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ABSTRACT

Optimization viewed broadly can aid in designing, analyzing, and operating complex systems, from strategic
policy planning to last-mile distribution to optimal control of dynamical systems. The optimization model,
including decision variables, objective functions, and constraints, requires performance metrics that are
often evaluated via black-box simulations. We summarize algorithms that can address black-box noisy
functions, mixed integer- and real-valued variables, and multiple objectives. Multiple models (e.g., Gaussian
processes, neural networks, queueing networks) can be used in conjunction with a computationally expensive
model (e.g., simulation) to predict performance and reduce overall computation. A key issue in solving
an optimization model is to dynamically allocate computational effort to efficiently search for the global
optimum. The dilemma of exploration vs exploitation vs estimation is evident in machine learning and
global optimization. We discuss sampling distributions that provide insights into this balancing act, and
how ideas in quantum optimization provide approaches to optimizing complex systems.

1 INTRODUCTION

Optimizing a complex system has many aspects that must be considered before selecting a computational
approach. The first consideration is the overall goal. An example is to design a future system. In this
situation, a design engineer may wish to evaluate many designs while being limited by available data
and models to predict performance. Multiple models may be available to estimate performance metrics
with different assumptions and limitations. The design engineer may be interested in evaluating trade-offs
between multiple objectives using an approximate set of Pareto optimal solutions and information on the
efficient frontier. A sensitivity analysis may be important to account for uncertainty and investigate what
happens if the model changes.

Another example of an overall goal is to improve the performance of an existing system where data and
models are available to predict future behavior. In this example, there may be a large number of decision
variables to evaluate, and they may involve both integer- and real-valued variables. The timing of the data
and decisions are important and may vary from weekly, daily, or even real-time control.

Achieving the overall goal relies on creating a model, or models, of performance of the complex
system. Often a discrete-event simulation is used to model a system. Analytical models, such as a queueing
network, may also be useful. A model such as a neural network may be constructed from data, as in
machine learning. Surrogate modeling or meta-modeling is another approach to constructing a model of
a complex system. Multi-fidelity modeling aids in understanding performance of a complex system and
reducing the computational burden. For example, function evaluations of a computationally expensive
model can be interspersed with a less expensive model to reduce the computational effort.

The specification of an optimization model, including decision variables, objective functions, and
constraints, may be fluid as the goal is modified. For example, a constraint may be moved into the objective
function or vice versa. Data may be updated frequently or dynamically accessed. It is important to recognize
noise in the data and noise in the models of performance. The formulation of the optimization model plays
a role in the computational effort needed to achieve the overall goal.
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While classical optimization algorithms are tasked with determining a single optimal solution, many
researchers are recognizing the value of a set-based approach where a set of nearly optimal (or ε-optimal)
solutions can allow decision makers to account for aspects of the complex system that are not included
in the models of performance. As an extension of set-based optimization, methods to determine a set of
Pareto optimal (non-dominated) solutions to multiple objective formulations enables decision makers to
understand trade-offs between performance metrics.

Figure 1 illustrates different ways to interpret what is desired from the optimization. Suppose the
optimal solution cannot be implemented exactly. In panel (a), the objective function value at x2 is better
(less than) the objective function at x1, however, if the implementation may vary over an interval, then
the solution at x1 has less variability and may be the preferred solution. This highlights that the “optimal”
solution may not be the goal of a user. Panel (b) illustrates a similar idea between feasibility and optimality.
The solution x∗ is at the edge of feasibility and has the minimum objective function value, however, a
slight deviation in implementation of x∗ may result in an infeasible solution.

Figure 1: Illustration of tradeoffs between multiple objectives, exact solutions and slight deviations. Panels
(a), (b), and (c) illustrate a tolerance box, showing variability of values when we cannot implement a
solution exactly.

A motivating example of optimizing a complex system comes from engineering design of composite
structures for aircraft fuselage. A team of University of Washington researchers and Boeing engineers
worked on the optimal design of fuselage panels using composite laminates (Graesser et al. 1991; Graesser
et al. 1993; Kristinsdottir et al. 1996; Kristinsdottir et al. 2001; Savic et al. 2001; Zabinsky et al.
2006). A finite element analysis of the panel served as a high-fidelity model and an analytical classical
lamination theory model served as a low-fidelity model. Due to the nature of composite materials, the
performance metrics were non-convex. The low-fidelity model was computationally much faster than the
finite element analysis (seconds versus hours of CPU time), however, often an optimal design obtained using
the low-fidelity model was infeasible when evaluated with the finite element analysis. Through manual
adjustments of the limits of the design space, the team was able to provide designs that were useful to the
design engineers.

