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ABSTRACT

This paper addresses the challenge of reliably selecting high-performing solutions in simulation optimization
when model parameters are uncertain. We infer the set of solutions whose probabilities of performing
better than a user-defined threshold are above a confidence level given the uncertainty about the parameters.
We show that this problem can be formulated as a nested superlevel set estimation problem and propose
a sequential sampling framework that models the simulation output mean as a Gaussian process (GP)
defined on the solution and parameter spaces. Based on the GP model, we introduce a set estimator and an
acquisition function that evaluates the expected number of solutions whose set classifications change should
each solution-parameter pair be sampled. We also provide approximation schemes to make the acquisition
function computation more efficient. Based on these, we propose a sequential sampling algorithm that
effectively reduces the set estimation error and empirically demonstrate its performance.

1 INTRODUCTION

In this paper, we study the problem of inferring the performances of the candidate solutions of a simulation
optimization problem, where all solutions are evaluated with the same simulation model that requires
a parameter vector whose exact value is uncertain. For instance, the vector may parameterize the input
distributions of the simulation model or the internal functions of the simulator. In both cases, the parameters
determine the distributional properties of the simulation outputs. Such parametric uncertainty poses a
challenge in decision making when the simulator is adopted for optimization as the optimal solution’s
identity may depend on the parameter setting. We approach this problem from an inference perspective
by providing a set of solutions whose probabilities of performing better than a user-defined threshold are
above a confidence level given the uncertainty about the parameter. In particular, we focus on the case
where the feasible solution set is a finite subset of the Euclidean space.

A set inference problem has long been studied in the simulation optimization literature. Dating back
to Gupta (1965), subset selection procedures that return a set of solutions guaranteed to contain the best
solution with a prespecified probability have been proposed. Multiple comparisons with the best (Hsu 1981)
is closely related to subset selection where the goal is to construct a simultaneous confidence intervals (CIs)
for the differences between the means of each solution and the best of the rest. In addition to the CIs, the
procedure also returns a set of solutions that contains the best with the same coverage guarantee as the CIs.
More recently, Eckman et al. (2022) propose a framework that screens out the solutions implausible to be
optimal from the finite feasible set exploiting the objective function’s functional properties (e.g., convexity,
Lipschitz continuity, etc.) with a desired level of statistical confidence.

Extending the classical methods, recent studies reflect the uncertainty in estimated input models from
finite data, i.e., input uncertainty, in subset selection. Corlu and Biller (2013) adopt a Bayesian framework
that models the effect of the input model’s parameter uncertainty on the simulation output. Song and Nelson
(2019) extend the classical multiple comparisons with the best framework to incorporate input uncertainty and
provide the asymptotic consistency guarantee. Wu et al. (2024) develop sequential elimination procedures
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under input uncertainty that adaptively incorporate simulation output and incoming input data to refine the
set of plausible solutions, while maintaining statistical validity through adjusted confidence bounds.

Another problem with a close connection to our research is estimating a superlevel set of a black-box
function, where the goal is to find a preimage of an output of the function no less than a threshold. When
the function is expensive to evaluate or its domain has infinite elements, estimating the superlevel set
becomes challenging as one may not be able to evaluate all points in the domain. This challenge has led
to the development of active learning strategies that sequentially fit a model to approximate the function,
estimate the set, and select the most informative points to reduce the error in the estimated set.

Bryan et al. (2005) propose the straddle heuristic, which selects the points for evaluation that lie near
the boundary of the superlevel set, where the function value is most uncertain, and thereby focusing the
search on areas with the greatest potential for information gain. Gotovos (2013) models the function as a
realization of a Gaussian Process (GP) and applies GP-derived confidence bounds to guide the sampling
process. Focusing on improving the robustness of the superlevel set estimator, Zanette et al. (2018) propose
an acquisition function designed to maximize the expected size of the superlevel set in the next iteration.
Iwazaki et al. (2020) tackle the problem when there is control uncertainty such that the output cannot
be observed at the exact intended input value. Their goal is to infer a set of control values exceeding a
threshold with a pre-specified probability.

In this work, we also adopt a GP model to infer the simulation output mean function at any parameter-
solution pair. Unlike most of the reviewed work, the set we estimate has a nested superlevel set structure. For
each solution, estimating the probability of exceeding the threshold is equivalent to estimating a superlevel
set of parameters that returns the function value—simulation output performance measure—no less than
the threshold and computing the probability of the set. Then, the set is formed by classifying the solutions
whose estimated probabilities are above a probability threshold, which is indeed a superlevel set in the
solution space. We introduce a set estimator based on confidence bounds on each solution’s exceedance
probability computed from the GP model. Then, we propose an acquisition function that effectively reduces
the estimation error of the superlevel set by selecting a solution-parameter pair expected to cause the largest
classification changes of the solutions should it be sampled.

Among the reviewed work, the problem in Iwazaki et al. (2020) also has a nested structure as it requires
estimating an exceedance probability before forming a superlevel set. However, their sampling decision is
still made on the control space only, whereas ours must be made for both solution and parameter spaces.

The rest of the paper is organized as follows. Section 2 mathematically defines our problem. Section 3
introduces the GP model we adopt and the set estimator constructed from it. In Section 4, we discuss our
acquisition function and its computation. Section 5 presents our sequential sampling algorithm to estimate
the superlevel set followed by its empirical demonstrations in Section 6.

