Al agents—Problem
Interpreter, System Designer, Code Generator, Validation Agent, and Experiment Agent—collaborate
sequentially to automate discrete event simulation development.
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Figure 9: Prompt engineering steps for SimPy-based discrete-event simulation: (i) role and goal definition
(e.g., "You are a simulation expert modeling an ER"), (ii) system setup and entities (e.g., patients, doctors,
beds), (iii) event logic and flow (e.g., arrival — triage — treatment), (iv) stochastic elements (e.g., exponential
inter-arrival, triangular treatment time), and (v) expected outputs (e.g., logs, wait times, utilization). This

process should be iterative to ensure accurate and high-quality code generation.
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Figure 10: Agentic Al pipeline for discrete event simulation code synthesis.

While this approach requires careful system design, the payoff is significant: simulation creation
becomes accessible to non-experts. Moreover, as simulation software platforms evolve, we expect off-
the-shelf tools to embed GenAl features directly reducing the burden on practitioners and speeding up
experimentation. However, this also necessitates responsible oversight: automatically generated models
must still be validated by simulation professionals to ensure correctness and avoid black-box assumptions.

The human-based scripting process involves defining the code architecture, identifying the processes to
be modeled, specifying required parameters, sequencing events, and writing explanatory comments. These
tasks are typically completed before the first output is generated or any debugging begins. For a proficient
coder, this initial code development phase generally takes 30-40 minutes.

This approach promises greater accessibility and automation. However, it also introduces the need
for responsible oversight, as auto-generated models must still be verified by simulation experts to ensure
validity and avoid black-box risks.

5.4 Retrieval-Augmented Generation (RAG)

Retrieval-augmented generation (RAG) enhances large language models by combining them with external
knowledge sources, enabling responses grounded in recent or domain-specific information beyond pre-trained
knowledge. Claude’s automatic RAG capability enables sophisticated decision-making without explicit
domain instructions, when provided minimal prompt information about patient queuing, it autonomously
retrieves and applies medical triage knowledge to balance urgency, severity, and service times. Instead of
requiring modelers to program complex decision trees, Claude automatically draws from healthcare protocols,
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emergency medicine practices, and queuing theory to consider clinical urgency, fairness, operational
efficiency, and ethical factors. For example, Claude’s patient selection responses demonstrate understanding
of medical triage protocols by prioritizing higher severity cases while considering equity and system flow.

6 EXECUTION

In this article, execution refers to the integration of GenAl into the simulation run itself. Therefore, the
focus of this section is on incorporating GenAl-powered support during runtime. It explores how GenAl
can enhance simulation execution and highlights key insights.

6.1 Simulation Narration

Generative Al can track simulation logs in real time and convert them into natural language explanations.
This ability transforms raw, verbose event logs into interpretable narratives, improving transparency and
helping users understand what happened in the simulation—and why. This is especially valuable in complex,
event-driven systems.

Trace Interpretation and Summary: Interpreting trace data can be overwhelming due to the volume
and structure of the data. It is often tedious and not straightforward. GenAl can identify key milestones,
extract relevant context, and summarize the simulation flow in an intuitive way. This supports clearer
understanding and enables visualization of critical events (e.g., breakpoints) for better debugging and
stakeholder communication, as illustrated in Figure 11.

Step

[Transfer] FromPath
[Begin]

[Fire] EnteredEvent

[Begin]
[Begin]

[Fire] ExitedEvent
[End]

[Seize] Server

[Transfer] ToAssodiate..

[EndTransfer] IntoInpu...

Action
Entity 'MildSick. 28" transferring from '[EndOfLink] Path1' into node 'Inpu

Process 'Input@Registration. OnEnteredToAssodatedObject’ execution..

Firing event 'Input@Registration.Entered'.

Entity 'MildSick. 28" transferring from '[Node] Input@Registration’ into o
Entity 'MildSick. 28" transferring from '[Node] Input@Registration’ into s
Process 'Registration.OnEnteredInputBuffer' execution started.

Entity 'MildSick. 28" ending transfer into station 'Registration. InputBuffer',

Process 'Input@Registration. OnExited' execution started.
Firing event 'Input@Registration.Exited'.
Process 'Input@Registration. OnExited' execution ended.