In our experience, the design engineers were interested in trade-offs between multiple objectives such
as margins of safety, manufacturing tolerances, weight, and cost. There were many types of margin of
safety representing strength, strain, damage tolerance, and other metrics. A design is considered feasible if
the minimum of the margins of safety is zero or greater. However, a larger margin of safety was desirable.
Due to manufacturing considerations, an implementation of a specific design may vary within a “tolerance
box”. The cost was highly correlated with weight leading to three objectives: minimize weight, maximize
the minimum margin of safety, and maximize the size of a feasible tolerance box.
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Panel (c) of Figure 1 illustrates how a feasibility constraint and an implementation interval can be
viewed as multiple objectives, taken from (Kristinsdottir et al. 1996).

Another manufacturing consideration was the level of discretization of fiber angles of plies in a
composite laminate. While fiber angle of a ply mathematically is real-valued and may vary between ±90◦,
the engineers were interested in considering different levels of discretization, such as restricting fiber angles
to ±{0,15,30,45,90}. We wanted an algorithm that could easily switch between allowable integer- and
real-valued variables.

The need for solving a comprehensive optimization problem of a complex system was synergistic with
analytical results on the power of sampling points in a design space according to adaptive random search
with different distributions. Analyses of Pure Adaptive Search (PAS) (Zabinsky and Smith 1992; Zabinsky
et al. 1995), Hesitant Adaptive Search (HAS) (Bulger and Wood 1998; Wood et al. 2001), and Annealing
Adaptive Search (AAS) (Shen et al. 2007; Wood and Zabinsky 2002; Zabinsky 2003) provide insight into
how a sampling distribution can balance exploration with exploitation and result in an efficient algorithm
on black-box functions in a mixed integer/real variable domain.

These analyses illustrate the power of generating a point uniformly distributed in the current improving
region. Zabinsky and Linz (2023) extend the analysis and provide insight into the role estimation plays in
balancing exploration and exploitation. The analyses suggest that computational effort is better expended
on discovering improving points than refining estimates of objective function values that may not be of
interest during the progress of an adaptive search algorithm.

Although PAS is an idealized stochastic adaptive search algorithm and cannot be directly implemented,
ideas in quantum optimization (Bulger et al. 2003; Baritompa et al. 2005) provide hope that computational
methods may be able to implement optimization of large-scale, black-box, mixed integer/real variable
problems efficiently in the future.

In this tutorial, we take a comprehensive view of optimizing complex systems. We discuss formulating
an optimization model in Section 2. We provide an overview of global optimization in Section 3 including
the use of multiple models and the role of estimation of noisy black-box functions. We summarize the
power of sampling distributions in Section 4, and finish with a look to the future with quantum optimization
in Section 5.

2 OPTIMIZATION MODEL

An optimization model can be formulated as

min
x

f (x)

subject to x ∈ S

where the decision variables are denoted by a d-dimensional vector x. To be comprehensive, we allow the
decision variables to include integer- and real-values. The domain S has d dimensions, with d1 real-valued
variables and d2 integer-valued variables, where d = d1 + d2. Assume S is closed and bounded, and
S ⊂ Rd1 ×Zd2 . The objective function is typically denoted f (x), f : S → R. The feasible region S can be
determined by the intersection of constraints (e.g., h j(x)≥ 0 for j = 1, . . . ,J) or by an oracle, that is, given
a solution x, the model can return whether x is in S or not. We also consider the objective function to be
a black-box determined by an oracle, that is, given a solution x, the oracle can return a value f (x).

A multi-objective optimization model can be formulated with m multiple objective functions, as

min
x

f1(x), . . . , fm(x)

subject to x ∈ S

where each objective function maps S to the reals. When formulating a multi-objective optimization model,
the goal may be to approximate the Pareto optimal set, that is, the set of non-dominated solutions. A point
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x ∈ S is Pareto optimal if there does not exist another point y ∈ S such that fℓ(y)≤ fℓ(x) for all ℓ= 1, . . . ,m
and fℓ(y)< fℓ(x) for at least one ℓ ∈ {1, . . . ,m}.

It is common to assume the objective functions and constraints are deterministic and can be evaluated
exactly, however the functions may need to be estimated using a noisy function. When the objective function
f (x) cannot be evaluated exactly, instead, we have a noisy evaluation available, that is, the performance
at a design point x ∈ S is given by g : S×Ω → R, where ωx is a random element over a probability space
denoted (Ω,A ,P). Then

f (x) = EΩ[g(x,ωx)].