2 PROBLEM DEFINITION

Consider a simulation optimization problem,

xc = argmaxx∈X E[Y (x;θ
c)], (1)

where X is a finite feasible solution space in Rn, θ c is the true parameter vector, and Y (x;θ c) is the
simulation output at Solution x ∈X . The goal of (1) is to find optimal solution xc that maximizes the
expected performance of a simulated system.

In many practical scenarios, θ c is unknown. In some cases, data is available to estimate θ c by exploiting
a parametric model, but in others, the decision maker may have to model its uncertainty without data. Even
in the former case, the uncertainty about θ c is not fully resolved since there is estimation error caused
by the finiteness of the data. In this work, we assume that we are given distribution f (θ) defined on its
support Θ = {θ ∈Rd : f (θ)> 0}, which models the uncertainty about θ c. For instance, if θ is a parameter
vector of the input distribution of the simulator whose uncertainty is modeled with a Bayesian prior before
collecting any data, then f (θ) may represent the posterior distribution of θ given the data.
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Several papers study how to reflect the uncertainty modeled by f (θ) in Problem (1) by modifying the
problem formulation as reviewed in Section 1. In this work, we approach Problem (1) from the perspective
of statistical inference. To facilitate the discussion, let us define the simulation output of Solution x run with
parameter θ ∈Θ by Y (x;θ) = E[Y (x;θ)|θ ]+ε(x;θ), where ε(x;θ) is the simulation error with mean 0 and
variance 0 < v(x,θ)< ∞ conditional on θ . We refer to E[Y (x;θ)|θ ] as the conditional response at x given
θ , which maps (x,θ) to R. Our objective is to assess the risk caused by unknown θ c by classifying the
feasible solutions in X according to the probability that their conditional responses exceed a user-chosen
threshold, δ . For each x ∈X , let us define the exceedance probability,

pδ (x) := Pr{E[Y (x;θ)|θ ]> δ}, (2)

where the probability is taken with respect to f (θ). Namely, pδ (x) is the probability that the conditional
response at x exceeds the threshold, δ , under all possible realizations of θ prescribed by f (θ). Our goal
is to identify the set of solutions given the user-specified probability threshold, 0 < α < 1:

Sα(δ ) := {x ∈ X |pδ (x)> α}. (3)

In words, Sα(δ ) is the set of solutions whose response exceeds δ with a significant probability (> α)
measured with f (θ).

Although our discussion above focuses on the objective function of (1), the condition, pδ (x) > α ,
adopted to define Sα(δ ) can be interpreted as a chance constraint on the solutions’ acceptable mean
performances (> δ ) in the presence of uncertainty about θ c. With this interpretation, Sα(δ ) represents a
set of solutions that satisfy the chance constraint.

The definition in (3) can be further modified to make other useful inferences for (1). Suppose the
decision maker selects x̂ as a plausible solution to implement in the system. This may be a solution returned
by a simulation optimization algorithm designed to solve a modified version of (1) incorporating f (θ).
For instance, Kim et al. (2025) propose to approximate xc with the solution that has the largest probability
of being optimal with respect to f (θ). Before adopting x̂, the decision maker may want to assess the
risk of implementing x̂ caused by uncertain θ c. If we replace Y (x;θ) in (2) with Y (x;θ)−Y (x̂;θ) and
let δ > 0, then pδ (x) can be interpreted as the probability that x performs better than x̂ by more than δ .
Consequently, the resulting Sα(δ ) contains the solutions whose probability of performing more than δ

better than x̂ is at least α . If δ is chosen as the smallest difference in performance that the decision maker
cares to differentiate, then Sα(δ ) is the set of solutions that are practically better than x̂ with significant
probability α (Song 2021). We leave the opportunities to explore these and more variances of (2) and (3)
to later work, and focus on estimating (3) in this paper.

3 GAUSSIAN PROCESS MODEL AND NESTED LEVEL SET ESTIMATOR

In general, a superlevel set of function g : D → R refers to a subset in domain D that produces an output
exceeding a threshold. Observe that Sα(δ ) has a nested superlevel set structure. At the outer-level, it is
defined as a superlevel set of x ∈X with respect to pδ (x) exceeding the probability threshold, α . At each
solution level, estimating pδ (x) involves identifying a superlevel set of θ that satisfies {E[Y (x;θ)|θ ]> δ}
and calculating the probability of the set with respect to f (θ). Thus, characterizing Sα(δ ) can be viewed
as a nested superlevel set estimation problem.

As reviewed in Section 1, there are several papers focusing on the superlevel set estimation problem
in statistics and machine learning. However, extending it to the nested setting is not straightforward as
both pδ and E[(x;θ)|θ ] need to be estimated from the simulation outputs. Moreover, the estimation error
in the former propagates to the latter. To estimate Sα(δ ) efficiently, it is important to adopt an estimator
of E[(x;θ)|θ ] for each x that allows us to quantify its estimation error as well as how it propagates to the
estimation error of pα .

