Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

A CONCEPTUAL HYBRID SIMULATION APPROACH FOR ADVANCING SAFETY IN
CONNECTED AUTOMATED VEHICLES

Traecy Elezi', Anastasia Anagnostou', Fotios Spyridonis', George Ghinea', and Simon J E Taylor'

"Modelling and Simulation Group, Dept. of Computer Science, Brunel University, London, UK

ABSTRACT

Ensuring traffic safety remains a major challenge due to the complexity of traffic environments and the
early stage of autonomous vehicle (AV) technology, despite their potential to significantly reduce accidents
and enhance road safety. The Artificial Potential Field (APF) approach offers a promising solution by
simulating how vehicles adjust their motion, speed, and interactions with surrounding vehicles to maintain
safety. This paper aims to introduce a conceptual hybrid simulation using the APF implemented within a
multi-agent framework. The objective is to evaluate the suitability of APF model for real-time safety
applications across extended time periods and diverse traffic scenarios. This evaluation is conducted
through a hybrid simulation approach to identify advantages and limitations compared to existing risk
assessment methodologies.

1 INTRODUCTION

Connected and Automated Vehicles (CAVs) represent a transformative shift in transportation, offering the
potential for improved sustainability, convenience, safety, and mobility by reducing reliance on human
drivers. By automating key driving tasks, these systems aim to eliminate human error—the primary cause
of road accidents.

The majority of road collisions in Great Britain involve at least one car: in 2022, most fatalities
occurred in collisions involving a car, and this has been consistent throughout the years. It has been reported
that the three contributory factors for fatal road collisions in Great Britain in 2022 were: loss of control,
driver/rider failing to look properly and driver/rider careless behavior, which are all human errors
(Department for Transport 2022). Therefore, with the advent of driverless cars relying on technological
innovation to make decisions, accidents should be minimized.

Fully autonomous vehicles (SAE International 2016) are expected to replace human drivers entirely by
handling environment perception, risk assessment, decision-making, planning, and vehicle control (Yeong
et al. 2021), however, they don’t exist at present. Ensuring safety in such systems requires a holistic
understanding of the road environment rather than focusing on isolated events—a challenge that current
Advanced Driver Assistance Systems (ADAS) still face (Rendon-Velez et al. 2009). Therefore, effective
methods for real-time risk assessment and decision-making are essential for accident prevention.

The main safety issues that need to be addressed are: how the technologies that substitute humans can
handle uncertainty in the highly dynamic road environment; how all the data gathered from sensors can be
handled in real-time; how safety-critical decisions can be made in real time. Most importantly: there is no
unified industry standard or framework for autonomous vehicles that can ensure safety. Therefore, how can
AVs be assessed on whether they are “safe enough™?

The remainder of the paper will follow this structure: Section 2 covers safety in Autonomous Vehicles
from a regulatory point of view, going then into the elements that enable the AV to function, with special
focus to threat assessment and state-of-the-art methodologies. Among these, the Artificial Potential Field
is explored as a threat assessment methodology, and simulation is also introduced to test its feasibility in
realistic scenarios. Section 3 focuses on the hybrid approach to simulation, linking the vehicle model, the
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traffic model, and the artificial potential field model as a way to evaluate risk, illustrated by a high-level
architecture. The simulation is agent-based, which has not yet been used to test this model—the novelty of
this approach. Basic scenarios with comparison metrics (based on the EU regulation and literature) are
presented, along with useful KPIs to evaluate the effectiveness of the APF compared to other safety metrics.
The conclusion and future work are presented in Section 4.

2 BACKGROUND

2.1 Safety in Connected Automated Vehicles

CAVs are a relatively new technology that has not been integrated into the public as of now. As a result,
regulations and standards have not kept pace with current developments, and legislation designed for
traditional vehicle manufacturing is still being applied to CAVs.