Depending on the decision maker’s risk preferences and overall goals, the objective function can be
reformulated by substituting the expectation with alternative risk measures, such as Value-at-Risk (VaR) or
Conditional Value-at-Risk (CVaR) (Rockafellar and Uryasev 2000). Whereas the expected value measures
a central tendency, VaR and CVar cover the tail-behavior of the distribution and specify values of a loss
random variable associated with x at any specified probability level α , α ∈ (0,1). The objective function
may be written as

f (x) = VaRα(x) or f (x) = CVaRα(x).

In addition to the objective functions having noise, the constraints may also be stochastic. A common
formulation is to involve the expected values in inequality constraints. This uncertainty can lead to risky
or undesirable outcomes with low probability. A formulation that encompasses risk can be addressed with
chance constraints, which specifies a certain tolerance for undesirable outcomes,

P(g(x,ωx)≥ 0)≥ α,

where α ∈ (0,1) is the risk tolerance. Two main challenges of chance-constrained optimization are how to
evaluate the probability of an undesirable solution and the non-convexity of the feasible set (Küçükyavuz
and Jiang 2022). An advantage to using CVaRα(x) is that it is a convex and coherent measure of risk
(Uryasev and Rockafellar 2001). Additionally, CVaR is a natural upper bound for the VaR measure, making
it a more conservative means to measure deviation from a given chance constraint. Many applications have
a goal of limiting downside risk, such as portfolio optimization, power systems with renewable resources,
health care systems, and supply chain optimization.

The goal of the optimization model may be to determine a single point that approximates the global
optimum, or a set of solutions that approximate a level set, as in (Mason et al. 2022), a set of solutions
that achieves a target quantile (e.g., best 10%), as in (Zabinsky and Huang 2020), or the Pareto optimal set.
A benefit of providing a set of solutions enables decision makers to make trade-offs between simulated
performance and other issues that may not enter into the model of performance. When there is noise in
the performance measure, decision makers may be indifferent to small differences in the estimate of the
objective function, and appreciate a set of solutions to further investigate.

3 GLOBAL OPTIMIZATION

Given an optimization model with a complete formulation, we turn to methods for providing solutions.
There are many excellent papers that survey algorithms for solving black-box problems with noise. Before
discussing them, we take a wholistic view of optimization.

In black-box optimization, the interpretation of a “local” solution versus a “global” solution depends
on the neighborhood of a solution in the feasible region S. If the neighborhood is very large, that is, all of
S, then a local solution is a global solution. The neighborhood is related to the algorithm. For example, in a
Travelling Seller’s Problem (TSP), if an algorithm is based on a one-city swap, then neighbors of a solution
are those that can be obtained by swapping one city in the route (Notice gender neutral terminology with
the use of the Latin ending “er.”). If an algorithm is using a two-city swap, then neighbors can be reached
by swapping two cities.
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In Euclidean space, a neighborhood may be defined by a ball of a specific radius around a point. If
the radius is very small, then neighbors to a point are very close, but if the radius is very large, as in
Very Large Neighborhood Search (Ahuja et al. 2002), then every point is a neighbor to every other point.
Algorithms based on a Markov chain Monte Carlo sampler, such as Hit-and-Run (Smith 1984; Zabinsky
et al. 1993), make it possible to move to any point in the space in one step. In this case, every point in the
entire domain is a neighbor to every other point in the domain although some neighbors may be “closer”
or more easily reached probabilistically. The notion of “local” versus “global” may lose its meaning when
approaching optimization of complex systems wholistically.

As Locatelli and Schoen (2021) note in their paper on (global) optimization:

A final observation before the beginning of the paper: here and in the title we parenthesized
the word (global). We will omit doing so in the paper, but we would like to observe that,
although in the past the subject was considered somewhat exotic and off the main research
streams, nowadays the richness of both theory as well as computational approaches gives
to the subject a full recognition in the scientific community. We might then propose, with
a slightly provocative style, to rename the whole subject simply as “optimization” – what
else should we look for when optimizing, if not a global optimum? Locatelli and Schoen
(2021)[p.1].

A challenge for optimization methodologies is that “global optimization requires global information.”
Törn and Žilinskas (1989) show that deterministic algorithms which use only function values at sample
points converge to the global optimum on all continuous functions if and only if they search a dense
set. Stephens and Baritompa (1998) extend this and develop analogous results for stochastic algorithms.
However, dense sampling is not the only way to obtain global information. For example, information on
the structural form of the objective function, such as convexity, Lipschitz constant, and upper and lower
bounds can provide ways to determine optima without sampling densely.

