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ABSTRACT

This paper addresses a capacity management problem in semiconductor metrology, where lots are typically
sent to measurement under static sampling rules. Such rigid strategies often cause bottlenecks when
unexpected events occur, delaying production. To address this, we propose a corrective approach that
dynamically selects lots to skip, i.e., not measured, while prioritizing the most critical ones and ensuring
that metrology tools respect capacity limits. The method combines a skipping algorithm with the Iterated
Min-Max (IMM) workload balancing procedure, which ensures a fair workload distribution and helps
identify the most critical tools. Several performance indicators are introduced to evaluate the efficiency of
this approach compared to a classical balancing strategy. Computational experiments with industrial data
demonstrate that integrating IMM improves lot selection, reduces the number of skipped lots, and preserves
measurement for the highest priority ones while better satisfying capacity constraints.

1 INTRODUCTION

Wafer manufacturing is a complex and highly dynamic environment with a continuously changing portfolio
of products that must be produced at the lowest possible cost. Moreover, in particular in applications such as
automotive and robotics, product quality and reliability are critical. To ensure both, one important operation
is metrology (measurement), which consists of measuring wafers at specific steps of the process flow to
detect potential defective production machines and prevent the propagation of quality issues. Various types
of inspections are required, which depend on the production machines being controlled. Each inspection type
relies on a limited number of expensive and complex measurement tools. In addition, inspections slow down
production and do not directly add value to products. These reasons motivate semiconductor manufacturers
to carefully manage measurement resources. In particular, not all lots can be sent to metrology, and thus,
only a limited number of lots are sampled to be measured.

Sampling strategies used to select which lots should be measured can be broadly classified into three
categories Nduhura-Munga et al. (2013): Static, adaptive, and dynamic. Static sampling consists of setting
rates that specify the frequency at which lots are sampled to be measured (see for example Perez (2017)),
e.g., 1 lot out of 3. While static sampling is simple to implement and widely used in industry, it does
not adapt well to operational disturbances such as metrology tool breakdowns or production surges, often
resulting in bottlenecks in the metrology area. Adaptive Mouli and Scott (2007) and dynamic Le Quéré et al.
(2020) sampling strategies have been proposed to address this limitation, but their practical implementation
remains challenging, especially in large-scale industrial environments.

This paper considers the management of capacity in a metrology area that can be overloaded with too
many lots following an operational disturbance. A key consideration is that lot measurements must be
carried out quickly to stop defective production machines as soon as possible, but also to avoid lots waiting
in metrology instead of continuing their manufacturing routes. Therefore, it may be necessary to skip lots,
i.e., to reduce the workload on metrology tools by not measuring some sampled lots, to both accelerate
the detection of defective production machines and reduce the cycle times of lots.
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In the considered real-time capacity optimization problem, the objective is to ensure timely inspections
without overloading the metrology tools. We proposed an iterative procedure that relies on the integration
of two components: A workload balancing procedure to check if the metrology area is overloaded, and a
skipping strategy to decide which lots to skip if the metrology area is overloaded. Workload balancing is
performed either with a classical approach, where the largest workload of any metrology tool is minimized,
or with the Iterated Min-Max (IMM) procedure proposed in Christ et al. (2019). The skipping strategy
relies on a priority index derived from the “Wafers at Risk” (W@R) indicator (see Dauzere-Péres et al.
(2010)). The W@R of a production machine corresponds to the number of wafers processed on the machine
since the last lot measured on a metrology tool and processed on the machine.

Although job rejection has been studied in the scheduling literature (see for instance Shabtay and Gerstl
(2024), Geng et al. (2023) and Freud and Mosheiov (2021)), the goal is to optimize scheduling objectives
or reduce costs. In contrast, we do not consider detailed scheduling decisions, but want to ensure that
there is globally enough capacity to measure the lots currently in a metrology area. One motivation is
that scheduling tools are not always available in metrology areas, where simple dispatching rules are often
used. Moreover, skipping decisions in our problem rely on a risk indicator not considered in the scheduling
literature to our knowledge.