Object 'MildSick. 28" checking availability to seize '1' resource(s) of reso

Object 'MildSick. 28' checking availability to seize '1' capadity unit(s) of r...

Object 'MildSick. 28' found '2" currently available capacity unit(s) of reso
Object 'MildSick. 28" found '1' currently available resource(s) of resourc..

Object 'MildSick. 28" seized '1' capacity unit(s) of resource 'Registration’.

(a) Trace Log of a simulation run (Simio output).
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(b) Narrative summary generated using Napkin.ai.

Figure 11: Simulation trace visualization. (a) shows the raw trace log generated by a COTS simulation
tool. (b) illustrates how Generative Al transforms the trace into an intuitive visual narration, enabling easier
interpretation and storytelling.

Debugging Support: While some programming platforms now offer GenAl-assisted debugging, most
commercial off-the-shelf (COTS) simulation tools do not yet provide this support. In the future, GenAl could
assist with interpreting model errors, suggesting fixes, or even guiding users through help documentation
and simulation-specific learning materials.

6.2 Process Orchestration

Implementing decision-making logic is one of the most critical areas of research in simulation modeling.
Decisions such as how to dispatch jobs, set routing paths for transporters, release entities into the system,
or adjust server capacity all fall under the category of process orchestration. These decisions share a
common goal: enhancing system flow, reducing bottlenecks, and improving performance metrics within
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the simulation model. A large body of research has focused on developing techniques, heuristics, and
optimization models (Dehghanimohammadabadi et al. 2017) as part of the broader field of simulation
intelligence (Dehghanimohammadabadi and Keyser 2017) to handle these decision problems effectively.
Generative Al, although still in its early stages for simulation applications, offers promising new methods
to support decision-making within the simulation run. During execution, GenAl can analyze system-level
metrics (e.g., number of processed entities, queue lengths, available resources) and entity-level attributes
(e.g., severity, priority, size) to dynamically adjust the process flow in real time. Example applications
include:

* Dispatching Rules: GenAl can choose between FIFO, shortest processing time, or hybrid rules
based on the system state.

e Transport Routing: Al models can help transporters select optimal delivery paths under congestion.

e Capacity Adjustment: GenAl can decide when to add or remove capacity (e.g., activate more
servers) to balance workloads.

* Release Control: By throttling or accelerating the release of jobs into the system, Al can smoothen
flow and reduce queue spikes.

Case-in-Point 3: LLM-Guided Bed Assignment in ER Simulation

U To demonstrate GenAlI’s use during simulation execution, the ER model was extended with an
Al-assisted module for real-time bed assignment. A custom PatientSelectionLLM class was
used to interface with an LLM ( Claude), handling prompt formatting, API calls, and response
parsing.

U When a bed becomes available, the system constructs a prompt including all waiting patients’
details (ID, age, temp, severity), system metrics (queue, wait times), and strategy descriptions (FIFO,
Hybrid, etc.). The LLM selects a patient based on clinical urgency, fairness, efficiency, and ethical
factors, returning both the patient ID and justification.

U The system includes fallback mechanisms, error handling, and a mock mode for testing. This
adaptive reasoning enables explainable, context-aware decisions beyond static rules.

LLM Response Samples:

e “Patient #1 should be treated next due to a higher severity score (9) despite similar tem-
perature.”
e “Patient #4 is more critical than Patient #3 and should be prioritized for treatment.”

Avg Total Time (min)

FIFO Short Exp. Time  GenAl FIFO  Short Exp. Time  GenAl O7FiFO  Short Exp. Tme  GenAl

(a) Total Time in the System (b) Resource Utilization (c) Patients Treated

Figure 12: KPI analysis.
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Figure 13: Simulation - GenAl API framework.

6.3 Outcome Forecasting

Leveraging historical and real-time simulation data, GenAl can forecast likely outcomes, such as bottlenecks,
service delays, or queue buildup. These predictions support proactive decisions and deeper insights into
system performance.

7 EXPERIMENTATION

Interpreting simulation results and gaining system insights is often the most challenging aspect of simulation
exercises. This process requires critical thinking to connect system KPIs with business knowledge, ultimately
explaining system functionality. LLMs can identify patterns, root causes, and bottlenecks for optimal resource
configurations and operational policies.