Statistical information, such as estimating confidence intervals or quantiles, is also a valid technique
for gaining global information. De Haan (1981) shows that a random sample of points from a uniform
distribution can be used to construct a confidence interval for the minimum using general extreme value
theory. The Optimal Computing Budget Allocation (OCBA) methods for optimization under uncertainty
use extreme value theory to provide statistical analyses that guide computation (Chen and Lee 2011).

3.1 Black-box Optimization

Black-box optimization is broadly applicable across many domains and has been studied in multiple scholarly
fields under names including Derivative-free Optimization, Global Optimization, Bayesian Optimization,
Sequential Experimental Design, and assorted variants of the multi-armed bandit problem. Methods include
variations of simulated annealing (SA), genetic and evolutionary algorithms, partitioning methods, meta-
modeling, particle swarm, and covariance matrix adaptation evolution strategy (CMA-ES) (Hansen and
Ostermeier 2001), to name a few. Rios and Sahinidis (2013) review derivative-free optimization methods and
Locatelli and Schoen (2021) survey global optimization methods. Bajaj et al. (2021) discusses black-box
optimization methodologies and applications. Methods aimed at simulation-optimization are discussed in
(Fu 2015; Gosavi 2015; Amaran et al. 2016; Shashaani 2024).

Several black-box optimization algorithms have been developed to accommodate a mixed integer/real
feasible region. A review of algorithms on optimization problems with mixed integer/real variables is
discussed in (Ploskas and Sahinidis 2022).

Algorithms originally designed for black-box optimization with a single objective have often been
extended to allow for multiple objective functions. Since simulation can easily evaluate multiple performance
measures of a system design, many simulation-optimization algorithms have been extended for optimizing
complex multi-objective problems (Yoon and Bekker 2020). Algorithms for multi-objective problems include
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evolutionary algorithms (Deb 2001; Sarker et al. 2002), particle swarm (Yang et al. 2011), interacting-
particle (Mete and Zabinsky 2014), and weighted optimization using hierarchical bandits (Al-Dujaili and
Suresh 2019). The OCBA method was adapted to solve multi-objective stochastic problems (Chen and
Lee 2009; Li et al. 2017), and the Multi-Objective Convergent Optimization via Most-Promising-Area
Stochastic Search (MO-COMPASS) was developed by Li et al. (2015). Partition-based algorithms have
also been applied to multi-objective problems (Shi and Ólafsson 2009; Huang and Zabinsky 2014), as well
as Kriging-based algorithms (Rojas-Gonzalez and Van Nieuwenhuyse 2020). The multi-objective genetic
algorithm NSGA-II (Deb et al. 2002) is a widely used multi-objective algorithm (Yusoff et al. 2011; Verma
et al. 2021).

3.2 Multiple Models

Often black-box optimization depends on the use of computationally expensive objective function evaluations.
Consequently, a substantial body of research has been directed towards the development of methodologies
to find good solutions under limited computational cost or time.

A widely used approach to reduce computation of expensive function evaluations is to use cheaper
surrogate models, or meta-models (Barton 2020), as approximations. Popular surrogate models include
Kriging, Gaussian process models, polynomial regression, moving least-squares and radial basis functions
(Vu et al. 2017). Fitting the right surrogate model specification to discover and take advantage of the
inherent structure of the objective function aids in a more accurate approximation, consequently a more
efficient use of computational power.

Bayesian optimization uses a Gaussian process model to approximate the objective function and uses
an acquisition function to determine the next sample point to evaluate with the expensive function. Popular
examples of acquisition functions include expected improvement, knowledge gradient, and predictive
entropy search. Significant computation arises from optimizing the acquisition function, particularly as the
dimensionality of the problem increases (Wilson et al. 2018), posing a challenge for Bayesian optimization.

Multi-fidelity optimization typically refers to constructing separate high- and low-fidelity models based
on knowledge of the complex system, where the high-fidelity model is assumed to be the more accurate
model with a higher computational cost. Many engineering applications use a finite-element analysis
with a fine-scale grid as the high-fidelity model and use a coarse-scale grid as the low-fidelity model. In
our motivating example of design of composite structures, the high-fidelity model was a finite-element
analysis and the low-fidelity model was an analytical model based on classical lamination theory. In (Morey
et al. 2024), the high-fidelity model was a discrete-event simulation of a biomanufacturing system and
the low-fidelity model was an analytical queueing Jackson network model. Methods to manage the use
of both models (i.e., how many low-fidelity evaluations to perform between high-fidelity evaluations) are
reviewed by Peherstorfer et al. (2018).