The Society for Automotive Engineering (SAE International 2016) divides autonomous vehicles into
five levels. In Levels 0-2 the driver retains responsibility for object detection and response. Safety relies
predominantly on passive systems (e.g., airbags, seatbelts) and increasingly on active systems such as
ADAS. Examples of ADAS features include adaptive cruise control and lane-keeping assistance, either in
the longitudinal or lateral dimension. A notable commercial example is Ford’s BlueCruise system (Ford
Motor Company UK 2025), approved for hands-free driving in designated “blue zones” in the UK and
Germany. While this system enables limited automation, it still requires driver supervision and thus
qualifies as Level 2 automation.

In contrast, Levels 3—5 introduce higher degrees of autonomy, where the system can perform object
and event detection, motion control, and in some cases, fallback operations in the event of system boundary
exceedance or failure. These capabilities require holistic environmental awareness, supported by both
onboard and external sensor data, and Vehicle-to-Everything (V2X) communication. However, despite this
technological potential, comprehensive safety validation remains a key challenge.

Traditionally, safety in vehicles is addressed through two key principles: Functional Safety (FS) and
Safety of Intended Functionality (SOTIF) (Vyas and Xu 2024), which are formalized into 1S026262
(International Organization for Standardization 2018) and ISO/PAS 21448 (International Organization for
Standardization 2022) respectively. FS is concerned with safe operation of systems even in the presence of
faults, while SOTIF complements FS by aiming to address potential hazards caused by limitations in the
system’s intended functionality, especially in ADAS—an example: sensor capability limitations.

Consumer safety in Europe is evaluated by the Euro NCAP (European New Car Assessment
Programme n.d) which assesses vehicle safety under the following categories: (i) Adult occupant protection,
(i1) Child occupant protection, (iii) Vulnerable Road Users (VRUs), (iv) Safety assist, i.e. effectiveness of
lane keeping assist, speed assistance, driver monitoring, etc. While fully autonomous vehicles are not
assessed as of now, Euro NCAP does assess ADAS features.

On a legislative front, the EU, with its Regulation EU 2019/2144, has taken a major, foundational step
towards a unified industry standard for autonomous vehicle safety (European Parliament and Council
2019). Of interest is Annex IV detailing how Automated Driving Systems (ADS) are evaluated to ensure
safe behavior in various scenarios. ADS must be tested to demonstrate safe and predictable behavior in
real-world traffic and in critical situations; ensure that they are functioning within their Operational Design
Domain (ODD), and that they are equipped with an effective fallback strategy in case of failure / boundary
conditions. Tests are divided into three types:

e Simulation (virtual environment) which will be the focus of this paper.
e Track testing (in a controlled physical environment).

e Real world driving on public road testing within the ODD.

The first two are to ensure controlled reproducibility, while the latter is to account for realistic edge
cases. Annex IV also outlines scenario types and performance metrics, which are considered in this paper
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in section 3.3. This regulation serves as the very beginning of a safety assurance framework in CAVs,
however, it is not the end. It focuses on minimum safety requirements and details scenarios that the AV
must handle safely and predictably, rather than how the outcome should be achieved. Therefore, it is
important to explore safety methods that can adhere to scenarios outlined in the EU regulation, and that—
even in edge cases—can be traceable, testable, and reproducible.

2.2 Functional Architecture and Threat Assessment Methods

AVs can be seen through both technical and functional lenses. This section focuses on the functional
perspective, which identifies the principal modules that enable automated driving behavior.

Multiple functional architectures have been proposed in the literature, each emphasizing different
aspects of autonomy. For example: Paden et al. (2016) highlight AVs primarily as decision-making systems,
while Badue et al. (2021) present an architecture that focuses mainly on perception and decision-making.
Some approaches, such as those by Behere et al. (2015) and Yeong et al. (2021), merge perception with
situation analysis into a single module, whereas others maintain a modular separation between them (Dahl
et al. 2018; Li et al. 2020). For the purpose of looking at safety in a comprehensive manner, the functional
architecture presented in Li et al. (2020) is adopted, with focus on the autonomous driving decision making
rather than the ADAS.

