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ABSTRACT

Bioprocess mechanistic modeling is essential for advancing intelligent digital twin representation of bioman-
ufacturing, yet challenges persist due to complex intracellular regulation, stochastic system behavior, and
limited experimental data. This paper introduces a symbolic and statistical learning framework to iden-
tify key regulatory mechanisms and quantify model uncertainty. Bioprocess dynamics is formulated with
stochastic differential equations characterizing intrinsic process variability, with a predefined set of candidate
regulatory mechanisms constructed from biological knowledge. A Bayesian learning approach is developed,
which is based on a joint learning of kinetic parameters and regulatory structure through a formulation of
the mixture model. To enhance computational efficiency, a Metropolis-adjusted Langevin algorithm with
adjoint sensitivity analysis is developed for posterior exploration. Compared to state-of-the-art posterior
sampling approaches, the proposed framework achieves improved sample efficiency and robust model
selection. A cell culture simulation study demonstrates its ability to recover missing regulatory mechanisms
and improve model fidelity under data-limited situations.

1 INTRODUCTION

Over the past several decades, biopharmaceuticals have risen to prominence due to their rapid development
and substantial contributions to public health, particularly through the production of vaccines and therapeutics.
By 2021, the global market value of biopharmaceuticals reached $343 billion, with 67% (107 out of 159)
of approved recombinant products manufactured using mammalian cell systems (Walsh and Walsh 2022).
To facilitate intelligent digital twin development for biomanufacturing processes, it is critical to learn
the regulatory mechanisms on reaction network dynamics; that means the mechanisms explaining how
reaction rates depend on process states such as molecular concentrations, pH level, and temperature. For
example, in enzymatic reaction networks, the enzymes could have different structure-function, depending
on the environmental conditions, that influences molecule-to-molecule interactions and reaction rates.
The proposed symbolic and statistical learning framework for biological system or bioprocess regulatory
mechanism learning is general and it can facilitate interpretable and sample efficient learning.

In this paper, cell culture will be used for illustration even though the proposed framework is general.
In mammalian cell culture systems, cellular metabolism is governed by a complex network of mechanisms,
including feedback inhibition, feedforward activation, and nutrient-sensing pathways (Young 2013; Yuan
et al. 2013). These regulatory interactions are critical in shaping key process outcomes, such as cell growth,
productivity, and product quality. Moreover, mammalian cell cultures are inherently sensitive to variations
in culture conditions, which can significantly affect yield and critical quality attributes (CQAs) of the final
product (Dressel 2011). To enhance scientific understanding and improve predictive capabilities, mechanistic
dynamic models of mammalian cell culture systems are developed to quantitatively describe cellular behavior
and assess product quality attributes. These models integrate established biological mechanisms to provide
a system-level representation of cellular regulation, facilitating the analysis of causal interdependencies
between process inputs (e.g., nutrient concentrations, dissolved oxygen levels, feeding strategies) and critical
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outputs (e.g., cell density, product titer, and CQAs such as glycosylation profiles and product integrity).
By capturing the dynamic interactions between cellular metabolism and environmental conditions, these
models support rational process design, optimization, and control in biopharmaceutical manufacturing.

However, molecular and metabolite heterogeneity introduces inherent stochasticity, contributing to
batch-to-batch variability frequently observed in biomanufacturing (Tonn et al. 2019). This phenomenon,
often referred to as double stochasticity, implies that molecular reaction rates are influenced by random
fluctuations in state such as species concentrations and environmental conditions. Failure to account for this
heterogeneity can result in biased model predictions, underestimation of process variability, and ultimately
ineffective and suboptimal control strategies, as the model may overlook critical subpopulation behaviors
that impact process robustness and product quality consistency. To address this issue, stochastic differential
equations (SDEs) provide an appropriate framework for modeling cell culture processes, capturing inherent
probabilistic nature of these systems. The drift and diffusion terms of SDEs can be formulated based on widely
applied foundation models for enzymatic reactions (Kyriakopoulos et al. 2018), such as Michaelis–Menten
kinetics, representing molecular interactions and explaining bioprocessing regulatory mechanisms.

Based on the SDE framework, several challenges remain in the construction of bioprocess regulatory
mechanistic models. First, the cellular response to environmental perturbations is inherently complex,
particularly when accounting for the intricacies of intracellular metabolic networks and their associated
regulatory mechanisms. While biological knowledge in this area is relatively well-established, and extensive
information on enzymatic reactions is available through literature and public databases such as the BRENDA
Enzyme Database (Chang et al. 2021), the activation of individual regulatory mechanisms can vary
significantly depending on the cell type as well as on specific gene expressions, metabolic characteristics,
and bioprocess configurations (e.g., batch, fed-batch, and perfusion). Incorporating all potential regulatory
mechanisms without discrimination introduces unnecessary complexity. Therefore, it is essential to identify
and select a parsimonious subset of predefined regulatory mechanisms that are most relevant for a given
cell type and culture condition, thereby ensuring biological fidelity while maintaining model simplicity
and interpretability. Second, limited data availability poses a significant challenge for mechanistic model
construction leading to substantial uncertainty in model estimation on complex regulatory mechanisms.

To address these challenges, a predefined set of candidate regulatory mechanisms is constructed based on
literature and public databases. Each candidate model represents a specific combination of active regulatory
mechanisms. This ensemble forms the foundation of a mixture model formulation, where the overall reaction
dynamics are expressed as a weighted combination of candidate models, with the weights reflecting the
likelihood of each mechanism being active. In addition, this paper introduces a new Bayesian learning
approach for model structure selection and mechanistic parameter inference that explicitly quantifies model
estimation uncertainty. Both weights and kinetic parameters are jointly statistically learned to systematically
identify the most relevant regulatory mechanisms while accounting for model uncertainty. Unlike many
existing methods—such as approximate Bayesian computation (ABC) (Sunnåker et al. 2013) and its variants
(Xie et al. 2022)—this framework employs likelihood-based inference. In likelihood-free approaches like
ABC, the complexity and stochasticity of cell culture models, as well as very limited data, make generating
sufficient sample paths computationally demanding, with low acceptance rates limiting efficiency.