A major challenge with multi-fidelity modeling is capturing the complex relationships between the
high- and low-fidelity models. Li, K. and F. Li (2024) discuss several approaches to align data and flow of
information between the models to address this challenge. Zabinsky et al. (2019) utilizes a combination of
additive modeling and partitioning techniques to build multi-fidelity models, where the additive model serves
to define the correlation structure between the high- and low-fidelity observations. When the low-fidelity
model demonstrates adequate accuracy, partitioning strategies are implemented to facilitate the exploration
of the global optimum. However, if the accuracy is insufficient, evaluations of the high-fidelity function
are acquired to refine the low-fidelity model.

Multi-fidelity modeling often operates under the assumption that the high-fidelity model serves as
a “ground truth” or offers sufficient accuracy to represent the system of interest. However, in practical
applications, the available high-fidelity model may not always fully capture the system’s behavior, leading
to a "no ground truth" situation. In our experience of optimizing the design of composite structures,
we realized that the finite element analysis and analytical solutions based on classical lamination theory
exhibit inconsistent (and inaccurate) behavior near the boundary of the feasible region (Zabinsky et al.
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2006). Another practical example presents in multi-fidelity topology optimization methodology for maritime
environmental survey operations (Morey et al. 2021). The low-fidelity analytical models developed for this
maritime operation scenario are able to accurately identify the intuitive maximum redundancy of coverage,
whereas the high-fidelity simulations required modifications to represent accurate estimates of coverage.

Research on the use of multiple models when there is “no ground truth” is on-going, and developing
measures of consistency between models to inform the optimization method. Xu et al. (2016) and Morey
et al. (2024) propose new approaches to use consistency between models in the absence of a ground truth.

3.3 Estimation of Noisy Functions

The estimation of an objective function, e.g., estimating an expected value or CVaR using noisy function
evaluations, adds another aspect to computational effort. Many methods rely on replications of a noisy
function for estimation.

Another approach is a single-observation framework, i.e., the single observation search algorithm
(SOSA), where only one replication is evaluated at any sampled point. SOSA was originally introduced
for real-valued problems (Kiatsupaibul et al. 2018), and then extended to mixed integer- and real-valued
variables (Kiatsupaibul et al. 2020). The left panel of Figure 2 illustrates estimating the objective function
using a sample mean over R replications. The statistic obtained from the replications (e.g., mean, quantile,
confidence interval) has convergence properties, following a frequentist statistic perspective, according to
a central limit theorem. SOSA estimates the objective function of a sampled design point by averaging
the single observations of the function values at different nearby points, see the right panel of Figure 2.
Convergence of SOSA relies on the martingale property of the errors. Under mild regularity conditions,
the optimal value estimate from the SOSA framework converges to the true optimal value with probability
one for both continuous and mixed integer problems. Numerical experiments demonstrate the efficiency
of the single observation framework on stochastic optimization problems, see Linz et al. (2017).

Figure 2: The left panel illustrates estimating an objective function value by averaging multiple observations
of a noisy function value at the same x. The panel on the right estimates an objective function value by
averaging single observations of the function values at different nearby points.

Independently created, the structure of SOSA inadvertently resembles the k-nearest neighbor algorithm
in machine learning, making SOSA a machine learning algorithm for simulation optimization. However,
SOSA employs averaging as its prediction function, whereas we recognize the power of basis expansion
that is a generalization principle in machine learning. We propose incorporating quadratic basis functions
into SOSA’s prediction mechanism in the place of simple average. This enhancement with machine learning
techniques aims to provide a more flexible and accurate representation of the objective function, leading
to improved global optimum prediction.
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3.4 Interplay between Optimization and Machine Learning

Algorithms for black-box optimization adaptively sample points in the feasible region and observe their
corresponding objective function values. This information is used to predict the location of a global
optimum and steer subsequent sampling towards a global optimal solution. On the other hand, a statistical
method or machine learning algorithm takes sampled pairs of feature vectors (design points) and their
corresponding responses (objective function values) and uses them to produce an inferred function to predict
the responses of other unseen feature vectors. The two paradigms of prediction share many similarities.
Both take sampled pairs of design points and their responses, and both use the information to predict a target
response. A difference between these adaptive search algorithms and machine learning is the availability of
design points and responses. For example, in engineering design, a response to a design point may involve
running a computationally expensive simulation and evaluation may be sequential. A contrasting example
is a recommender system with millions of design points and responses available, which is well-suited for
a machine learning algorithm.