Key functional elements presented in the architecture are:

1. Perception: gathers data from onboard sensors (including RADAR, LiDAR, cameras, and Real-
Time Kinematic (RTK) positioning systems). This information is fused to be analyzed by the next
module.

2. Situation Analysis: Integrates the outputs from the perception module and assesses the elements
around the vehicle (such as other road users, obstacles, and traffic conditions) to inform the
decision-making process.

3. Decision and Planning: Includes path planning, obstacle avoidance, trajectory optimization, and
action prediction.

4. Vehicle Control: performs physical functions and actions (e.g. steering, braking, accelerating, etc.)
based on information provided by the previous module.

Threat assessment (TA) is part of the “situation analysis” component and this element is arguably one
of the most important tasks in an AV, bridging perception and decision making by continuously evaluating
the environment and potential risks posed by dynamic and static elements in it. This is what arguably
distinguishes an ADAS in traditional vehicles from autonomous driving in autonomous ones, the latter
needing holistic processing and understanding of the environment rather than focusing on single aspects,
as explained in Section 1. There are many TA techniques, with different classifications. Strictly speaking,
TA methods refer to how risk is evaluated to inform decision-making, while surrogate safety measures
(SSM) (Wang et al. 2021) “quantify safety benefits of CAV based on simulation results”, which will be
presented when discussing performance metrics in the following sections.

Dahl et al. (2018) include methodologies for both threat assessment and decision making of ADAS and
automated driving. A summary of their categorization follows. (1) Single-Behavior
(Time/Acceleration/Distance Domain): driven by threat metrics based on single future behaviors of the
different traffic participants. (2) Optimization: solving optimization problems by minimizing a cost function
constrained by dynamical models, inputs and boundaries on states. Applications include Model Predictive
Control-based methods to assess threat level for forward collision warning (based on thresholds), optimal
braking, etc. (3) Formal: started to gain popularity in recent years as it is capable of handling: safety, task
sequentiality and restrictiveness arguments. It is very popular in control theory, while it has limited
applications in threat assessment due to the contextual and probabilistic nature of threats. (4) Probabilistic:
involves assigning probabilities to different events on the road and, given some assumptions or
uncertainties, calculate how likely the chance of collision is in the future. (5) Machine Learning: data driven
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method. In automated driving, it is used for end-to-end learning i.e. mimic a driver’s behavior given a
training data set.

Li et al. (2020) classify them similarly. (1) Time and Kinematic-Based metrics are the same as Dahl et
al. (2018) Single Behavior Threat metrics, which look at threats from a time or acceleration or distance
perspective. (2) Statistics-Based metrics describe threat using either probability methods or machine
learning ones. (3) Potential field-based metrics: field perspective of risk, which will be described in the
following section in more depth. (5) Unexpected driving behavior-based metrics: evaluate the driving risk
based on unusual driving behaviors and traffic conflicts (e.g. running red light).

From these two surveys, advantages and limitations of threat assessment methodologies can be
summarized as such: methodologies that look at threat from a single perspective tend to be very simple to
run and are effective for certain scenarios only. Statistical/ Probabilistic methods are ideal for road
uncertainty modelling; however, they are very computationally expensive, making them infeasible for real-
time applications. Machine learning’s black box problem makes algorithms difficult to validate from a
legislative perspective. Potential field-based methods can describe risk related to non-collision entities;
however, calibration is very difficult and there are insufficient on-road tests.

2.3 The Artificial Potential Field (APF) Model

The Artificial Potential Field model has been widely used in Robotics, especially in path planning
applications. In Dahl et al.’s (2018) classification, it falls under the optimization approaches because risk
is determined by computing a potential function to guide movement while avoiding the obstacles.
Meanwhile, in Li et al.’s (2020) classification, it is part of the potential field-based metrics. The advantages
to using this method are its potential for efficient real-time computation and flexible modelling for dynamic
scenarios, which would address issues associated with more complex but accurate TA methods.