To this end, in Section 3.1, we introduce a Gaussian process (GP) model that takes (x,θ) as input and
models E[Y (x;θ)|θ ] as an output. Section 3.2 introduces the estimator of Sα(δ ) based on the GP model.
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3.1 Gaussian Process Model

Suppose that we regard E[Y (x;θ)|θ ] as a realization of a stochastic process that maps X ×Θ to R.
Specifically, we assume that {E[Y (x;θ)|θ ]}x∈X ,θ∈Θ is sampled from a prior GP, GP(µ0(x,θ),k0(x,θ ;x′,θ ′)),
where µ0 is the mean function and k0 is the covariance kernel k0 : (X ×Θ)×(X ×Θ)→R. To distinguish
the true conditional response surface from its GP model, we introduce notation ηt(x,θ), which is the GP
estimator for E[Y (x;θ)|θ ] after observing the simulation outputs at solution-parameter pairs until the tth
iteration. Thus, the prior GP can be written as

η0(x,θ)∼ GP(µ0(x,θ),k0(x,θ ;x′,θ ′)) for x,x′ ∈X . (4)

The mean and covariance functions, µ0 and k0, can be parameterized by hyperparamters. We adopt
µ0(x,θ) = β0 ∈ R as a constant prior mean. For the covariance function, we impose k0(x,θ ;x′,θ ′) =
τ2γX (x,x′)γΘ(θ ,θ

′), where τ2 ∈R is the marginal variance of the prior GP, and γX and γΘ are correlation
kernels defined on X ×X and Θ×Θ, respectively. We assume that both γX and γΘ are positive
definite kernels, which makes k0 a positive definite kernel. The parameters of the prior GP can be
estimated through maximum likelihood estimation (MLE) after sampling n0 initial solution-parameter pairs
(x1,θ1),(x2,θ2), . . . ,(xn0 ,θn0) and simulating r replications at each pair (xi,θi). We define the average of the
simulation output at (xi,θi), Ȳi :=∑

r
j=1Yj(xi,θi)/r whereYj(xi,θi) is the jth simulation output at (xi,θi). Then,

the GP prior is updated to the GP posterior conditional on F0 = {(x1,θ1,Ȳ1),(x2,θ2,Ȳ2), . . . ,(xn0 ,θn0 ,Ȳn0)}.
We define the simulation history at the tth iteration, Ft := Ft−1 ∪ {(x1,θ1,Ȳ1),(x2,θ2,Ȳ2), · · · ,

(xnt ,θnt ,Ȳnt )}, where nt is the number of solution-parameter pairs simulated at the tth iteration. In this
paper, we assume only one solution-parameter pair is sampled at each iteration, i.e., nt = 1, for t = 1,2, · · · .
This simplifies Ft = {(x1,θ1,Ȳ1),(x2,θ2,Ȳ2), · · · ,(xn0+t ,θn0+t ,Ȳn0+t)}.

There are two advantages of adopting the GP model: 1) the posterior model after observing Ft is
also a GP, and 2) the posterior GP is completely specified by the mean and covariance functions. Given
stochastic sample Yt := (Ȳ1, . . . ,Ȳn0+t)

⊤ observed at Xt := {(x1,θ1),(x2,θ2), . . . ,(xn0+t ,θn0+t)}, the posterior
GP’s mean µt(x,θ) and covariance kt(x,θ ;x′,θ ′) can be computed as

µt(x,θ) = β0 +Σt(x,θ)⊤(Σt +Σ
ε
t )
−1(Yt −β01n0+t),

kt(x,θ ;x′,θ ′) = k0(x,θ ;x′,θ ′)−Σt(x,θ)⊤(Σt +Σ
ε
t )
−1

Σt(x′,θ ′), (5)

where Σt(x,θ) is a (n0 + t)-dimensional vector of covariances between (x,θ) and Xt stipulated by ker-
nel k0, Σt := [k0(x,θ ;x′,θ ′)](x,θ),(x′,θ ′)∈Xt , Σε

t is the variance-covariance matrix of the simulation errors of
Yt , and 1n is an n-dimensional vector of ones. From (5), the posterior variance at (x,θ) is computed as
σ2

t (x,θ) = kt(x,θ ;x,θ). The posterior GP given Ft can be written as ηt(x,θ)∼GP(µt(x,θ),kt(x,θ ;x′,θ ′))
for x,x′ ∈ X and θ ,θ ′ ∈ Θ. Moreover, ηt , evaluated at the finite set of t distinct (x,θ) pairs,
(x1,θ1),(x2,θ2), . . . ,(xt ,θt), follows a multivariate normal distribution: (ηt(x1,θ1), . . . ,ηt(xt ,θt))

⊤ ∼
N (µt ,Kt), where µt = (µt(x1,θ1), . . . ,µt(xt ,θt))

⊤ and Kt is a t× t covariance matrix whose (i, j)th element
is kt(xi,θi;x j,θ j).

3.2 Nested Level Set Estimator

To infer Sα(δ ), we first estimate pδ (x) in (2) for each x ∈X . We define the estimator of pδ (x) from the
posterior GP model, ηt(x,θ), as

pt,δ (x) := Pr
θ∼ f (θ)

{ηt(x,θ)> δ}=
∫

Θ

1{ηt(x,θ)> δ |θ} f (θ)dθ . (6)

Note that pt,δ (x) is a random variable that depends on the sample path of ηt . We denote the mean and

variance of (6) by µ
(p)
t (x) := EGP[pt,δ (x)] and γ2

t (x) :=VGP[pt,δ (x)], respectively, where EGP and VGP are
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taken with respect to the posterior GP. We further derive

µ
(p)
t (x) = EGP

[∫
Θ

1{ηt(x,θ)> δ |θ} f (θ)dθ

]
=
∫

Θ

PrGP{ηt(x,θ)> δ |θ} f (θ)dθ

=
∫

Θ

{
1−Φ

(
δ−µt(x,θ)

σt(x,θ)

)}
f (θ)dθ =

∫
Θ

(1−Φt(x,θ)) f (θ)dθ , (7)

where the second equality follows from interchanging the two expectations via Fubini’s theorem, and Φ(·)
is the cumulative distribution function (cdf) of the standard normal distribution. The last equality follows
from defining Φt(x,θ) := Φ