The proposed framework leverages the benefits from symbolic and statistical learning to discover missed
regulatory mechanisms. From a symbolic learning perspective, the model candidates are constructed based
on established scientific understanding of bioprocessing mechanisms, ensuring that the search space is
biologically plausible and interpretable. From a statistical learning perspective, the proposed Metropolis
adjusted Langevin algorithm (MALA) approach adds a drift in Markov chain Monte Carlo (MCMC) posterior
sampling search based on the gradient of likelihood that considers model structure and efficiently allocates
more sampling efforts on the most promising regulatory mechanisms, explaining bioprocess dynamics in the
observations. Furthermore, adjoint sensitivity analysis, accounting for complex spatial-temporal dependence
of candidate models and mechanistic parameters during posterior search, can improve Bayesian learning
efficiency and estimation robustness in model selection and parameter inference.
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The structure of this paper is organized as follows. Section 2 provides the problem description for
bioprocess mechanistic modeling, including a brief introduction to the regulatory mechanisms considered.
Leveraging on the information from closed-form posterior distribution, Section 3 describes the MALA
posterior inference and asymptotic consistency. Section 4 presents a new posterior sampling algorithm that
utilizes adjoint sensitivity analysis, accounting for interdependencies of model parameters, to accelerate the
posterior sampling convergence. A cell culture simulation study is conducted in Section 5, demonstrating
the framework’s promising performance in terms of sample and computational efficiency to discover missed
regulatory mechanisms, facilitating the construction of intelligent digital model representations. Finally,
Section 6 synthesizes the key findings and insights gathered throughout this study, concluding the paper.

2 PROBLEM DESCRIPTION

We will provide a rigorous problem description in Section 2.1 and use a simple representative metabolic
reaction network example in Section 2.2 to explain how the proposed approach builds on pre-defined rules
on bioprocessing mechanisms and enables us to leverage the benefits from symbolic and statistical learning
to discover missed regulatory mechanisms. This can facilitate interpretable and sample-efficient learning.

2.1 Bioprocess Regulatory Mechanism Modeling

In this paper, bioprocess mechanistic model is represented by stochastic differential equations (SDEs), i.e.,

dssst = µµµ(ssst ;θθθ
c)dt +σσσ(ssst ;θθθ

c)dWt , (1)

where dWt is the increment of a standard Brownian motion and ssst = (s1
t ,s

2
t , . . . ,s

p
t )

⊤ represents a p-
dimensional state at any time t. Both mean µµµ(ssst ;θθθ c) and standard deviation σσσ(ssst ;θθθ

c) are functions of the
system state ssst and they are determined by unknown regulatory mechanisms characterized by v(ssst ;θθθ c) with
θθθ

c representing the true set of model parameters characterizing regulatory mechanisms. This continuous-
time SDE-based mechanistic model represents the dynamics and inherent stochasticity of bioprocess, which
is driven by fluctuations in enzyme activities, gene expression levels, and environmental conditions.

Suppose the bioprocessing dynamics is induced by a reaction network, composed of p molecular species
and L reactions, with structure specified by a known p×L stoichiometry matrix denoted by NNN. Let RRRt be
a vector representing the number of occurrences of each molecular reaction within a short time interval
(t, t +∆t], during which the system state evolves from ssst to ssst+∆t . Since a molecular reaction will occur
when one molecule collides, binds, and reacts with another one while molecules move around randomly,
driven by stochastic thermodynamics of Brownian motion (Golightly and Wilkinson 2005), the occurrences
of molecular reactions are modeled by non-homogeneous Poisson process. Thus, the state transition model
becomes,

ssst+∆t = ssst +NNN ·RRRt with RRRt ∼ Poisson(v(ssst ;θθθ
c)∆t),

where NNN ·RRRt represents the net amount of reaction outputs during time interval (t, t +∆t]. Then, the
bioprocess mechanistic model in Equation (1) can be written in the updated SDE form, i.e.,

dssst = NNNv(ssst ;θθθ
c)dt +(NNNdiag(v(ssst ;θθθ

c))NNN⊤)
1
2 dWt . (2)

The bioprocess dynamics is specified by a regulatory mechanistic model of reaction network flux
rates v(ssst ;θθθ c) =

(
v1(ssst ;θθθ

c),v2(ssst ;θθθ
c), . . . ,vL(ssst ;θθθ

c)
)⊤ for L reactions; that depends on state variables ssst

such as molecular concentrations, temperature, and pH level. However, in real-world applications, the
understanding of biological system or bioprocessing regulatory mechanism is often not fully known since
the structure-function of biomolecules (such as DNAs, RNAs, and proteins) is very complex and highly
depends on various factors, including environmental conditions, the type of substrates, and ion concentrations.
Therefore, to construct intelligent digital twins for biomanufacturing systems, this motivates the need to
learn the underlying regulatory mechanism, including both structure and parameters of v(ssst ;θθθ c).
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In specific, built on current scientific knowledge, we propose a total of K candidate models that can come
from literature and experimental studies, and each candidate regulation model is denoted as ṽk(ssst ;ϑϑϑ k) for
k = 1,2, . . . ,K. We assign a weight wk to each k-th candidate model and construct a mixture representation
to characterize bioprocess dynamics induced by various potential regulatory mechanisms,

ṽ(ssst ;θθθ ,www) =
K

∑
k=1

wkṽk(ssst ;ϑϑϑ k) with wk ∈ [0,1] for k = 1,2, . . . ,K; subjected to
K

∑
k=1

wk = 1. (3)

Letθθθ =(ϑϑϑ 1,ϑϑϑ 2, . . . ,ϑϑϑ K) andwww=(w1,w2, . . . ,wK)with wk representing the probability that the k-th candidate
model, denoted by Mk, is selected. Therefore, the candidate model is specified by the probabilistic weights
and regulatory mechanistic parameters, i.e., (wk,ϑϑϑ k)

K
k=1.