The base idea behind this model is that the target destination has an attractive force and the obstacles
along the path have a repulsive force (Szczepanski et al. 2022). This, however, is not enough to describe
the highly dynamic environment of a road: in robotics, the potential function is based on relative distance
(Hongyu et al. 2018) while on the road there are other parameters that need to be considered, such as
velocity, acceleration, road conditions, etc. Hence, there have been many studies looking into developing a
model that could encapsulate all these factors, as APF has great potential to model the dynamic nature of
the road while allowing for real-time computation due to risk being the result of a potential function.

In 2011, Ni (2011) applied the concept of a physical field onto the road and studied the forces acting
on the vehicles (see Figure 1). The general case was further defined into a car following model: the
Longitudinal Control Model. Wang et al. (2015) further refined the concept by introducing influencing
factors i.e. vehicle’s virtual mass (given by its actual mass, speed, vehicle type), road conditions (adhesion
coefficient, slope, curvature, visibility) and driver, then categorizing the fields based on the type of object
on the road—with the influence of these fields being calculated separately. Li et al. (2020; 2020a) and Jia
et al. (2022) included two other parameters to road field calculation: vehicle acceleration, and steering
angle. These are important because the field model can now be considered dynamic and therefore allows
for the estimation of driving risk under different motions. There are only a couple of methods used for
validating the proposed APF models, but they are very limited in scenario testing when simulated or—in
case of on-the-road validation—might lack external validity due to the nature of current CAV testing.

Li et al. (2020) and Jia et al. (2022) define the driving risk potential field in a simple road environment
as made up of three equations:

1. Lane potential field Ur.

2. Road Boundary potential field Us.
3. Adjacent Vehicles Potential field Uy.
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Figure 1: View of the artificial potential field on the road, from Ni (2011).

The total driving risk potential field Ur is given by:
|Ur| = w,|U| + wp|Ug| + wy|Uy| (1)

Where w indicates the weight of the respective equation in the context. For example, the lane marking
field in a car-following scenario will have a certain weight that will keep a car driving within the lanes,
whereas in a lane-changing scenario, the weight will be much lower since one of the lanes will need to be
crossed

The Lane marking potential Field Uy is represented using a quasi-Gaussian function. When considering
lanes, different markings have different weights, i.e. double white lines along a carriageway indicate a
different permitted driving behavior compared to a white broken line.

() s
U, = it Ae\ 2 -

2)

[2x— x;
Where:

e A, is the intensity coefficient for lane marking. E.g. if the broken white line is set as A; and the
double white line is set as A,, then based on importance, 4, > Aj.

e § represents the velocity at which the potential field increases or decreases as the vehicle
approaches.

Road Boundary Potential Field Ug follows a quasi-inverse square law behavior. This is because road
boundaries cannot be crossed, therefore extending to infinity as the vehicle approaches them.

=oyzo L) A
Us = 221324 () 3)

7]

Where:
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e 1 is the road boundary line. r = 1 denotes the left boundary line while r = 2 is the right one.
e x" is the distance from the vehicle to the road boundary in the x-axis direction.
e Jis the gain parameter of position.

An adjacent vehicle’s potential field Uy models how two vehicles B and A interact with each other. Jia
et al. (2022) use a function of Lennard-Jones 6-12 potential, while Li et al. (2020) use Yukawa’s potential,
applied in (4) to illustrate the potential field of vehicle A.

-Biag !
A _ e 7 Kx
UV - MAn |k’x| |k,X| (4)

Where:

e M, is the virtual mass of vehicle A, expressed as a function of actual mass of the vehicle along with
its velocity.
7 is a coefficient scaling field strength.
[ and a, are parameters quantifying sensitivity to acceleration and velocity.
k', is the pseudo-distance introduced to describe changes to potential safety risk as the vehicle
approaches from different angles.