Case-in-Point 4: LLM-Guided Simulation Analysis

U To showcase GenAl’s capabilities for inference and system explanation, the model was designed
to maintain a comprehensive event trace log, enabling GenAl to draw inferences about system
dependencies and sequential patterns.

U The LLM was provided with supporting materials and web resources on ER capacity optimization
and experimental design methodologies to guide system analysis approaches.

LLM Analysis Extracts:

* GenAl assisted analysis rightfully identified 3 crucial parameters for KPI analysis ( Bed
Utilization, Patient Wait times, and Patient arrival rates) Moreover, it provided root cause
of the system behiavior, concerning system functions, and potential causes.

e Wait time patterns varied significantly throughout operations, with dramatic increases dur-
ing peak periods.High bed utilization combined with extended wait times indicates system
overcapacity, with resources consistently operating beyond design limits, causing persistent
queues and care delays.

GenAl creates new analytical possibilities through memory retention, enabling causality tracing through-
out the analysis process. By maintaining detailed logs of operational metrics—queue lengths, patient cat-
egorization, and resource utilization—these models identify causal relationships obscured in conventional
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simulations. The temporal sequencing of events allows GenAl to recognize not just correlations but actual
causal mechanisms driving system performance. For example, the system can identify that specific arrival
patterns typically overburden certain bed types and predict downstream effects on wait times, projecting
when beds will reach capacity. This transforms simulation from a planning tool into a dynamic deci-
sion support system that recognizes complex interdependencies and recommends tailored interventions for
emerging conditions.

7.1 Scenario Generation

LLMs can significantly enhance simulation scenario analysis by autonomously generating diverse what-if
scenarios, proposing new input combinations, and exploring edge cases with minimal setup effort. In this
case, GenAl conducted a systematic sensitivity analysis by varying critical and standard bed quantities to
optimize patient wait times and resource utilization.

Case-in-Point 5: LLM-Guided Scenario Analysis

U To showcase GenAl’s capabilities for inference and system explanation, the model was designed
to maintain a comprehensive event trace log.

U The LLLM was provided with supporting materials and web resources on ER capacity optimization
and experimental design methodologies to guide system analysis approaches.

LLM Analysis Extracts:

* The model designed an experimental approach, testing 12 different bed configurations.

* By using the support reference material, it intelligently defined the scope of the experiment
- optimal configuration with minimal wait times with reasonable resource utilization.

* The suggested configuration is a testament that GenAl is able to understand complex
interrelation between optimizing for system behavior, patient experience and operational
efficiency.

e Analysis demonstrated that the optimal configuration (1 Critical Bed and 3 Standard Bed)
achieved minimal wait time with reasonable utilization rates, balancing efficiency without
overcapacity.

\. J

8 CONCLUSION

This tutorial demonstrated that GenAl represents a transformative opportunity for simulation modeling
through our three-phase framework of Creation, Execution, and Experimentation. GenAl democratizes
simulation by reducing technical barriers, automating complex tasks, and enabling sophisticated decision-
making processes. The Creation phase revolutionizes model development through concept ideation, input
data modeling, and "vibe coding," allowing domain experts to generate models via natural language
prompts rather than extensive programming. During Execution, GenAl introduces dynamic intelligence
through real-time narration, adaptive orchestration, and outcome forecasting, exemplified by our RAG-
guided bed assignment system. The Experimentation phase transforms result interpretation into automated
analysis, identifying causal relationships and generating strategic recommendations. However, important
limitations remain. GenAl’s innovation potential is constrained by training on existing knowledge, producing
incremental rather than groundbreaking insights. Current LLMs excel at standard discrete-event simulations
but struggle with complex interdependencies and sophisticated optimization logic that comes with scaled
or large models. Automatically generated models require careful validation to ensure accuracy and avoid
black-box assumptions. We recommend a hybrid approach combining GenAl automation with expert
oversight, implementing rigorous validation protocols, and establishing clear boundaries between automated
generation and human validation. This strategy maximizes accessibility benefits while maintaining precision
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for complex environments. The integration of GenAl with simulation modeling represents a paradigm shift
that fundamentally changes how we approach complex system modeling, making sophisticated capabilities
accessible to broader audiences while preserving the rigor simulation practitioners demand. As platforms
embed GenAl features, simulation will evolve from a specialized discipline into a broadly accessible
decision-support tool.
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