Denote the set of regulatory mechanisms as R = {R1,R2, . . . ,RC}, where C is the total number of
regulatory mechanisms of interest; for example in a representative cell culture metabolic reaction network
example as shown in Figure 1 with C = 4 candidate regulatory mechanisms R1,R2,R3,R4. The total number
of model candidates corresponds to all possible combinations of activation statuses (i.e., active or inactive)
of each regulatory mechanism. In real application, we represent wk as a product of activation probabilities
for each regulator mechanism in R. Specifically, for a candidate model Mk defined by a binary vector
zk = (zk,1, . . . ,zk,C), where zk,i ∈ {0,1} with i = 1,2, . . . ,C indicates the activation of mechanism Ri, we
define wk = ∏

C
i=1 pzk,i

i (1− pi)
1−zk,i , with pi ∈ [0,1] representing the marginal probability that Ri is active.

This allows us to calibrate the model using only C values {pi}C
i=1, rather than K individual weights.

In this paper, we propose an efficient and interpretable Bayesian learning approach that can quickly
identify missed regulatory mechanisms and advance scientific understanding. Let {̃ssst} denote the prediction
on the trajectory {ssst} generated by underlying regulatory mechanism v(ssst ;θθθ c) by using a candidate model
of ṽ(ssst ;θθθ ,www) with a mixture form as shown in Equation (3). Given any posterior sample of the regulatory
model specified by (θθθ ,www), the gradient of the log-likelihood or posterior with respect to both θθθ and www is
derived, enabling the use of Metropolis-adjusted Langevin Algorithm (MALA) to drift posterior sampling to
the area of (θθθ ,www) with high likelihood. To further accelerate the convergence of MALA, adjoint sensitivity
analysis (SA) is applied to quantify how the posterior state evolves with respect to the initial sample and
then a metamodel is constructed to estimate the initial bias, reduce the warmup cost, and quickly guide
the posterior sampling toward high-probability regions of the candidate model space.

Therefore, based on candidate models from existing scientific knowledge characterizing molecule-
to-molecule interactions and the potential logic of reaction network dynamics, the proposed Bayesian
learning approach combines likelihood-gradient-driven posterior sampling and adjoint SA-based metamodel
correction, ensuring interpretable, efficient, and robust learning of the underlying regulatory mechanisms.

2.2 A Representative Metabolic Reaction Network Illustrative Example

In this section, we describe the kinetic modeling of regulatory metabolic networks for a simple representative
cell culture example as shown in Figure 1. The kinetic model in Equation (3) has the selected components
providing the logic representation of the regulatory mechanisms of the cellular reaction network system.
This enables us to learn the underlying mechanisms explaining the dynamics of extracellular and intracellular
metabolite concentrations. The reaction rate and the change of metabolites depends on substrate availability
and regulatory interactions of molecules. Therefore, the kinetic model of the metabolic reaction network
characterizes the underlying mechanisms governing cellular metabolic processes and their dynamic responses
to environmental changes.

For each ℓ-th enzymatic regulation in the metabolic reaction network with structure specified by a
stoichiometry matrixNNN, its reaction or flux rate at time t is modeled as below, following the Michaelis–Menten
(MM) kinetics (Michaelis and Menten 2007):

vℓ(ssst ;θθθ) =Vmax,ℓ ∏
y∈Ωℓ

Y

sy
t

sy
t +Km,y

, (4)
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Figure 1: (a) Schematic of a simple metabolic reaction network with green and blue represent extracellular
and intracellular metabolites. Reactions with flux rate modeling using M-M kinetics are shown in Red.
(b) Illustration of enzyme regulatory mechanisms (Created with BioRender.com). (1) Standard Catalysis:
Under baseline conditions, the substrate binds to the enzyme’s active site, leading to catalysis without
regulatory interference. (2) Competitive Inhibition: A competitive inhibitor binds to the enzyme’s active
site, preventing substrate binding and thus inhibiting catalysis. (3) Non-Competitive Inhibition: A non-
competitive inhibitor binds to a distinct allosteric site, allowing substrate binding but impairing catalytic
activity, resulting in reduced reaction rates without affecting substrate affinity. (4) Allosteric Activation:
An allosteric activator binds to an allosteric site, inducing a conformational change that enhances enzyme
activity by either improving substrate binding affinity, increasing catalytic turnover, or both.

for ℓ= 1,2, . . . ,C, where the set Ωℓ
Y represents the collection of substrates influencing the flux rates. The

parameters Km,y and Vmax,ℓ represent the affinity constant and the maximum specific flux rate, respectively.
Here, the parameter vector θθθ includes both Vmax,ℓ and Km,y for all ℓ-th reactions and the substrates y ∈ Ωℓ

Y .

In specific, for each enzymatic reaction, E + S
kF
⇄
kR

ES kcat→ E +P (product), the substrate (S) needs to

interact and form a reversible complex (ES) with the enzyme (E) for the enzyme to be able to perform
its catalytic function to produce the product (P). Kinetic rates include: (1) kF and kR associated with the
binding and unbinding rates of molecules E and S; and (2) kcat reflecting the enzyme’s efficiency in terms
of facilitating molecular reactions by reducing the required energy barrier.