The problem is described in detail and formalized in Section 2. Then, Section 3 recalls the IMM
procedure, which is used in the iterated skipping procedure proposed in Section 4. Computational experiments
are reported and discussed in Section 5. Some conclusions and perspectives can be found in Section 6.

2 PROBLEM DEFINITION AND MODELING

Section 2.1 describes the problem and provides an overview of the proposed solution approach, which
consists of two phases. The first phase evaluates the current workload balance across the metrology tools.
The second phase only required when not all lots can be measured, identifies which lots should be skipped
based on their priorities. Then, Section 2.2 introduces a classical workload balancing model along with
the IMM (Iterated Min-Max) procedure proposed in (Christ et al. 2019), and discusses the benefits of both
approaches. Finally, Section 2.3 explains how the priorities of lots for measurement are modeled. These
priorities are used in the skipping phase of the iterated skipping procedure proposed in Section 4.

2.1 Problem Definition

Let ./ be a set of sampled lots waiting for measurement in the metrology queue and .# be the set of
available metrology tools with different qualifications Q (the metrology tools are not qualified, i.e. eligible,
to measure all recipes) and measurement speeds. More precisely, Q;,, = 1 if lot [ € .4 is qualified to be
measured on metrology tool m € .#, and the measurement time of lot / on m is denoted p; ,.

The problem is to estimate whether the lots can be assigned to metrology tools without any metrology
tool exceeding a maximum capacity W. If this is not the case, critical tools have to be identified to skip lots
from these tools until no metrology tool has a workload that is strictly above W. One main challenge of this
problem is that the metrology tools are not qualified to measure all lot. Moreover, the measurement time
of a lot on a qualified metrology tool can be different due to different factors, such as the age of the tool.
Another challenge is to decide which criteria are relevant to decide which lots to skip. "In contrast to global
sampling plans (see, for example, (Dilosi et al. 2022)), the objective of this paper is to introduce a fast
and accurate corrective approach that operates on top of an existing sampling plan. Moreover, unlike other
skipping algorithms in the literature (e.g., (Le Quéré et al. 2019)), the proposed method is combined with
a workload balancing algorithm (see Section 4), enabling a more precise selection of lots while preventing
excessive skipping.
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2.2 Workload Balancing on Metrology Tools

We first need to evaluate if the lots in .#” can be assigned to the metrology tools without exceeding the
maximum capacity W.
Let X;,, € [0,1] be the fraction of lot [ that is allocated to tool m € .#. The workload of tool m is
defined as:
Wi = Z Plm Xl.,m
lets Q=1

We consider the continuous problem, where the measure of a lot can be split on several tools. From
an industrial point of view, this hypothesis is accurate enough to estimate if a set of lots can be assigned to
the metrology tools without exceeding a given maximum capacity. The first classical approach is to solve
the problem of minimizing the maximum workload across all metrology tools while ensuring that all lots
are assigned using the linear program P(.4",.#) below.

min S (D
W, <S Vme A (2)
W= D PimXim Vme . 3)

e, Ql,m:l
Y Xiw=1 Vie NV 4)
me.M Ql,m=1
X[7m < Ql,m Vie NV Nme . H 5)
Xim€[0,1] Vie N Nme . H (6)

Constraints (2) and (3) ensure that variable S takes the value of the largest workload of any tool, and
Constraints (4) that each lot is fully assigned to metrology tools. Constraints (5) guarantee that a lot can
only be assigned to metrology tools on which the lot is qualified.

If, after solving P(.4",.# ), the optimal value S* is lower than W, then all lots can be measured.
Otherwise, lots must be selected to be skipped to decrease S* below W. One important problem with
P(N , M), as shown in (Christ, Dauzere-Peres, and Lepelletier 2019), is that a metrology tool m such that
W, = S* is not always critical, i.e. it might be possible to reduce the workload of m without increasing
S*. And it is important to only reduce the workload of critical tools. However, we know that there is at
least one tool m such that W,, = §* which is critical.