Due to its wide range of applications, machine learning has undergone a staggering development over
the past decades and a large number of useful tools have been developed. Supervised learning is a type
of machine learning that aims to predict the output (function value) of an input (feature vector or design
point) based on an inferred function learned from a set of known input-output pairs. Some of the most well-
known supervised learning algorithms include k-nearest neighbor (Devroye et al. 1994), linear regression,
polynomial regression, the support vector machine (SVM) (Boser et al. 1992), the regression tree (Breiman
et al. 2017) and neural networks (Goodfellow et al. 2016). The abstraction of these algorithms employs
the concept of basis expansion (e.g., piecewise linear, polynomial, and radial basis functions) to achieve
flexible representations of the target functions. Many black-box optimization algorithms for stochastic
optimization employ these concepts, but we see an opportunity to go further in leveraging these methods.

3.5 Exploration, Exploitation, and Estimation

A crucial step in all of the algorithms for black-box optimization is how to strategically select the next point
to evaluate. Whether a single model or multiple models are used, it is important to allocate the computational
effort to balance exploration of the domain with exploitation of promising regions and estimation of noisy
function evaluations.

Algorithms have different ways of balancing exploration, exploitation and estimation. One example of
an algorithm with clearly distinguishable exploration and exploitation phases is a multi-start method. A
multi-start method typically generates a point uniformly distributed over the domain (exploration phase)
and then executes an algorithm such as a gradient descent around the neighborhood of a point (exploitation
phase). For population-based algorithms, the “elite points” emphasize exploitation and other possibly
random points stress exploration. In genetic algorithms, the crossover procedure tends to exploit points and
the introduction of a mutation serves to explore. In simulated annealing, a high temperature parameter is
effectively exploring, while a low value is exploitive. The acquisition function in Bayesian optimization can
prioritize exploitation when it samples at the predicted location of the optimum, while sampling where the
uncertainty of the Gaussian process model is large focuses on exploration. CMA-ES maintains a population
of points and exploits promising points to update the mean of a multivariate Normal distribution, but also
updates a covariance matrix and samples from the distribution to inject exploration into the algorithm.
Partitioning is another means to balance exploration and exploitation, where focusing on a promising
subregion is exploitation while keeping subregions with high variability of uncertainty of the objective
function provides exploration. When estimating a function value with noisy evaluations, the inclusion of
replications or single observation adds the computational effort for estimation into the balancing act.

We noted earlier that the neighborhood and algorithm are related. We also observe that algorithms
induce an implicit sampling distribution. Analyses of the impact of sampling distributions on computational
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effort can provide insight into how to guide an implicit sampling distribution through algorithmic actions
to balance exploration, exploitation, and estimation.

4 GLOBAL OPTIMIZATION VIA SAMPLING DISTRIBUTIONS

To gain insight into the balancing act of exploration and exploitation, we can analyze the impact of sampling
distributions on computational effort.

The sampling distribution of PAS, described in (Zabinsky 2003), is uniform on the set of improving
points from the previous point. The idea of having a set of improving points may be interpreted as exploiting
the objective function value of the best point sampled so far. Uniform sampling on the set of improving
points could be considered exploring, in contrast to seeking the optimum in the level set. The finite-time
analysis of PAS shows that, if one could sample uniformly from improving regions, then the expected
number of such iterations to achieve a solution arbitrarily close to the global optimum with high probability
increases at most linearly in dimension. We refer to this as the “linearity result.”

Figure 3: Sampling from a Boltzmann distribution parameterized by temperature induces the densities to
focus more on the optimum as the temperature decreases. In BASSO, the adaptive subregion probability
parameter p̃ impacts the sampling distribution.

While PAS is not directly implementable, the introduction of HAS (Bulger and Wood 1998; Wood et al.
2001) and AAS (Romeijn and Smith 1994; Shen et al. 2007; Wood and Zabinsky 2002) attempted to narrow
the gap between theory and implementation. Annealing adaptive search is an idealized version of simulated
annealing, where sampling from a sequence of Boltzmann distributions with decreasing temperature focuses
the sampling distribution on improving level sets. Figure 3 illustrates how the Boltzmann distribution reflects
the set of improving points as temperature decreases. With an appropriate cooling schedule, AAS can
achieve the desired linearity result of PAS (Shen et al. 2007), although it is still impractical to sample from
a Boltzmann distribution.