Various regulatory mechanisms—including allosteric regulation, competitive inhibition, and non-
competitive inhibition—are incorporated into the proposed metabolic flux kinetic model; see for example
Equation (4). A brief introduction to these common mechanisms is provided in the caption of Figure 1,
along with an illustrative diagram. Considering multiple regulatory mechanisms, the flux rate model for
each ℓ-th reaction is updated as follows:

vℓ(ssst ;θθθ) = vmax,ℓ ∏
y∈Ωℓ

Y

sy
t

sy
t +K ′

m,y
∏

z∈Ωℓ
Z

Ki,z

sz
t +Ki,z

with K
′
m,y = Km,y

(
1+ ∑

z′∈Ωℓ
Z′

sz′
t

Ki,z′
+ ∑

x∈Ωℓ
X

Ka,x

sx
t

)
,

where Ωℓ
Y denotes the set of substrates, Ωℓ

Z the set of non-competitive inhibitors, Ωℓ
Z′ the set of competitive

inhibitors, and Ωℓ
X the set of allosteric activators. Ki and Ka are the inhibition and activation constants.

A representative metabolic reaction network for mammalian cells, adapted from Hassell et al. (1991),
Mulukutla et al. (2012), Ghorbaniaghdam et al. (2014), Ghorbaniaghdam et al. (2014), Wang et al. (2024),
Wang et al. (2024), is illustrated in Figure 1. The stoichiometry of all relevant reactions in CHO cell
cultures is detailed in Table 1. Reactions highlighted in red in Figure 1 indicate those for which a regulation
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model has been constructed, incorporating the key regulatory mechanisms: (1) non-competitive inhibition,
where a metabolite indirectly reduces enzyme activity by binding to a regulatory site (e.g., R1 and R2);
(2) competitive inhibition, where metabolites compete with the substrate for the active site (e.g., R3); and
(3) allosteric activation, where a metabolite enhances enzyme activity by binding to an allosteric site (e.g.,
R4). For the remaining reactions, shown in black, the pseudo-steady-state assumption is applied. The
comprehensive reaction rate model is provided in Table 2. This example will be used in the simulation study
in Section 5 to demonstrate the performance of the proposed symbolic and Bayesian learning approach.

3 BAYESIAN NETWORK INFERENCE AND REGULATORY MECHANISM DISCOVERY

We first derive the posterior inference for the mechanistic model Bayesian learning in Section 3.1 and then
conduct asymptotic study in Section 3.2 to show that it can recover missing regulatory mechanisms.

3.1 Bayesian Inference to Improve Model Prediction

Given the real-world data denoted by Dm, our purpose is to efficiently infer the missing regulatory mechanism.
Since the posterior inference of the mechanistic model (3) is typically complex and intractable, we employ
the MALA (Roberts and Tweedie 1996) that utilizes the likelihood gradient to guide the search for the true
mechanism v(ssst ;θθθ c) through drifting the MCMC sampling of (θθθ ,www) toward regions with high likelihood.
This can improve computational efficiency and convergence speed compared to traditional MCMC with
random-walk proposals. In specific, the Langevin diffusion process of MALA is represented below,

dθθθ τ =
1
2

∇θθθ logP(θθθ τ ,wwwτ | Dm)dτ +dWτ and dwwwτ =
1
2

∇www logP(θθθ τ ,wwwτ | Dm)dτ +dWτ . (5)

As sampling proceeds with τ → ∞, the distribution of θθθ τ converges to the desired posterior distribution.
Then, through discretization with step size ε , we have the MALA sampling update at each τ-th iteration,

θθθ τ+1 = θθθ τ +
ε2

2
∇θθθ logP(θθθ τ ,wwwτ | Dm)+ ε · zθ , zθ ∼ N (0, I),

wwwτ+1 = wwwτ +
ε2

2
∇www logP(θθθ τ ,wwwτ | Dm)+ ε · zw, zw ∼ N (0, I).

(6)

We first calculate the likelihood P(Dm | θθθ ,www). Given the candidate model ṽ(ssst ;θθθ ,www) in Equation (3),
we can generate bioprocess state trajectories, denoted by {̃ssst} using the SDE, i.e.,

ds̃sst = NNNṽ(̃ssst ;θθθ ,www)dt +
[
NNNdiag(ṽ(̃ssst ;θθθ ,www))NNN⊤

] 1
2

dW̃t , (7)

where dW̃t is the increment of a standard Brownian motion. Let Dm = {ζ
i}m

i=1 represent m independent
trajectory observations obtained from the real system. Each trajectory consists of H state-transition
observations, i.e., ζ

i = {sssi
t1 ,sss

i
t2 , . . . ,sss

i
tH ,sss

i
tH+1

}. To facilitate learning of the missing mechanisms from data

Dm, we derive the closed-form likelihood, i.e., P(Dm|θθθ ,www) = ∏
m
i=1 P

(
sssi

t1

)
∏

H
h=1 P(sssi

th+1

∣∣∣sssi
th ;θθθ ,www).