The IMM (Iterated Min-Max) workload balancing procedure, proposed in (Christ et al. 2019) and
recalled in Section 3, is well suited to this challenge. In an optimal solution determined by the IMM
procedure, the critical tools are clearly defined, and skipping lots on these tools with the highest workloads
more effectively reduces the maximum workload. From an industrial point of view, correctly defining the
critical tools is crucial.

Figure 1 shows the workload balance after the IMM procedure on one industrial instances (set of
instances I1 presented in Section 5). The figure illustrates the characteristics of the solution determined
by the IMM procedure, where the tools are divided into different groups, each with the same workload.
Moreover, each recipe belongs to a single group of metrology tools with the same workload. Hence, the
IMM procedure determines independent groups of tools and recipes.
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Figure 1: Workload balance determined by the IMM procedure on one industrial instance.
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2.3 Risk Modeling

The sampled lots are measured to verify that production processes are performed correctly, i.e. that the
production machines on which the lots were processed are not defective. If the measurement of a lot shows
a default, then the production machine on which the lot was processed is stopped, and corrective actions are
taken. The impacted lots are either scrapped or reworked. A risk indicator widely used in semiconductor
manufacturing is the "Wafer at Risk" (W @R), which provides a real-time estimate of the number of wafers
processed by a production machine since the last confirmed non-defective lot.Using the W@R indicator
allows us to model the measurement priority of the lots. Let introduce the following notations:

*  W@R,: Number of wafers at risk on production machine r,

*  W@R}®"(l): New number of wafers at risk on production machine riflot/ is measured (W @R (1) <
W@R,),

e [,: Maximum number of wafers at risk before production machine r is stopped,

* o > 1: Real number that is used to increase the risk not linearly with the number of products at
risk,

The current risk level on production machine r is modeled as the non-linear function ( %. Hence,

the risk reduction on risk » when measuring lot / is defined by:

W@R,\* [(W@R™"(I)\“
w,J:( . ) (1”> @)

W@R
Tr)

In the context of this paper, each lot has been processed on a unique production machine i.e. if lot
[ has been processed on production machine r, w,»; =0 Vr’ # r. Therefore we can reformulate into w;
for each lot /. In practice, w is computed considering no lot is defective because it is used decide which
lot to sample. Indeed, the GSI (Global Sampling Indicator), introduced in (Dauzere-Pérés, Rouveyrol,
Yugma, and Vialletelle 2010), is based on the value w and is widely used for dynamic sampling strategies
in semiconductor manufacturing. A large value of w; indicates that lot / is more likely to be defective.
Therefore, lots with the highest w values should be prioritized for measurement.

Following the value of w, the sampled lots are categorized into four categories: (1) Low priority, (2)
Medium priority, (3) High priority and (4) Ultra-high priority.

Low priority lots are typically lots that have been processed on a production machine quickly after a
confirmed non-defective lot. These lots tend to be the first ones that are skipped. On the opposite, ultra-high
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priority lots are mandatory lots that cannot be skipped for other reasons than the fact that they reduce the
risk on production machines.

3 ITERATED MIN-MAX PROCEDURE (IMM)

The IMM workload balancing procedure proposed in (Christ et al. 2019) assigns lots to qualified metrology
tools with the goal of fairly balancing the workload. The IMM procedure thus helps to identify the critical
tools and to support effective decision making in related procedures such as lot skipping. Let us recall
the IMM procedure in the following by first rewriting the linear program P(.4",.#') as the linear program
P(AN M, %B,Y), where % is a subset of the metrology tools (# < .#) and y= {¥i,..., Y.} is a given
workload vector (7, is the workload assigned to m).

min S 3
W, <S Vme . #\B 9)
Wy = Yin Vme B (10)
Won = Z Pim Xim Vme A an
leN; Qrm=1

> Xiwm=1 Vie N (12)

meH;, Qi m=1
Xim < Qim Vie NV Nme . H (13)
Xime0,1] (14)

The objective is to minimize the maximum workload S of a specific subset of metrology tools (.#\ %),
determined through Constraints (9), while fixing the workloads of the other tools () through Constraints
(10). Note that Constraints (11) through (13) are equivalent to Constraints (3) through (5).