(
δ−µt(x,θ)

σt(x,θ)

)
. For the variance of pt,δ (x), we have

γ
2
t (x) =VGP[pt,δ (x)] = EGP[pt,δ (x)

2]−{EGP[pt,δ (x)]}2

= EGP

[∫
Θ

∫
Θ

1{ηt(x,θ)> δ |θ}1{ηt(x,θ ′)> δ |θ ′} f (θ) f (θ ′)dθdθ
′
]
−
{∫

Θ

(1−Φt(x,θ)) f (θ)dθ

}2

=
∫

Θ

∫
Θ

{
PrGP

{
ηt(x,θ)> δ ,ηt(x,θ ′)> δ |θ ,θ ′

}
− (1−Φt(x,θ))(1−Φt(x,θ ′))

}
f (θ) f (θ ′)dθdθ

′

=
∫

Θ

∫
Θ

{
Φt(x,θ ;x,θ ′)−Φt(x,θ)Φt(x,θ ′)

}
f (θ) f (θ ′)dθdθ

′, (8)

where the third equality follows by rewriting the second moment as the double integral. The two random
variables, Z and Z′, are bivariate standard normal random variables with correlation kt(x,θ ;x,θ ′)

σt(x,θ)·σt(x,θ ′)
. The last

equality follows from the inclusion–exclusion principle, i.e., Pr(A∩B) = 1−Pr(Ac)−Pr(Bc)+Pr(Ac∩Bc),
and by defining Φt(x,θ ;x,θ ′) := Pr

{
Z ≤ δ−µt(x,θ)

σt(x,θ)
,Z′ ≤ δ−µt(x,θ ′)

σt(x,θ ′)

∣∣∣θ ,θ ′}.
Computing the integrals in (7) and (8) exactly is difficult in general. Instead, we approximate them

with their Monte Carlo estimates by drawing a finite random sample, θ1,θ2, . . . ,θB
i.i.d.∼ f (θ). Essentially,

we replace Θ with the size-B sample and regard each θb equally likely. This also benefits the acquisition
function optimization in the sequential sampling algorithm discussed in Section 4 as the candidate θs can
be restricted to a finite set. Replacing Θ with the size-B sample, pδ (x) for each x can be approximated by

p̃δ (x) :=
1
B ∑

B
b=11{E[Y (x;θb)|θb]> δ}. (9)

How closely p̃δ (x) approximates pδ (x) depends on the sample size, B. It is easy to see that p̃δ (x) is an
unbiased estimator of pδ (x). Lemma 1 ensures that the estimation error of p̃δ (x) diminishes exponentially
fast in B.

Lemma 1 For all τ > 0, Pr{|p̃δ (x)−E[p̃δ (x)]| ≥ τ} ≤ 2exp
(
−2Bτ2

)
.

Proof. Let Xb = 1{E[Y (x;θb)|θb]> δ}. Then, X1
B , . . . , XB

B are i.i.d. random variables such that 0≤ Xb
B ≤

1
B

almost surely. Let SB = ∑
B
b=1

Xb
B . From Hoeffding’s inequality,

Pr{|SB−E[SB]| ≥ τ}= Pr{|p̃δ (x)−E[p̃δ (x)]| ≥ τ} ≤ 2exp

(
− 2τ2

∑
B
i=1(

1
B −0)2

)
= 2exp

(
−2Bτ

2) .
In the remainder of the paper, we assume that {θ1,θ2, . . . ,θB} is fixed and replaces Θ. Any statistical

statement is conditional on the sample unless otherwise mentioned.
The expressions in (7) and (8) can be rewritten respectively as:

µ
(p)
t (x) =

1
B ∑

B
b=1(1−Φt(x,θb)), γ

2
t (x) =

1
B2 ∑

B
i=1 ∑

B
j=1{Φt(x,θi;x,θ j)−Φt(x,θi) ·Φt(x,θ j)}, (10)

which can be computed easily. The following lemma states the strong consistency of µ
(p)
t (x).
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Lemma 2 As t → ∞, if x is simulated infinitely often at all θb,1 ≤ b ≤ B, then µ
(p)
t (x) a.s.−−→ p̃δ (x) and

γ2
t (x)

a.s.−−→ 0.

Although we omit its proof due to the space limit here, Lemma 2 follows straightforwardly from the
consistency of the posterior mean of the GP.

From (10), we construct the following interval estimate for p̃δ (x) for each x ∈X :

Qt(x) =
[
µ
(p)
t (x)±β

1/2
t γt(x)

]
, (11)

where βt > 0 plays a similar role as the critical value of a CI that determines its coverage. The larger βt

is, the more weight is assigned to the uncertainty of pt,δ (x) due to its prediction error characterized by
γ2

t (x). By comparing each solution x’s lower bound given by Qt(x) with the threshold probability, α , we
define the following estimator of Sα(δ ) in (3):

S̃t := {x ∈X |µ(p)
t (x)−β

1/2
t γt(x)> α− ε}, (12)

where ε > 0 the error tolerance in classifying the solutions based on the estimated p̃δ (x). We suppress the
dependence of S̃t on α and δ for notational convenience. Similarly, we define the estimator of Sc

α(δ ) by
comparing the upper bound of Qt(x) with α:

C̃t := {x ∈X |µ(p)
t (x)+β

1/2
t γt(x)≤ α + ε}.