The potential field intensity, i.e. how strong the repulsive force is and by proxy how risky the situation
is - described by (5), where A is the ego vehicle (leading) and B is the following vehicle:

Fup = mg - P25 - [Uf] )
Where:

e mg is mass of vehicle B.
e [, is an undetermined coefficient.
e vy is the velocity of vehicle B.

24 Traffic and Agent-Based Simulation

Simulation is one of the approaches for testing AVs. Real-world trials are difficult and expensive to set up,
and the technology is not advanced enough to test higher automation (level 4 or 5) in a realistic traffic
context.

Traffic simulation covered in the literature (Ni 2015) is generally divided into: (1) microtraffic models,
focusing on individual vehicle interactions and capture the motion and interaction among vehicles—will be
the focus of this paper (2) macrotraffic models, emphasizing the collective and average behavior of vehicles,
looking at: flow, speed, density and how they vary dynamically over time and space. (3) mesotraffic models,
combining both micro and macrotraffic models.

In terms of the simulation’s theoretical framework, a discrete-time, agent-based model (ABS) seems to
be the most suitable to simulate the APF scenario for the following reasons (based on Grimm and Railsback
2011): (i) Each vehicle is different from one another in the environment and can therefore act as an agent
(unique). (ii) Each vehicle interacts with its neighboring vehicles to “create” its APF (interacting locally).
(ii1) Autonomous vehicles act independently of each other i.e. each has their own destination (autonomous).

Jing et al. (2020) conducted a review of simulations in the AV field, and according to their findings,
ABS is mainly used to predict the impact of CAV penetration in the market and on the road, followed by
simulation for system understanding, and management / decision support. Simulation is not popular for
hypothesis testing. The service area is usually fixed, unless the aim is to look at results from different service
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areas. There have been many experiments carried out to test the APF, but they were limited to simple
scenarios. ABS, on the other hand, has the potential to uncover issues in a realistic implementation of APF
on the road, and to this end, there has been very limited work involving the APF and agent-based simulation
in the AV context, adding to the theoretical base of agent-based simulation.

3 PROPOSED APPROACH

3.1 Hybrid Simulation Architecture

From an architecture standpoint, Pereira and Rossetti (2012) conceptualized an integrated architecture for
AV simulation that incorporates both the robotic and traffic simulation aspect of a CAV. Schoener (2018)
also outlines a similar architecture for AV simulation, with key components identified being consistent
across AV simulation studies, such as Zhao et al. (2022) and Yilmaz-Niewerth et al. (2024). These
components are: (i) the road model, where all the simulation traffic participants will drive, which will either
involve a predefined map from CARLA (Dosovitskiy et al. 2017) or will be implemented through
OpenStreetMap; (ii) the traffic model, which will be implemented in SUMO Eclipse (Lopez et al. 2018),
and (iii) the sensor and vehicle models, which will be both implemented in CARLA. The implementation
will be a hybrid one because it will use different simulators, coordinating both SUMO and CARLA to run
concurrently to deploy the APF. The main components of the proposed hybrid simulation architecture and
their functions are shown in Figure 2. In terms of synchronization, we investigate different approaches such
as co-simulation as well as distributed simulation with High Level Architecture (HLA) (IEEE 2010).

The reason why two simulators are needed (making it a hybrid simulation) is because: while CARLA
provides more detailed information regarding lane information, agent states, position and velocity, it cannot
handle traffic flow management due to rendering and physics constraints. SUMO, on the other hand, can
model realistic traffic patterns and scenarios with many agents, as well as providing control over traffic
light logic, routing and lane-changing behavior—which is otherwise hard-coded in CARLA. Therefore, the
aim is to use CARLA to create detailed simulations of the ego vehicle, running concurrently with SUMO.