Many of the black-box optimization algorithms mentioned in Section 3.1 use partitioning and surrogate
modeling as a means to search for a global minimum. Recently, an adaptive stochastic search algorithm
called Branching Adaptive Surrogate Search Optimization (BASSO) (Maneekul, P. and Z. B. Zabinsky and
G. Pedrielli. 2025) has been introduced that conceptualizes the use of branching and surrogate modeling.
The bottom panel of Figure 3 illustrates how strategic partitioning can be used to steer the sampling
distribution towards the improving level set of points. A finite time analysis of BASSO shows that the
desired linearity result of PAS is achievable with specific assumptions and conditions.
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These analyses provide insight into the exploration/exploitation trade-off. The sampling distribution
must exploit the threshold of the best function value observed but must fully explore the associated level
set of improving points.

Figure 5 illustrates the power of sampling from improving points with partitioning and uniform sampling.
In this example, there are 400 grid points and the target level set of 10% quantile is outlined with a thick
green contour. In the top panel, the domain is branched into four subregions and two points are sampled
uniformly in each subregion. As in PBnB (Zabinsky and Huang 2020), the target quantile is estimated and
confidence intervals on the estimate are shown with red dashed lines on the histogram in the top panel.

The next iteration branches each subregion creating 16 subregions, and points are uniformly sampled
so that there are two points in each subregion. Using the confidence intervals on the estimated quantile,
the PBnB analysis shows that the shaded subregions can be “pruned” with statistical confidence that they
do not contain points in the target level set and are not worth expending further computational effort.

A third iteration branches only the current subregions and additional points are generated uniformly.
Comparing the histograms of the newly sampled points in the three panels, we can see that by the third
iteration, the sampling distribution is concentrated on a reasonable approximation of the target level set.
This illustrates that uniform sampling on improving subregions can focus the overall sampling distribution
and achieve efficient performance.

To consider the impact of estimation on the trade-offs between exploration and exploitation, Hesitant
Adaptive Search with Estimation (HAS-E) (Zabinsky and Linz 2023) was introduced with a finite-time
analysis of algorithm performance that combines estimation with a sampling distribution through the use
of confidence intervals on the estimated function evaluations. An interpretation of HAS-E is that there is
a tradeoff between sampling from a larger than needed level set (with loose upper confidence bound and
fewer replications) and sampling from a more accurate estimate of the current level set (with tight upper
confidence bound and more replications). This suggests that algorithms should use few replications as long
as the estimation approaches the true function value as the algorithm approaches the global minimum.

While PAS, HAS, AAS, BASSO, and HAS-E are not directly implementable, the analyses provide
insights into efficient features of a black-box optimization algorithm. The final insight is to not expend
computation on regions with poor performance, and quickly focus the sampling distribution on improving
regions. We now turn to ideas in quantum computing that may lead to a possible implementation of PAS.

Figure 4: Approximating the 0.2-quantile level set (contour shown in green) on the centered sinusoidal
function in two dimensions using partitioning algorithm with uniform sampling.

5 QUANTUM OPTIMIZATION

Whereas stochastic adaptive search algorithms have been attempting to approximate the ideal performance
of PAS that is scalable in dimension (on average), quantum computing provides hope that this goal may
be achievable in the future. Quantum computers inherently capture randomness, which is an important
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characteristic of PAS. In contrast to conventional computing, where, given an input x an output f (x) is
returned, in a quantum computer, the output is a probability distribution with mean f (x).

Quantum computing appears to be able to provide a natural implementation of sampling distributions
that focus on improving level sets. Bulger et al. (2003) introduces Grover’s adaptive search that provides
a quantum implementation of PAS and HAS. The quantum annealing algorithm uses quantum tunneling to
implement a quantum version of simulated annealing. A brief discussion of Grover’s Search and quantum
annealing follows.

5.1 Grover’s Search

Grover’s (Grover 1996) and Shor’s (Shor 1994) algorithms are breakthroughs in quantum computing that
have demonstrated its potential. Grover’s algorithm, in particular, locates a single item in N items using
O(

√
N) iterations of a Grover rotation, composed of a selective phase shift and a Grover operator. For

finding m solutions out of N, the required number of Grover rotations is bounded by ⌈(π/4)
√

N/m⌉.
Grover’s search algorithm has been applied to a discrete optimization problem, in particular, finding the
minimum among an unsorted set of N different objects by Dürr, C. and P. Hoyer (1996). Their optimization
implementation of Grover’s search uses exponential searching (Boyer et al. 1998) by randomly selecting a
possible solution, using its functional evaluation as the threshold in the selective phase shift operator, and
applying a certain number of Grover rotations for each optimum search iteration.