For notation simplification, suppose data collection frequent is fixed with ∆t = th+1−th for h= 1,2, . . . ,H.
Based on (7), we can approximate the conditional distribution P(sssi

th+1
| sssi

th ;θθθ ,www) as N (µµµ i
th ,Σ

i
th) with

µµµ i
th := sssi

th +NNNṽ(sssi
th ;θθθ ,www)∆t and Σi

th := NNNdiag(ṽ(sssi
th ;θθθ ,www))NNN⊤

∆t. With this approximation, we further derive

the posterior, P(θθθ ,www | Dm) ∝ P(θθθ)P(www)P(Dm|θθθ ,www) = P(θθθ)P(www)∏
m
i=1

[
P
(
sssi

t1

)
∏

H
h=1 P

(
sssi

th+1
| sssi

th ;θθθ ,www
)]

,

and then take log transformation,

logP(θθθ ,www | Dm) = logP(θθθ)+ logP(www)− 1
2

m

∑
i=1

H

∑
h=1

[
2π log |Σi

th |+
(

sssi
th+1

−µµµ
i
th

)⊤
Σ

i
th
−1

(
sssi

th+1
−µµµ

i
th

)]
. (8)
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To further employ MALA in (6), we calculate the gradients of the log-posterior with respect to (θθθ ,www),

∇θθθ logP(θθθ ,www | Dm) = ∇θθθ logP(θθθ)− 1
2

m

∑
i=1

H

∑
h=1

[
Tr

(
(Σi

th)
−1

∇θθθ Σ
i
th

)
−2

(
∇θθθ µµµ

i
th

)⊤
(Σi

th)
−1(sssi

th+1
−µµµ

i
th)+(sssi

th+1
−µµµ

d
th)

⊤(Σi
th)

−1 (
∇θθθ Σ

i
th

)
(Σi

th)
−1(sssi

th+1
−µµµ

i
th)
]
,

and

∇www logP(θθθ ,www | Dm) = ∇www logP(www)− 1
2

m

∑
i=1

H

∑
h=1

[
Tr

(
(Σi

th)
−1

∇wwwΣ
i
th

)
−2

(
∇wwwµµµ

i
th

)⊤
(Σi

th)
−1(sssi

th+1
−µµµ

i
th)+(sssi

th+1
−µµµ

i
th)

⊤(Σi
th)

−1 (
∇wwwΣ

i
th

)
(Σi

th)
−1(sssi

th+1
−µµµ

i
th)
]
.

3.2 Asymptotic Study

Suppose the true model v(ssst ;θθθ
c) is included in the set of candidate models; that means there exists some

index k∗ such that v(ssst ;θθθ
c) = ṽk∗(ssst ;θθθ

c). We define the true weight vector wwwc, which consists of zeros except
for wk∗ = 1. Under this setting, we can show that the proposed approach achieves asymptotic convergence,
meaning that the posterior probabilities, i.e., P(www = wwwc | Dm) and P(ϑϑϑ k∗ = θθθ

c | Dm), both converge to 1 as
m → ∞. To establish this consistency result, we first define W :=

{
www ∈ [0,1]K : ∑

K
k=1 wk = 1

}
⊆RK , which

represents the space of www. Let Θk denote the space of ϑϑϑ k for k = 1,2, . . . ,K. We define Θ as the union
of all parameter spaces, i.e., Θ =

⋃K
k=1 Θk. We define a metric denoted by dΘk(ϑϑϑ k,ϑϑϑ

′
k) = ∥ϑϑϑ k,ϑϑϑ

′
k∥, and

dW (www,www′) = ∥www,www′∥, where ∥ · ∥ denotes the Euclidean norm, and further define an open ball B(ϑϑϑ k,δ ) ={
ϑϑϑ ′

k ∈ Θk : dΘk(ϑϑϑ
′
k,ϑϑϑ k)< δ

}
and B(www,δ ) = {www′ ∈ W : dW (www′,www)< δ} .

Given the observations {ζ
i}m

i=1, we have the asymptotic consistency of Bayesian inference in Theorem 1.
Theorem 1 (Miller 2023) Assume ṽ(ssst ;θθθ ,www) is specified by (www,θθθ). Suppose wwwc ∈ W and θθθ

c ∈ Θk∗. If
ζ

1,ζ 2, . . . ,ζ m are i.i.d. and follow the SDE in (1), then for any δ > 0, we have the asymptotic consistency,

lim
m→∞

P(www ∈ B(wwwc,δ ) | ζ
1,ζ 2, . . . ,ζ m) = 1 and lim

m→∞
P(ϑϑϑ k∗ ∈ B(θθθ c,δ ) | ζ

1,ζ 2, . . . ,ζ m) = 1 a.s.

To complete the consistency result, it is necessary to establish the uniform convergence of the flux
rate model. Specifically, since ṽ(sss;θθθ ,www) is continuous with respect to (θθθ ,www), by applying the Continuous
Mapping Theorem, we have the regulatory model estimate ṽ(sss;θθθ ,www) converges to v(sss;θθθ

c) in probability.

4 MALA POSTERIOR SAMPLING WITH ADJOINT SENSITIVITY ANALYSIS

When MALA is used to generate Bayesian posterior samples following Equation (6), warm-up process is
often computationally expensive and time-consuming. To accelerate the convergence of posterior sampling
process, we exploit the MALA dynamics and calculate the sensitivity of the “steady-state" (θθθ T ,wwwT )
for any large T , representing the solution of (5), with respect to the initial sample (θθθ 0,www0), defined as

J0,T (θθθ 0,www0) :=

[
∂θθθ T
∂θθθ 0

∂θθθ T
∂www0

∂wwwT
∂θθθ 0

∂wwwT
∂www0

]
that enables us to quickly estimate the initial bias needed to remove.