Again, α is relaxed to α +ε. In both S̃t and C̃t , ε makes the classifications of solutions more conservative.
To understand why such ε is needed, suppose that for some x ∈X , p̃δ (X) = α . Then, for any finite t, x
is incorrectly classified to S̃t

α(δ ) with probability 0.5 even if µ
(p)
t (x) = p̃δ (x). By introducing ε, we allow

the solutions whose p̃δ (x) fall within [α− ε,α + ε] to be classified in both sets as t→ ∞ (cf. Lemma 2).
For any finite t, S̃t

α(δ ) and C̃t
α(δ ) do not necessarily span X , i.e., some solutions may remain

unclassified. Indeed, when γt(x) is large enough so that Q(x) covers the interval, [α − ε,α + ε], then x
remains unclassified at t. As t→∞, all solutions are classified according to Lemma 2. Therefore, we adopt
the stopping criterion that the unclassified set is empty for our sequential sampling algorithm.

The choice of ε should depend on the user’s error tolerance level. Nevertheless, we provide general
guidelines here: 1) choosing larger ε makes the algorithm terminate earlier while tolerating a maximum
classification error of ε and 2) smaller ε requires more sampling to tighten the estimation error bounds
around α , resulting in higher accuracy at a higher sampling cost.

4 ACQUISITION FUNCTIONS

An efficient sequential sampling algorithm would make sampling decisions to quickly classify the unclassified
solutions in subsequent iterations. Unlike a typical level set estimation problem, our problem has a nested
structure where we need to not only choose which solution x to sample, but also decide which θ to
sample with x. In this section, we introduce an acquisition function that guides our algorithm to select
solution-parameter pairs to sample.

In their superlevel set estimation problem, Zanette et al. (2018) adopt the acquisition function that
maximizes the expected size of the estimated superlevel set in the next iteration. Similar approaches are
taken by Iwazaki et al. (2020). However, doing so penalizes the false negatives in identifying the superlevel
set, not the false positives. To see this, suppose solution x’s function value is overestimated, and thus x
is incorrectly classified in the superlevel set. Then, even if γ2

t (x) is large, this acquisition function may
assign a small value to x.
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To reduce both false positives and negatives, our acquisition function At evaluates the expected number
of solutions whose classifications change from being included in S̃t

δ
to be excluded from it (and vice versa)

after sampling (x′,θ ′) at the tth iteration for each pair of x′ ∈X and θ ′ ∈Θ. To mathematically define At ,
let△ denote the set difference operator such that E△F := (E \F)∪ (F \E) for two sets E and F . Namely,
E△F is the set of all elements included or excluded by only one of E and F . After sampling some (x′,θ ′)
at the tth iteration, suppose we update S̃t to S̃t+1, then the number of solutions whose classifications change
to be in/out of the superlevel set is equal to |S̃t+1△S̃t |= |S̃t+1 \ S̃t |+ |S̃t \ S̃t+1|. Therefore, the acquisition
function, At , can be written as

At(x′,θ ′) := E
[
|S̃t+1△S̃t |

∣∣Ft ,at = (x′,θ ′)
]
. (13)

We choose the next sampling pair that maximizes At : (x∗,θ ∗) = argmax(x′,θ ′)∈X ×Θ At(x′,θ ′). In words,
sampling (x′,θ ′) is expected to make the largest classification change in S̃t+1 from S̃t given Ft .

To discuss the computation of (13), we first rewrite it as

(13) = E
[
∑x/∈S̃t 1[x ∈ S̃t+1]

∣∣∣Ft ,at = (x′,θ ′)
]
+E

[
∑x∈S̃t 1[x /∈ S̃t+1]

∣∣∣Ft ,at = (x′,θ ′)
]

= ∑x/∈S̃t Pr{µ(p)
t+1(x)−β

1/2
t+1γt+1(x)> α− ε|Ft ,at = (x′,θ ′)}

+∑x∈S̃t Pr{µ(p)
t+1(x)−β

1/2
t+1γt+1(x)≤ α− ε|Ft ,at = (x′,θ ′)} (14)

where the second equality follows from the definition in (12). Computing the probabilities in (14) requires
the predictive distribution of µ

(p)
t+1(x)−β

1/2
t+1γt+1(x) conditional on sampling at = (x′,θ ′). Let µt ∈ R|X |B

and Vt ∈R|X |B×|X |B denote the mean vector and the variance-covariance matrix of the posterior GP at all
X ×{θ1,θ2, . . . ,θB} at the tth iteration. From their respective expressions in (10), observe that µ

(p)
t+1(x)

and γt+1(x) are completely specified by µt+1 and Vt+1. Given at = (x′,θ ′), it can be shown that µt+1 is a
multi-variate normal vector, while Vt+1 is derived deterministically regardless of the simulation result at
at (Xie et al. 2016):

µt+1 ∼N (µt ,Vt −Vt+1), Vt+1 =Vt −
Vte(x′,θ ′)e⊤(x′,θ ′)V

⊤
t

v(x′,θ ′)/r+ e⊤(x′,θ ′)V
⊤

t e(x′,θ ′)
, (15)

where e(x,θ) ∈ R|X |B is a standard basis vector that has one corresponding to (x,θ) and zero elsewhere.
The marginal predictive variance at (x,θ) can be computed from Vt+1: σ2

t+1(x,θ) = e⊤(x,θ)Vt+1e(x,θ).