In the IMM procedure, set % is initially empty, and the maximum workload across all tools is minimized.
The workload vector 7 is constructed iteratively. Let A, be defined as the dual variable corresponding
to Constraint (9) for tool m in .#\%. Algorithm 1 from (Christ, Dauzere-Peres, and Lepelletier 2019)
provides an overview of the IMM procedure.

Algorithm 1 IMM(4, .#)
1: Inputs: B =, ¥, =0 VYme #,S5* =0
2: while # # .# do
3: Solve P(.4",2,7v) and determine S*

4 for me .#\% do
5 if A,, <0 then
6: Yin := S*

7 end if

8 end for

9: B—Bo{me M\PB st Ay <0}
10: end while
11: return Optimal solution of P(N", .# ,2A,7)

The algorithm uses the complementary slackness theorem and determines with condition A, < 0 if
Constraint (9) is saturated for metrology tool m, i.e. if m is critical. If it is the case, m is added to the set
A, and W, is fixed to the current value of S* in the next iterations through the vector 7.

As demonstrated in (Christ et al. 2019), the solution determined by the IMM procedure has the following
interesting properties (see Figure 1):
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1. All the metrology tools in a solution determined by the IMM procedure are such that it is impossible
to decrease the workload of tool m without increasing the workload of a tool m with a larger workload
than m, i.e. such that W, = W,,,.

2. If two metrology tools m and m’ share the fraction of at least one common lot, then m and m’ have
the same workload.

These two properties allow us to better identify critical metrology tools that exceed the maximum
capacity W. Hence, the chances to decrease the maximum workload by skipping lots assigned to these
tools are larger. This is because, if the workload of a group of tools is strictly larger than W, then some
lots assigned to these tools by the IMM procedure have to be skipped.

4 ITERATED SKIPPING PROCEDURE

An iterated skipping procedure is proposed in this section. This procedure combines any workload balancing
procedure to determine critical tools that are overloaded with a skipping phase where lots are skipped on
the critical tools to ensure that the maximum workload W is satisfied. Let us denote by WB(.A",.# ) any
workload balancing procedure (P and IMM in this paper) that takes a set of lots .4 and a set of tools .#
as inputs and returns a workload balance between the tools.

In the iterated skipping procedure, WB is first ran on the initial set of sampled lots. If there is no tool
with a workload strictly larger than W, then no lots are skipped. Otherwise, among the lots assigned to the
most loaded critical tools, the lot with the lowest ratio “priority divided by measurement time” is skipped.
WB(N,.#) is ran after each skipped lot to be sure that all the tools are critical. The procedure is iterated
until the maximum capacity W is reached.

The following notations are introduced for a specific workload balancing procedure WB (P or IMM):

o Wua( A, 4 ): Maximum workload in the solution determined by WB(.A", .# ),

o Mupax( N, M ): Set of the tools m such that W,, = S* in the solution determined by WB(.A", .# ),

o Lu( N, A ): Setof lots [ with a strictly positive fraction assigned to tool m, i.e. such that X; ,, > 0,
in the solution determined by WB(.A", . # ),

*  wj;: Measurement priority of lot / (the higher the priority of [, the larger wy).

At each iteration of Algorithm 2, the lot to skip is not only selected by its measurement priority (wy),
but also by its measurement time. Indeed, the maximum workload should be decreased as quickly as
possible, and we want to skip as few lots as possible. Hence, when critical tools have several multiple
assigned lots with the same priority, the lot with the largest measurement time is skipped.

Algorithm 2 IS+WB
1: Inputs: WB, W, N .4

Output: Set of skipped lots .#*

Run WB(./")

NE = N

I —{}

while W, (A *, .4 ) > W do
for me Mg (N *, 4 ) do

worstlot < argminie ¢, v+ 4y (Wi/Pi.m)

end for
NE — N F\worstlot
S*— " U {worstlot}
Run WB(N*, /)

: end while

D A A o

—_ = = =
w2
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The efficiency of the iterated skipping algorithm with both workload balancing procedures is analyzed
in the next section on industrial instances.

S COMPUTATIONAL EXPERIMENTS

After explaining how the experiments on industrial data were designed, numerical results are discussed to
compare the efficiency of the iterated skipping algorithm with both workload balancing procedures.