In specific, the adjoint sensitivity analysis on the SDE (5), accounting for spatial-temporal interdepen-
dence, is utilized to efficiently estimate the initial bias through calculating E[JJJ0,T ] and local metamodeling.
Suppose: (1) ṽ(ssst ;θθθ ,www) is infinitely differentiable and bounded related to (θθθ ,www); then µµµ i

th ,Σ
i
th ∈C∞,1

b ; and
(2) the first-order derivatives ∂ ṽ

∂θθθ
and ∂ ṽ

∂www are bounded. Consequently, the posterior in (8) is also infinite
differentiability, i.e., ∇θθθ logP(θθθ τ ,wwwτ |Dm)∈C∞,1

b . Thus, given any initial point (θθθ 0,www0), a unique solution
to the SDE (5) is guaranteed to exist. We use Φ0,T (θθθ 0,www0) to represent the solution of the SDEs in (5) at
T and it is called forward flow satisfying the property: Φ0,T (θθθ 0,www0) = Φτ,T (Φ0,τ(θθθ 0,www0)) for 0 ≤ τ ≤ T.
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We could also generate the inverse flow ψ0,T := Φ
−1
0,T from the SDE system in (5) (Kunita 2019),

dθθθ τ =−1
2

∇θθθ logP(θθθ τ ,wwwτ | Dm)dτ −dW̃τ and dwwwτ =−1
2

∇www logP(θθθ τ ,wwwτ | Dm)dτ −dW̃τ , (9)

where W̃τ is the backward Wiener process defined as W̃τ =Wτ −WT for any τ < T . With Φ0,T and ψ0,T , we
can derive the Jacobian JJJ0,T (Choy and Xie 2024). Define A0,T (θθθ T ,wwwT ) := ∇Φ0,T

(
ψ0,T (θθθ T ,wwwT )

)
; then,

A0,T (θθθ T ,wwwT ) = Id +
1
2

∫ T

0

[
∂ 2 logP(ψτ,T (θθθ T ,wwwT )|Dm)

∂θθθ
2

∂ 2 logP(ψτ,T (θθθ T ,wwwT )|Dm)

∂www2

]
Aτ,T (θθθ T ,wwwT )dτ. (10)

Since the diffusion term in (5) is constant, it vanishes when computing the first-order derivative. By following
Choy and Xie (2024), we have JJJ0,T = A0,T

(
Φ0,T (θθθ 0,www0)

)
, accounting for the structural information in the

SDE of MALA dynamics through forward and backward propagation. The expected sensitivity E[JJJ0,T ] is
further used to estimate initial bias and accelerate the convergence of the posterior sampling process.

Algorithm 1: Adjoint SA Accelerated MALA for Regulatory Mechanism Learning
Input: Prior distributions π(θθθ) and π(www); step size ε > 0; number of samples n required for

estimation of E[JJJ0,T ]; number of metamodel training samples Gmeta; total number of
required posterior samples G; warmup length T ; integer ∆ to reduce sample correlation;
observed data Dm = {ζ

i}m
i=1; initialize g′ = 1 and g = 1; the number posterior samples B.

Output: Posterior samples {(θθθ (g)
T ,www(g)

T )} with g = 1,2, . . . ,G
for g′ = 1 to Gmeta do

1. Sample initial parameters: θθθ
(g′)
0 ∼ π(θθθ), www(g′)

0 ∼ π(www).
for j = 1 to n do

for τ = 0 to T −1 do
2. Generate (θθθ

(g′, j)
τ+1 ,www(g′, j)

τ+1 ) using (6) and then project www(g′, j)
τ+1 to feasible set W .

3. Compute the Metropolis acceptance probability ατ and accept/reject the proposal.
end
for τ = T −1 to 0 do

4. Compute the inverse flow ψτ,T (θθθ
(g′, j)
T ,www(g′, j)

T ) using (9).

5. Compute JJJ( j)
τ,T (θθθ

(g′)
0 ,www(g′)

0 ) = Aτ,T (θθθ
(g′, j)
T ,www(g′, j)

T ) via (10).
end

end
6. Estimate E[JJJ0,T (θθθ

(g′)
0 ,www(g′)

0 )] with 1
n ∑

n
j=1 JJJ( j)

0,T (θθθ
(g′)
0 ,www(g′)

0 ).
end
for g = 1 to ⌈G/B⌉ do

7. Sample initial parameters: θθθ
(g)
0 ∼ π(θθθ), www(g)

0 ∼ π(www).

8. Predict (θθθ (g)
T ,www(g)

T ) using the adjoint SA-based metamodel represented by Equation (11).

9. Generate (θθθ
(g)
T+b∆

,www(g)
T+b∆

) using (6) for b = 1,2, . . . ,B and project www(g)
T+b∆

to feasible set W .
Record posterior samples for every ∆ steps to reduce time series dependence.

end

The adjoint SA assisted MALA presented in Algorithm 1 proceeds in two stages. In Steps 1-6, we first
build a local metamodel to approximate E[JJJ0,T ] and estimate the initial bias. For each training sample, it
begins by drawing (θθθ 0,www0) from the priors, simulates forward using a discretized MALA scheme (6), and
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collects trajectories up to T . Next, it computes the inverse flow backward from τ = T to 0 to recover how
(θθθ τ ,wwwτ) changes propagate through the MALA posterior sampling process, derives the pathwise adjoint
sensitivity matrix JJJ0,T (θθθ 0,www0), and estimates E[JJJ0,T (θθθ 0,www0)]. Then, based on Taylor expansion, a local
metamodel is constructed by identifying the nearest sample (in Euclidean distance) among the metamodel
training data and estimate the initial bias for any new initial sample of (θθθ new

0 ,wwwnew
0 ), i.e.,

(θθθ
(g)
T ,www(g)

T ) = (θθθ
(g∗)
T ,www(g∗)

T )+E[JJJ0,T (θθθ
(g∗)
0 ,www(g∗)

0 )] ·
[
(θθθ new

0 ,wwwnew
0 )− (θθθ

(g∗)
0 ,www(g∗)

0 )
]
, (11)

where g∗ = argming′∈{1,...,Gmeta} ||(θθθ
new
0 ,wwwnew

0 ),(θθθ
(g′)
0 ,www(g′)

0 )||. In Steps 7-9, this metamodel is used to
accelerate posterior sampling. For any initial parameters generated from the priors, the metamodel is used
to predict the initial bias. These are further refined by continuing the MALA sampling with a spacing ∆

to reduce sample correlation. The proposal distribution q(θθθ ∗,www∗ | θθθ ,www) is given based on MALA in (6):

q(θθθ ∗,www∗ | θθθ ,www)=N

(
θθθ
∗
∣∣∣∣θθθ +

ε2

2
∇θθθ logP(θθθ ,www | Dm),ε

2I
)
×N

(
www∗

∣∣∣∣www+
ε2

2
∇www logP(θθθ ,www | Dm),ε

2I
)
.