Because µ
(p)
t+1(x)−β

1/2
t+1γt+1(x) is a nonlinear function of µt+1, deriving its exact distribution is chal-

lenging. Instead, we approximate µ
(p)
t+1(x)−β

1/2
t+1γt+1(x) by a linear function in µt+1 around µt+1 = µt and

derive its distribution. First, we have the following approximation for µ
(p)
t+1(x)

µ
(p)
t+1(x)≈

1
B

B

∑
b=1

Φ

(
µt(x,θb)−δ

σt+1(x,θb)

)
+

1
B

B

∑
b=1

1
σt+1(x,θb)

φ

(
µt(x,θb)−δ

σt+1(x,θb)

)
{µt+1(x,θb)−µt(x,θb)} , (16)

where φ(·) is the standard normal probability density function. Similarly, taking the linear approximation
of γt+1(x) in µt+1 at µt+1 = µt gives

γt+1(x)≈

{
1

B2

B

∑
i=1

B

∑
j=1

[
Pr
{

Zi ≤
δ −µt(x,θi)

σt+1(x,θi)
,Z j ≤

δ −µt(x,θ j)

σt+1(x,θ j)

}
−Φ

(
δ −µt(x,θi)

σt+1(x,θi)

)
Φ

(
δ −µt(x,θ j)

σt+1(x,θ j)

)]}1/2

+
1
2

(∇µt+1(x)γ
2
t+1(x)|µt+1(x)=µt (x))

⊤(µt+1(x)−µt(x)){
1

B2 ∑
B
i=1 ∑

B
j=1

[
Pr
{

Zi ≤ δ−µt (x,θi)
σt+1(x,θi)

,Z j ≤
δ−µt (x,θ j)

σt+1(x,θ j)

}
−Φ

(
δ−µt (x,θi)
σt+1(x,θi)

)
Φ

(
δ−µt (x,θ j)

σt+1(x,θ j)

)]}1/2 , (17)
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where µt(x) ∈ RB is a subvector of µt corresponding to x, and Zi and Z j are bivariate standard normal
variables with correlation kt+1(x,θi;x,θ j)

σt+1(x,θi)σt+1(x,θ j)
. From (16) and (17), it follows that µ

(p)
t+1(x)−β

1/2
t+1γt+1(x) is

approximately normally distributed as

µ
(p)
t+1(x)−β

1/2
t+1γt+1(x)≈ hx +g⊤x (µt+1(x)−µt(x))∼N (hx,(g⊤x wx)

2), (18)

where the expressions for hx ∈ R and gx,wx ∈ RB are given in Appendix A.
From (18), we can approximate At(x′,θ ′) in (14) by

Ãt(x′,θ ′) := ∑x/∈S̃t Φ

(
−α−ε−hx
|g⊤x wx|

)
+∑x∈S̃t Φ

(
α−ε−hx
|g⊤x wx|

)
. (19)

Therefore, the next sampling pair can be determined by solving (x∗,θ ∗) = argmax(x′,θ ′)∈X ×Θ Ãt(x′,θ ′).
Computing Ãt for all B|X | pairs at each t is expensive. To reduce the cost, we first select a ‘good’

parameter for each solution x to sample and then evaluate Ãt for the down-selected solution-parameter
pairs. Let θt,x represent the parameter selected for x at the tth iteration according to some criterion.
Then, our sampling decision with the reduced action space becomes (x∗,θ ∗) = argmaxx∈X Ãt(x,θt,x).
While other criteria are possible, in our empirical studies in Section 6, we select θt,x to be the posterior
variance-maximizing parameter of the GP model at x, i.e., θt,x = argmaxθb∈{θ1,θ2,...,θB}σt(x,θb).

5 SEQUENTIAL SAMPLING ALGORITHM

Algorithm 1 presents our procedure that fits and updates the GP model in Section 3.1, estimates Sα(δ )
from (12), and selects the next sampling solution-parameter pair by applying the acquisition function
introduced in Section 4.

At the beginning of the algorithm and every p iterations thereafter, it refits the GP hyperparameters
via maximum likelihood estimation. We compute µ

(p)
t (x) and γt(x) for each x ∈X and construct the CI,

Qt(x), in Lines 9-11. From these CIs, we update S̃t and C̃t (Line 12), and find θt,x for each x ∈X . We
then evaluate the approximate acquisition function, Ãt(x,θt,x), for each x ∈X and select the maximizer
(x∗,θ ∗) for sampling (Lines 13-15). The algorithm terminates when the unclassified set is empty or the
simulation budget is exhausted (Line 19).

Recall that we introduce ε and relax the set classification criteria in Section 4. The following theorem
states the statistical guarantee that Algorithm 1 provides.

Theorem 1 Suppose that {E[Y (x,θ)|θ ]}x∈X ,θ∈Θ is a realization of the prior GP η0 in (4). For any α ∈ (0,1),
ξ ∈ (0,1), ε > 0 and Θ = {θ1,θ2, . . . ,θB}, if βt = |X |/ξ , then Algorithm 1 terminates after a finite number
of iterations, T . Moreover, with probability no less than 1− ξ , the following holds simultaneously for
every x ∈X : if p̃δ (x)> α + ε then x ∈ S̃T \C̃T , and if p̃δ (x)< α− ε then x ∈ C̃T \ S̃T .

The proof follows by extending the results in Iwazaki et al. (2020), which we omit here due to the
page limit. Theorem 1 guarantees that Algorithm 1 terminates and classifies all solutions in finite time.
Moreover, Theorem 1 ensures that we can identify all solutions whose exceendance probabilities are greater
than α + ε in finite time with probability at least 1−ξ .