5.1 Design of Experiments

The experiments were conducted on two different sets I; and I, of 15 industrial instances in terms of
sampled lots, availablemetrology tools, qualifications and measurement times. The measurement priorities
of the lots were assigned and distributed using the following probability distribution:

*  Low priority lots (w; = 1), ~ 20%,

e  Normal priority lots (w; =5), ~ 60%,

*  High priority lots (w; = 20), ~ 15%,

*  Ultra-high priority lots (w; = 100), ~ 5%.

Tables 1 and 2 provide details on the two sets of instances /1 and /2, respectively. The main difference
between the two sets is that fewer metrology tools are available in set /1, with a number of qualifications
per tool which is very unbalanced compared to set /2. For each instance, the tables show the number
of lots sampled to be measured, the number of available metrology tools and the value $* (in seconds)
corresponding to the objective function of P(AN",.# ,,[0,...,0]), i.e. the workload of the most loaded
tool if all the sampled lots are assigned to the metrology tools (not lot is skipped).

Instances | |A7| | |4 S* Instances | |.1| | |.Z] S*
11} 6 10 159.1 12, 138 | 15 | 564.0
11, 15 10 541.1 12, 97 14 | 4823
113 56 9 1637.9 123 83 13 | 350.0
11,4 35 8 2300.5 124 82 15 | 400.3
115 45 9 1677.9 125 141 | 15 | 569.9
11 105 | 10 | 39485 12 149 | 14 | 502.6
117 136 9 5466.9 125 117 | 15 | 4115
I1g 194 9 8810.4 12g 85 12 | 3285
I 198 6 | 10893.4 12 94 15 | 398.0
Iy 155 9 5497.3 121 105 | 15 | 481.6
11y 24 10 472.3 121, 95 14 | 507.5
11, 32 11 771.9 121, 113 | 14 | 512.66
113 24 10 713.6 125 83 15 | 3955
1114 34 9 2050.7 1214 100 | 15 | 391.8
115 158 9 5970.1 1245 97 15 | 482.1

Table 1: Description of industrial instances /1. Table 2: Description of industrial instances I2.

Not that skipping some lots is required as, in some instances, the waiting queue exceeds 2.5 hours, which
is not acceptable in practice. All the algorithms and the linear programs in this paper were implemented in
Julia 1.8.5 on an Intel(R) Core(TM) i5-1135G7 of 2.40GHz with 16GB RAM. The linear programs were
solved using IBM ILOG CPLEX 12.10.

Computational times are not given in the numerical results as they never exceed 10 seconds.
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5.2 Comparison between IS+IMM and IS+P

To compare the performance of IS+ P and IS + /MM for different values of the maximum capacity W, the
number of skipped lots and the priorities of the skipped lots are provided. We would like to show that the
iterated skipping algorithm is more effective when combined with the IMM workload balancing procedure,
as this combination enables a more accurate identification of critical tools, and therefore a more informed
selection of lots to skip to reduce the maximum workload.

For each instance, we ran both algorithms with a maximum metrology capacity W = « - S*, where
o €{0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1}. The objective is to progressively reduce the maximum capacity
and observe how many lots are skipped by both methods, as well as how this affects the priority objective
defined as the sum of the priorities of all lots if no lot is skipped (3}, , w).

Let us introduce the following indicators:

* Degradation of the priority objective. For each instance and for capacity W, the two following

values are defined:
D€5+[MM = (2 wp— Z W[)/ Z wi

ley leSFIS+IMM ley
IS+P
DT = (Y w— ¥ )/ S
leV le A ¥ IS+P leV

which model, respectively, the degradations on the priority objective due to the skipping algorithms
combined with IMM and with P.

* Improvement (Impt). The improvement is defined as (D{f giMM — D{f Jgf ), which corresponds, for a
given value of @, to the difference of degradations between the two procedures. If the improvement
is larger than equal to O, then IS+ IMM degrades less the priorities of lots than /S + P.