CARLA SUMO

Car-following

Orientation
Lane-change
Ego-vehicle Micro-traffic
state interactions
P Synchronization Intersection

and data sharing

Acceleration
Merge

Angular
velocity

Obstacle

Surrounding
Sensors agents'
perception

A

P

Traffic lights and
their states

A

Artificial Potential Field

Collision events
Road Boundary Field

Lane Field Lane geometry

Adjacent Vehicle Field

Figure 2: Hybrid Simulation Architecture.
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The APF model can be embedded into CARLA (or in a separate Python wrapper) and then, using the
information that CARLA gathers from the ego sensors, it can compute the risk function for the ego
regarding the road boundary, lanes and other vehicles around it. As this is a conceptual framework, the
initial focus will be on TA for the ego vehicle, rather than decision-making—which can be implemented in
future experiments.

3.2 Data and Scenarios

The minimum set of traffic scenarios that need to be considered by an AV (European Commission 2022)
are as follows: lane change; turning and crossing by the fully automated vehicle—either crossing or
merging; emergency maneuvers e.g. collision avoidance; motorway entry and exit; passing a toll station;
operation on other road types (than motorways).

Each of the scenarios will have its own parameters and expected outcomes (an example of this is
illustrated in Table 1). The safety indicators or the SSM (Wang et al. 2021), are selected based on their
usage frequency in the literature, with the time to collision (TTC) metric being the most popular one, while
the other indicators are outlined in the Commission Implementing Regulation (European Commission
2022) for the given scenarios. A brief description is provided below.

e TTC: time it would take to collide with a leading vehicle or an object in the ego vehicle’s lane if
both continue at their current speed.
TTCgyn: minimum safe TTC required when merging into traffic that has right of way.
TTCin: TTC considering a path with an oncoming privileged vehicle.
TTCeuin: TTC after a vehicle cuts into the ego vehicle lane. It is used to determine if a collision
can still be avoided.

e PET: time difference between when the ego vehicle occupies a location and when the trailing
vehicle arrives at the same location (Morando et al. 2018).

Both APF and SSM detect risk when the values being measures exceed certain thresholds (e.g. for TTC
is typically set to 1.5s), but as Dai et al. (2023) noted in their paper, it is usually at the discretion of the
analyst. This, along with additional SSM comparisons—such as time exposed time to collision (TET), time-
integrated time to collision (TIT), or other acceleration-based metrics—as well as the exploration of other
scenarios, are intended for future investigation.

3.3  KPIs for Performance Analysis

The EU Implementing Regulation 2022/1426 (European Commission 2022) outlines the performance
metrics on which ADS are evaluated during each scenario. These have been included in Table 2.

One approach to compare APF with SSM metrics could be normalizing their outputs, i.e. having certain
thresholds, and based on whether the output exceeds the threshold (1—risk) or doesn’t (0—no risk) then a
binary classification of risk is created. This approach could be evaluated as follows:

Detection time and accuracy of perception in this case could be interpreted as:

e Detection time - How early does the APF model predict a dangerous situation compared to the
SSM? This can be calculated by subtracting the time at which the APF detects a risk with the time
the SSM exceeds the safety threshold:

Detection Lead time = APF detection time — SSM detection time

A positive value means the APF detects risk earlier compared to the SSM of choice.

e Accuracy: Does APF correctly or wrongly detect a risk? For APF, it could mean having true
positives or false positives, which are common performance metrics for ML model predictions
(Flach 2019).
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Table 1: Base scenarios for APF comparison (from the EU Implementing Regulation 2022/1426).