Metropolis is then used with the acceptance probability, ατ = min
{

1, P(θθθ τ+1,wwwτ+1|Dm)q(θθθ τ ,wwwτ |θθθ τ+1,wwwτ+1)
P(θθθ τ ,wwwτ |Dm)q(θθθ τ+1,wwwτ+1|θθθ τ ,wwwτ )

}
.

5 SIMULATION STUDY

To evaluate the proposed framework, we conduct a simulation study using the representative mammalian cell
culture system presented in Section 2.2. The metabolic reaction network comprises 13 reactions (Table 1),
capturing key pathways within the central carbon network. Among these, five reactions are modeled with
explicit regulatory mechanisms (Table 2), consistent with the symbolic logic illustrated in Figure 1. These
include non-competitive inhibition (e.g., ELAC on EGLC uptake in Reaction 2 and on GLN synthetase in
Reaction 5), competitive inhibition (e.g., ELAC on EPYR in Reaction 13), and allosteric activation (e.g.,
EGLN on ELAC production in Reaction 3). These mechanisms correspond to the candidate regulatory
modules R1–R4 in Figure 1(b), forming the basis for constructing biologically interpretable mixture models.

Table 1: The reactions of the cellular metabolic network specify the stoichiometry matrix NNN.

No. Reaction No. Reaction
1 EGLC → G6P 8 GLU ↔ AKG + NH4

2 G6P → 2 PYR 9 AKG → MAL + CO2

3 PYR ↔ LAC 10 AcCoA + MAL → AKG + CO2

4 LAC ↔ ELAC 11 MAL → PYR + CO2

5 GLN ↔ GLU + NH4 12 PYR → AcCoA + CO2

6 EGLN → GLN 13 EPYR → PYR

7 GLU → EGLU

In the simulation setup, all four regulatory mechanisms are assumed to be active in the underlying true
model. However, this ground truth is unknown to the learning algorithm during inference. That means the
model structures of R1-R4 are known; but we do not know if they are active or not and also the values
of their regulatory mechanistic parameters. To assess the performance of the proposed MALA approach
with adjoint sensitivity analysis (SA) and compare it with state-of-the-art posterior sampling methods
for bioprocess mechanistic models, we benchmark against likelihood-free ABC (Sisson et al. 2018) and
standard MALA without adjoint sensitivity (Roberts and Tweedie 1996). Overall, the simulation results
demonstrate that the proposed approach performs better in terms of prediction accuracy and recovery of
underlying regulatory mechanisms, particularly under data-limited situations.
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Table 2: Biokinetic equations for the metabolites fluxes of the model

No. Pathway with Regulatory Mechanistic Modeling

2 v2 =
vmax,2×EGLC

Km,EGLC+EGLC × Ki,ELACtoHK
Ki,ELACtoHK+ELAC

3 v3 =
vmax,3 f×EGLC

Km,EGLC×(1+
Ka,EGLN

EGLN )+EGLC
− vmax,3r×ELAC

Km,ELAC+ELAC

5 v5 =
vmax,5 f×EGLN

Km,EGLN+EGLN × Ki,ELACtoGLNS
Ki,ELACtoGLNS+ELAC − vmax,5r×EGLU

Km,EGLU+EGLU × NH4
Km,NH4+NH4

8 v8 =
vmax,8 f×EGLU

Km,EGLU+EGLU − vmax,8r×NH4
Km,NH4+NH4

13 v13 =
vmax,13×EPY R

Km,EPY R×(1+ ELAC
Ki,ELACtoPY R

)+EPY R

Table 3: The K-S statistics of key states in 72 hours.

State
MALA ABC MALA with adjoint sensitivity

m = 3 m = 5 m = 3 m = 5 m = 3 m = 5
VCD 0.42±0.05 0.40±0.04 0.44±0.06 0.41±0.05 0.35±0.03 0.33±0.02
GLC 0.37±0.06 0.35±0.05 0.39±0.06 0.36±0.04 0.31±0.03 0.29±0.02
LAC 0.48±0.07 0.46±0.06 0.50±0.08 0.47±0.06 0.39±0.04 0.37±0.03

To show the superiority of our proposed approach, we first compare the prediction accuracy of the
posterior predictive distribution obtained from MALA with and without adjoint sensitivity analysis, as
well as from ABC. Specifically, we generate posterior samples of (θθθ ,www), denoted as {(θθθ (g),www(g))}G

g=1 and
then the sample average approximation (SAA) is used to estimate the posterior predictive distribution by
evolving the system according to Equation (7), i.e.,

P(ssst | sss0,Dm) =
∫

P(ssst | sss0;θθθ ,www)P(θθθ ,www | Dm)dθθθdwww ≈ 1
G

G

∑
g=1

P
(

ssst

∣∣∣sss0;θθθ
(g),www(g)

)
.