* Average Improvement. It is defined as the average improvement ), (D{XS JgiMM - D{f gf: )/10 which
corresponds, for each instance, to the average difference of degradations between the two procedures.
If the average improvement is larger than equal to 0, then, on average, IS + /MM degrades less the
priorities of lots than IS + P

* Best and Worst Improvement. The best improvement is the largest difference of degradation
when IS+ IMM degrades less the priorities of lots than /S + P and, the worst improvement is largest
difference of degradation when IS + P degrades less the priorities of lots than IS +IMM.

«  Number of skipped lots. NSET™MM and NSIS*P denote the number of lots skipped by IS + IMM
and IS + P respectively, for a given value of «.

For example, looking at the first line of Table 5, an average improvement of +4.50% means that,
on average (over the values of W = a §*), the iterated skipping algorithm IS + IMM degrades by 4.50%
the priorities of lots less than the iterated skipping algorithm IS+ P. A best improvement of +13.50%
means that the largest degradation difference between IS+ IMM and IS + P is 13.50% over all values of
a. A worst improvement of —0.00% means that IS + P always degrades more the priorities of lots than
IS +IMM.

Tables 3 and 4 show detailed results on three instances from sets /1 and /2, respectively, and for all
values of . In each instance, some groups of tools dominate the others in terms of number of qualifications
Therefore, the set of critical tools with maximum workload is often the same for both workload balancing
approaches when « is close to 1. This is why IS+ IMM and IS + P skip the same sets of lots. Overall,
note that IS +IMM is much more efficient than IS + P when o becomes small, i.e. the number of lots to
skip is large. IS +IMM skips fewer lots to reach the maximum allowed workload W and keeps the lots
with the highest priority.

Tables 5 and 6 summarizes the benefits of using IMM workload balancing procedure in the iterated
skipping algorithm. For most instances (both industrial and semi-industrial instances), the number of lots
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Instance| & [Impt | NS TMM[ NSIS+P Instance| & |[Impt | NS TMM[ NSIS+P
0.9 | +0.00% 1 1 0.9 | +0.00% 6 6
0.8 | +0.00% 1 1 0.8 | +0.00% 12 12
0.7 | +0.00% 2 2 0.7 | +0.00% 17 17
0.6 | +0.00% 3 3 0.6 | +0.45% 23 24
11, 0.5 |+0.00% 3 3 12, 0.5 |+0.45% 29 30
0.4 | +0.00% 4 4 0.4 |+0.45% 35 36
0.3 |+13.51% 5 6 0.3 |+4.33% 44 56
0.2 |+13.51% 5 6 02 |+1.17% 51 56
0.1 |+13.51% 5 6 0.1 |+3.16% 61 72
0.9 | +0.00% 1 1 0.9 | +0.00% 6 6
0.8 |+0.55% 3 4 0.8 | +0.00% 11 11
0.7 | +0.55% 3 4 0.7 | +0.00% 16 16
0.6 | +0.55% 3 4 0.6 | +0.00% 21 21
11, 0.5 | +0.00% 6 6 1219 0.5 | +0.00% 26 26
0.4 | +24.63% 9 13 0.4 | +0.08% 33 34
0.3 | +24.63% 9 13 0.3 |+0.34% 40 44
0.2 | +24.63% 9 13 0.2 | +2.94% 48 58
0.1 |+17.19% 12 13 0.1+7.43% 58 67
0.9 |+0.42% 5 10 0.9 | +0.00% 4 4
0.8 | +0.08% 18 15 0.8 | +0.00% 9 9
0.7 | +0.60% 21 20 0.7 | +0.00% 14 14
0.6 |+1.21% 26 27 0.6 | +0.00% 19 19
I1g 0.5 -0.52% 34 32 1214 0.515.36% 25 37
04 |+1.11% 41 43 0.4 |4.55% 30 41
0.3 |+1.20% 53 58 0.3 |+4.01% 35 48
0.2 |+3.34% 66 74 0.2 | +6.69% 43 53
0.1 |+5.62% 87 84 0.1 |+3.57% 55 57
Table 3: Detailed improvement and number of  Table 4: Detailed improvement and number of
skipped lots for each ¢ on some instances of /1. skipped lots for each ¢ on some instances of I2.