Grover’s adaptive search (GAS) is a framework that combines PAS with Grover’s search algorithm
(Bulger et al. 2003). GAS uses an adaptive search strategy to dynamically change the number of Grover
rotations and demonstrates how GAS can be an implementation of PAS. It can also be viewed as a quantum-
computational implementation of HAS. Grover Adaptive Search finds the optimum value of an objective
function by using the best-known value from the previous run as a threshold. Setting a threshold for a
new iteration from an earlier iteration in GAS is analogous to finding an improving level set in PAS. The
adaptive oracle used in GAS recognizes all values above or below the current threshold (for maximize and
minimize respectively), decreasing the size of the search space every iteration the threshold is updated,
until an optimum is found. GAS then performs an amplitude amplification (inverting the amplitude of
the current qubits state), which increases the probability of landing in the improving level set. If a better
solution is found, the threshold is updated and a new iteration is started until the stopping criterion is met.

Baritompa et al. (2005) refines GAS where the number of Grover rotations for each iteration is
determined by maximizing the benefit-cost ratio of the expected gain to the number of rotations. Bulger
(2007) then addresses the application of Grover’s algorithm with local search techniques where Grover’s
algorithm is used to locate the promising region that contains the global optimum solution, thereby combining
the benefits of a multistart method with GAS. Liu and Koehler (2010) provided a different strategy to
determine the benefit-cost ratio with Bayesian update. GAS has been extended to continuous optimization
problems by discretizing the space using fixed-point representation (Protopopescu and Barhen 2005).

Morimoto et al. (2024) recently proposes Quantum Adaptive Distribution Search (QuADS), an extension
of GAS using an adaptive multivariate normal distribution, mimicking CMA-ES for the initial state in quantum
search. Numerical experiments conducted on QuADS demonstrate promising outcomes, highlighting the
potential of quantum computing in tackling continuous optimization problems.

5.2 Quantum Annealing Algorithm

The quantum annealing algorithm (QAA) is an optimization algorithm that makes use of simulated quantum
(rather than thermal) fluctuations and tunneling, thus providing a quantum-inspired version of simulated
annealing. The property of quantum computing that allows the implementation of QAA is quantum
tunneling. In sharp contrast to particles, quantum wave functions can tunnel through high potential barriers
with significant probability, and this is formally known as quantum tunneling. The basic idea of QAA
is to map the optimization problem to a physical system, such as a network of coupled qubits, and then
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find the state of the system that corresponds to the minimum energy by gradually evolving the system
to its ground state, using a process similar to the annealing process in macroscopic physics. Intuitively,
this can be viewed as global evolution and superposition of quantum states, which is capable of acquiring
global information of the objective function. In contrast, for SA, if the objective function contains several
high potential barriers, it may fall into local optima, as the thermal transition depends on the height of
the potential barriers. To solve the problem, quantum tunneling is used to go through potential barriers.
Figure 5 illustrates quantum tunneling versus simulated annealing, as done in Wang et al. (2024). A
comparison between QAA and SA (Kadowaki and Nishimori 1998; Santoro et al. 2002; Battaglia et al.
2005; Crosson and Harrow 2016) suggests that QAA can be exponentially faster than SA in some cases.

Figure 5: Comparison of the working principle of simulated annealing and QAA, as in Wang et al. (2024).

To apply quantum computing to optimization, an efficient encoding of variable and constraint spaces is
necessary. This involves an intricate mapping of the optimization problem to the available number of qubits
while preserving problem structure, which is challenging. Moreover, a challenge to quantum computing
is the limited coherence durations and the need to maintain fragile quantum states for the duration of the
execution. While quantum error correction offers a theoretical pathway to mitigate decoherence effects, its
practical implementation at scale remains a substantial engineering and algorithmic hurdle. Consequently,
the development of quantum optimization algorithms that are both theoretically and practically sound
within the operational limitations of near-term quantum hardware constitutes a crucial area of ongoing
development.

6 CONCLUSION

In conclusion, optimizing complex systems can be viewed in many different ways, depending on the
user’s overall goals. There are many methods available to assist in achieving these goals. Taking a
comprehensive view of optimization allows users to take advantage of new methods for data collection,
powerful computation, and engineering expertise to enhance the process of optimizing complex systems.
We hope the research to attain the theoretical ideal of efficient optimization is in your future.
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