6 EMPIRICAL STUDY

In this section, we illustrate the empirical performance of our algorithm using an M/M/1/k queueing system.
The decision variable x = k represents the system capacity, and the goal is to minimize the expected net cost
per customer, which can be written as: E[net cost per customer] = cE[waiting time]−rev(1−Pr{balking}),
where c = 1 is the cost per unit waiting time per customer, and rev = 1 is the revenue per each served
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Algorithm 1 Sequential nested superlevel set estimation procedure
1: Input: f (θ), number of sampled parameters B, user-specified thresholds δ and α , number of replications

r, initial sample size n0, period for GP parameter update p, simulation budget T .
2: Sample θ1,θ2, . . . ,θB from f (θ).
3: Select n0 initial (x,θ) pairs from X ×{θ1,θ2, . . . ,θB}, simulate r replications at each pair to obtain

Y0 = {Ȳ1, . . . ,Ȳn0}, and update F0←{(x1,θ1,Ȳ1), . . . ,(xn0 ,θn0 ,Ȳn0)}.
4: t← 0.
5: do
6: If t mod p = 0 Then
7: Estimate the hyperparameters of the GP via MLE given Ft

8: Compute the mean function µt and covariance function Vt of GP conditional on Ft in (5).
9: For all x ∈X do

10: Compute µ
(p)
t (x) and γt(x) in (10), and construct Qt(x) in (11).

11: end for
12: Update S̃t and C̃t .
13: For each x, find θt,x = argmaxθb∈{θ1,θ2,...,θB}σt(x,θb) to construct reduced action space
14: For each x ∈X , compute Ãt(x,θt,x) in (19).
15: Select (x∗,θ ∗) = argmaxx∈X Ãt(x,θt,x).
16: Run r replications at (x∗,θ ∗) and update Ft+1←Ft ∪{(x∗,θ ∗,Ȳ ∗)}.
17: Update µt+1 and Vt+1 conditional on Ft+1.
18: t← t +1.
19: While S̃t ∪C̃t ̸= X and t < T
20: Return S̃t−1

customer. Since our algorithm is designed to maximize the objective, we multiply the expected net cost
per customer by −1. We consider the candidate of system capacity k = 1, . . . ,50, so X = {1≤ x≤ 50}.
In this problem, Θ is the parameter set of the distribution of interarrival and service times. Suppose that
the real-world interarrival and service times are exponentially distributed with their means denoted by θ1
and θ2, respectively. We model our uncertainty by assuming θ1 ∼U(0.9,1.1) and θ2 ∼U(0.9,1.8). To
discretize Θ, we draw 11 random samples from each uniform distribution, 11 for θ1 and 11 for θ2, and
form the Cartesian product. So, we replace Θ with the size-B = 121 samples.

To calculate p̃δ (x), we compute the negative expected cost for each of the B sampled parameter vectors
and for each capacity x ∈X , and compare it against the threshold δ . From (9), we obtain the discrete
approximation of the exceedance probability, Pr{E[net cost|θ1,θ2] > δ}, for each x. We assume that the
user chose δ = 110 and α = 0.8, while ε = 0.05. We define S̃ε := {x ∈X |α − ε ≤ p̃δ (x) ≤ α + ε}
whose elements are allowed to be misclassified and two sets, R := S̃α(δ )\ S̃ε and F := S̃c

α(δ )\ S̃ε , where
S̃α(δ ) := {x ∈ X |p̃δ (x)> α}; R consists of the elements that must be included in S̃t while Fcontains the
elements that must be excluded from S̃t . These two sets are used to evaluate the classification accuracy. For
our problem, S̃α(δ ) = {x ∈X |p̃δ (x)> 0.8}= {4,5,6,7,8,9,10,11,12} and S̃ε = {3,9,10,11,12,13,14}.

We evaluate each capacity x under uncertainty in the mean interarrival and service times by estimating its
expected cost via simulations. Each time we simulate some (x,θ), we run r = 30 independent replications.
In each replication, we simulate 100 customer arrivals: first drawing the system’s initial occupancy from its
steady-state distribution, then, computing each customer’s cost using Lindley’s equation. We average the
100 costs to produce a simulation output for one replication. Once (x,θ) is sampled, v(x,θ) is estimated by
the sample variance of the outputs. Our initial design consists of n0 = 50 pairs chosen by Latin hypercube
sampling. At each iteration of the algorithm, we fit a GP surrogate to the observed pairs {(x,θ),Ȳ ,v(x,θ)}
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Table 1: Summary statistics averaged over 50 macro runs of Algorithm 1 for βt = 4,9, and 16. The standard
errors are presented in parentheses. The last column contains the number of macro runs that terminated
after satisfying the stopping criterion before t = 150.

β Estimated set size FN FP # Unclassified sol. # macros terminated in time
4 11.74 (0.42) 1.00 (0.19) 2.44 (0.33) 1.32 (0.43) 35
9 9.04 (0.34) 0.06 (0.04) 0.42 (0.16) 9.32 (0.96) 4

16 7.64 (0.22) 0.0 (0.0) 0.04 (0.03) 19.36 (1.03) 0

using a Matérn covariance kernel with smoothness parameter ν = 2.5. We test β
1/2
t = 2,3 and 4, and the

simulation budget T = 150 for numerical experiments.
We define two penalty functions to assess error in our set estimation problem. Suppose T̂ be some

estimator. We define false negatives (FN) := |R \ T̂ | as the number of required elements that T̂ fails to
include, and false positives (FP) := |F∩ T̂ | as the number of forbidden elements that T̂ mistakenly includes.
These two penalties measure omission and commission errors, respectively.