that are skipped is lower with IS 4+ IMM than with IS + P. These results indicate that IMM allows for a
better identification of the most critical tools and, consequently, for a more effective selection of lots to
skip. Moreover, in almost all cases, IS+ IMM is better at not skipping the highest priority lots, as the
average degradation difference between the two procedures is almost always positive. It may happen that
the lots skipped with IS 4+ P are more relevant than the lots skipped with IS + IMM in terms of lot priorities
for some values of W in the first set of instances /1. This is because, in these instances, the metrology
tools are all very similar, and can easily have the same workload. in this case, the tools with the maximum
workload in P are often all critical, and skipping a lot assigned to any of these tools has a high probability
of reducing the maximum workload.

Finally, note that IS + IMM is more effective on small and medium sized instances, where each skipped
lot has a significant impact on both the maximum workload and the lot priorities. For larger instances, i.e.
with a large number of sampled lots, much more lots need to be skipped to reach the maximum allowed
workload W, and individual skipping decisions have less impact.
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Instance Improvement Total number of skipped lot
Avg Best Worst | IS+ IMM IS+ P

114 +4.50% +13.51% -0.00% 29 32
11, +10.30% +24.63% -0.00% 55 71
I13 +1.07%  49.64%  -0.00% 170 174
114 +0.33%  +1.14%  -0.00% 929 108
115 +1.19%  +8.10% -11.94% 174 182
I1¢ +1.47%  +5.62%  -0.52% 351 363
117 -0.08%  +1.00% -1.30% 426 426
I1g +0.02%  +0.20%  -0.00% 683 683
119 +0.58%  +2.73% -0.0% 683 695
Iy +0.12%  +1.14%  -0.28% 564 564
VAT +1.08% +7.84%  -0.00% 96 98
111, +0.40%  +3.74%  -0.00% 113 113
1113 +1.31% 49.80%  -0.00% 84 87
I114 +1.30% +3.4% -0.00% 116 140
115 +0.02%  +1.10%  -0.84% 613 613

Table 5: Indicators for all instances of /1: Al, HI, WI, and total number of skipped lots for both methods
and for all values of

Instance Improvement Total number of skipped lot
Avg Best Worst | IS +IMM IS+ P
12, +1.67% +2.89% -0.00% 355 420
12, +1.11% +4.33% -0.00% 278 309
123 +0.66% +2.75% -0.00% 211 231
124 +0.53% +1.33% -0.00% 207 226
125 +1.18% +3.06% -0.00% 374 460
124 +0.83% +3.65% -0.00% 317 370
124 +0.65% +1.88% -0.15% 240 256
123 +1.26% +2.68% -0.00% 213 260
129 +0.55% +1.39% -0.46% 210 228
121 +1.20% +7.43% -0.00% 259 283
12y, +1.48% +5.55% -0.00% 204 242
12, +0.66% +3.22% -0.00% 290 312
1213 +1.09% +2.44% -0.00% 211 233
1214 +2.67% +6.69% -0.00% 234 282
1245 +0.94% +6.85% -0.02% 242 262

Table 6: Indicators for all instances of /2: Al, HI, WI, and total number of skipped lots for both methods
and for all values of a.
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6 CONCLUSIONS AND PERSPECTIVES

The IMM workload balancing procedure proposed in (Christ et al. 2019) was developed for operational
production planning, as shown in (Christ et al. 2023). In this paper, we show that the IMM procedure is
also efficient in the context of metrology capacity management. The IMM procedure provides a reliable
estimation of which tools are truly critical, enabling a more precise identification of the lots that should
be skipped to satisfy metrology capacity. We argue that the IMM procedure is particularly useful for
heterogeneous metrology areas with many different tools (see Section 5, particularly set of instances 12).

Looking forward, we believe that different sampling and skipping strategies could be combined with
the IMM procedure for metrology management. For example, sampling strategies could be dynamically
adjusted based on the workloads of the metrology tools determined by the IMM procedure, for example
by prioritizing lots that can be measured on less critical tools.
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