Safety

Base Scenarios | . .. Equation Data needed for SSM Data needed for APF
indicator
Ego speed
distance i i
Car following TTC —_——— L@admg vehicle speed
relative speed Distance between the
two vehicles
Ego speed v,
Approaching vehicle
Merge into V.tV speed v,
.. e a .
privileged TTCayn Z—B Maximum accepted
traffic deceleration B (3 m/s?>) | e Ego mass
Reaction time p (1.5s) e Following vehicle mass
e Ego velocity
Conflicting traffic speed | ® Following vehicle
Turn across Ve velocity
. Ve Conflicting traffic e Ego acceleration
oncoming TTCint +p X X .
2B deceleration f3 e Following vehicle
traffic - ;
Conflicting traffic acceleration
reaction time p e Distance between ego
Relative speed between and following vehicle
ego and obstacle v,
Obstacle ahead, Max1m1;m deceleration
e.g.: lane Vrel 1 B (6m/s’)
o TTCotin | =5 tp+oT Time to reach maximum
intrusion 28 2 .
i . deceleration t (0.3s)
(vehicle cut-in) . .
Time to initiate ego
emergency braking
p (0.1s)
e FEgo spatial position
coordinates
e Angle (ego to certain
point)
e Ego acceleration
(maximum: 4.001)
Time t; for ego to e Ego velocity
Lane change depart conflict point e  Turning angle
(from Allen et PET t, —tg Time t, for following e [Ego length
al. 1978) vehicle to reach conflict | ¢ Following vehicle length
point e Distance between ego

center and potential field
edge (backwards)
Distance between
following vehicle center
and potential field edge
(forwards)

o Consistency across repeated scenarios: how often is it accurate?
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Table 2: KPIs for normalized risk.

EU performance metric KPI

Detection Lead Time (s)
Detection time and accuracy of perception True Positive
False positive

Decision-making appropriateness and timing Not applicable

Control behavior including smoothness and safety Not applicable

Responsiveness to dynamic elements such as vehicles / VRUs  Detection Lead Time (s)

True Positive Rate (%)

nsistency across repeated trial .
Consistency across repeated S True Negative Rate (%)

e Responsiveness to dynamic elements: this can be interpreted as either how well the vehicle ‘acts’
based on changes to the environment, which is outside the scope of the initial scenario testing, or
how early does it detect changes to the environment (which is linked to detection time).

Another way of comparing the APF model and SSMs is by plotting their risk indicators over the
simulation time (for APF it will be field force over time; for SSMs, since the selected ones so far are time
based, they could be plotted as a function of velocity over time—inversing them) and compare through a
graphical inspection at which points the gradients increase and at which points they decrease (detection
time); if they do detect them in the same scenario (accuracy); how often for repeated scenarios the gradients
match. This is usually how studies described in section 2.3 carry out their evaluation.

4 CONCLUSIONS AND FUTURE WORK

This paper proposed a hybrid simulation framework for evaluating the APF method as a real-time threat
assessment model for CAVs. By combining SUMO for traffic flow modeling and CARLA for detailed
vehicle dynamics, APF for threat assessment, a conceptual hybrid simulation architecture was presented.
The use of agent-based simulation to test APF in realistic traffic scenarios represents a novel contribution,
offering a more thorough assessment for effectiveness.

Although the approach is conceptual, the framework aligns with EU regulations for scenario-based
testing and lays out a validation strategy using surrogate safety metrics and performance indicators. This
work is meant for simulation-based evaluation of whether APF can meet real-world safety requirements.

Future work will focus on implementing the hybrid simulation environment and synchronizing SUMO
and CARLA using a co-simulation interface. The APF model will be embedded in the ego vehicle logic
and tested across regulatory scenarios. We anticipate to face scale limitations due to time and hardware
constraints. Further limitation analysis will be conducted in future work.

Key directions include: (1) Comparing APF outputs with standard surrogate safety metrics (e.g., TTC,
PET), (2) Running sensitivity analyses on APF parameters and scenario variables. (3) Testing scalability
under denser traffic. (4) Incorporating uncertainty and noisy sensor data. (5) Expanding KPIs to cover
decision quality and response timing. (6) Exploring adaptive APF parameter tuning through learning-based
approaches.
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