The experiment results are based on 50 macro-runs. The summary results of Algorithm 1 are shown
in Table 1. Table 1 summarizes the performance of our sequential sampling algorithm over 50 macro runs
for β

1/2
t = 2,3 and 4. For each β , we report the average estimated set size, the mean number of false

negatives (FN) and false positives (FP). If the macro run stops at T = 150, then we present the average
number of solutions left unclassified at termination T = 150. The last column shows the number of macro
runs completed within the simulation budget. The standard errors are presented in parentheses.

A larger choice of β makes all confidence bounds Qt(x) wider, which slows down the rate at which
any solution is classified. So, the algorithm must sample more to achieve the same level of confidence
in classifying each solution. In other words, larger β makes the algorithm more conservative, reducing
the risk of including forbidden elements but requiring more iterations to terminate. In contrast, smaller β

results in narrower confidence bounds Qt(x), quicker classifications, and fewer iterations until stopping, at
the cost of potentially higher misclassification error.

This behavior can be observed in Table 1. For β = 4, the average estimated set size is the largest
(11.74), with corresponding higher false negatives (0.84) and false positives (2.44), but the algorithm
terminates within 150 iterations in 35 of 50 runs. Increasing β = 9 shrinks the estimated set size (9.04),
reduces false negatives almost to zero (0.02), and reduces false positives (0.42), but only 4 runs meet the
stopping criterion, and on average 9.32 solutions remain unclassified. For β = 16, the algorithm is the
most conservative: the set size falls to 7.64, both the average FN and FP are 0.04, but no runs terminate
early and nearly 20 solutions on average remain unclassified. Table 1 illustrates the trade-off between
classification accuracy and termination time (or convergence speed) as β varies.

To further demonstrate the performance of Algorithm 1, we present the sampling frequencies of all
solutions within a single macro run in Figure 1. The left panel shows the sampling frequencies with β = 4
(terminated after 27 iterations) and the right panel shows the sampling frequencies with β = 16 (terminated
after 150 iterations). In both cases, k = 1 is sampled most frequently since the GP has large prediction errors
at the lower k of the solution space from the property of M/M/1/k queueing system. Other than k = 1, the
sampling decision concentrates on the k values near the true superlevel set since these points have stronger
influence on whether a solution’s exceedance probability crosses the user-specified probability threshold
α . For β = 4, the earlier termination time leads to a wider spread of samples, whereas for β = 16 the
longer termination time allows more focused exploration around the boundary region.

Furthermore, we present the fitted GP within a single run of the algorithm in Figure 2, which displays
the posterior GP’s mean and its confidence bounds at iteration 1 (blue solid line/shaded region) and at
termination time (orange solid line/shaded region). The red line and the purple dotted line represent the
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Figure 1: Sampling frequencies of solutions until stopping for β = 4 (left) and 16 (right).

Figure 2: Fitted GP plot for β = 4 (left) and 16 (right).

true exceedance probability and the user-specified probability threshold α = 0.8, respectively. Initially,
the GP mean lies above the threshold with large uncertainty. At termination, the GP mean has been fitted
downward where the true exceedance probability is below the threshold, and its confidence bound has
narrowed near the superlevel set boundary, allowing the algorithm to reliably include or exclude solutions.
In the right panel, the closer alignment of the GP mean to the true exceedance probability near the boundary
shows how sequential sampling improves estimation accuracy and reduces uncertainty.

7 CONCLUSION

In this paper, we study the problem of identifying high-performing solutions when model parameters are
uncertain. We formulate the problem as a nested superlevel set estimation problem and propose a set
estimator based on the GP model fit to the simulation output mean as a function of the solution and
parameter. The set estimator classifies each solution according to whether its lower confidence bound
exceeds the target threshold with error tolerance. We also propose an acquisition function that aims to
reduce both false positive and negative classifications and its efficient approximation scheme that keeps
the computational cost manageable for a large solution/parameter space. In the extended version of this
conference paper, we will provide a more thorough empirical study including benchmarking against the
state-of-the-art procedures. Moreover, we plan to investigate the problem of classifying the solutions based
on the threshold relative to the best-performing solution’s performance measure in future studies.
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A APPENDIX A
We provide the expressions for the vectors and scalars that appear in (18). First, the following vectors are all B-dimensional:

wx :=

{
e⊤(x,θb)

Vte(x′,θ ′)

{v(x′,θ ′)/r+σ2
t (x′,θ ′)}1/2

}
1≤b≤B

, cx :=
{

1
B

1
σt+1(x,θb)

φ
(
−δθb

)}
1≤b≤B

,

dx :=

{
2

B2
1

σt+1(x,θb)
φ
(
δθb

) B

∑
i=1

[
Φ
(
δθi

)
−Φ

(
δθi −ρi,bδθb

(1−ρ2
i,b)

1/2

)]}
1≤b≤B

, gx := cx−
(

βt+1

4l0

)1/2
dx

where δθi := δ−µt (x,θi)
σt+1(x,θi)

, ρi,b := kt+1(x,θi;x,θb)
σt+1(x,θi)σt+1(x,θb)

, and l0 := 1
B2 ∑

B
i=1 ∑

B
j=1

[
Pr
{

Zi ≤ δθi ,Z j ≤ δθ j

}
−Φ

(
δθi

)
·Φ
(

δθ j

)]
. Lastly,

hx := 1
B ∑

B
b=1 Φ

(
µt (x,θb)−δ

σt+1(x,θb)

)
− (βt+1l0)1/2.
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