In addition, given the true regulatory mechanistic model v(ssst ;θθθ c), we can construct the predictive distribution
P(ssst | sss0;θθθ

c) to assess the prediction performance by using different Bayesian model inference approaches.
We evaluate the performance of the posterior predictive distribution obtained by MALA with and

without adjoint sensitivity, as well as ABC, using the Kolmogorov–Smirnov (K-S) statistic. The K-S
statistic quantifies the maximum discrepancy between the posterior predictive distribution and the predictive
distribution of the true model. Specifically, it is defined as D = supi |F(si

t | sss0;θθθ
c)−F(si

t | sss0,Dm)| for
i = 1,2, . . . , p, where F(si

t | sss0;θθθ
c) and F(si

t | sss0,Dm) are the empirical cumulative distribution functions
(CDF) of the i-th component of state ssst derived from samples of the true model’s predictive distribution
and the posterior predictive distribution, respectively. The results in Table 3 show the proposed MALA with
adjoint SA has smaller K-S distance and demonstrates superior predictive performance for all key states
when the number of batches is m = 3,5. Each batch includes H = 72 observations. The results are based on
R = 30 macro-replications. In each r-th macro-replication with r = 1,2, . . . ,R, we use G = 2000 samples
to construct the empirical distributions. We report the 95% confidence intervals of the K-S distances for
the predictions of the three key states at t = 72 hour, computed as D̄±1.96× SD√

R
, where D̄ = 1

R ∑
R
r=1 D(r)

and SD =
[

1
R−1 ∑

R
r=1

(
D(r)− D̄

)2
]1/2

.
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The performance improvement is further illustrated in the estimated posterior distributions of θθθ and www
as shown in Figure 2. Here we select one representative parameter for each regulatory mechanism: Km,EGLC
is the dissociation constant in Reaction 2; Ki,ELACtoHK captures the non-competitive inhibition of ELAC
on EGLC uptake in Reaction 2; and Ka,EGLN reflects the allosteric activation effect of EGLN on ELAC
production in Reaction 3. The results show the MALA with adjoint SA produces posterior samples with
higher concentration—defined as posterior mass surrounding the true parameter value θθθ

c—and achieves
faster convergence toward θθθ

c. In addition, as shown in the last column of Figure 2, the weight wk∗ of
the true model, corresponding to the correct combination of regulatory modules R1–R4 in Figure 1, also
converges to 1 more rapidly compared to other state-of-the-art methods.

Figure 2: Asymptotic consistency of the posterior distributions of θθθ and www across iterations.

6 CONCLUSION

In this paper, we consider mechanistic models of biomanufacturing process in the form of SDEs. We present
a novel symbolic and statistical learning framework that leverages on the existing knowledge of bioprocess
mechanisms and sample efficiently recovers bioprocessing regulatory mechanisms. By constructing a
mixture model of candidate mechanisms and employing Bayesian inference with MALA, the framework
enables joint learning of model structure and kinetic parameters while quantifying uncertainty. In addition,
adjoint sensitivity analysis is integrated into MALA, that can quickly estimate the initial bias, reduce the
warmup time of posterior sampling, and accelerate the convergence. The representative simulation results
on a cell culture example demonstrate that the proposed framework outperforms the state-of-the-art posterior
sampling approaches, including MALA and ABC, in terms of prediction accuracy and recovery of underlying
regulatory mechanisms. The study highlights the importance of interpretable and sample-efficient learning
strategies for digital twin development in biomanufacturing.

3488



Choy, Xie, and Wang

ACKNOWLEDGEMENT

We gratefully acknowledge funding support from National Science Foundation Grant CAREER CMMI-
2442970 and National Institute of Standards and Technology Grant 70NANB24H293 to Dr. Wei Xie.

REFERENCES
Chang, A., L. Jeske, S. Ulbrich, J. Hofmann, J. Koblitz, I. Schomburg, et al. 2021. “BRENDA, the ELIXIR Core Data Resource

in 2021: New Developments and Updates”. Nucleic Acids Research 49(D1):D498–D508.
Choy, K., and W. Xie. 2024. “Adjoint Sensitivity Analysis on Multi-Scale Bioprocess Stochastic Reaction Network”. In 2024

Winter Simulation Conference (WSC), 3578–3589 https://doi.org/10.1109/WSC63780.2024.10838716.
Dressel, R. 2011. “Effects of Histocompatibility and Host Immune Responses on the Tumorigenicity of Pluripotent Stem Cells”.

In Seminars in Immunopathology, Volume 33, 573. Springer.
Ghorbaniaghdam, A., J. Chen, O. Henry, and M. Jolicoeur. 2014. “Analyzing Clonal Variation of Monoclonal Antibody-Producing

CHO Cell Lines Using an in Silico Metabolomic Platform”. PLoS One 9(3):e90832.
Ghorbaniaghdam, A., O. Henry, and M. Jolicoeur. 2014. “An in-Silico Study of the Regulation of CHO Cells Glycolysis”.

Journal of Theoretical Biology 357:112–122.
Golightly, A., and D. J. Wilkinson. 2005. “Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation”.

Biometrics 61(3):781–788.
Hassell, T., S. Gleave, and M. Butler. 1991. “Growth Inhibition in Animal Cell Culture: The Effect of Lactate and Ammonia”.

Applied Biochemistry and Biotechnology 30:29–41.
Kunita, H. 2019. Stochastic Flows and Jump-Diffusions. New York: Springer.
Kyriakopoulos, S., K. S. Ang, M. Lakshmanan, Z. Huang, S. Yoon, R. Gunawan et al. 2018. “Kinetic Modeling of Mammalian

Cell Culture Bioprocessing: The Quest to Advance Biomanufacturing”. Biotechnology Journal 13(3):1700229.
Michaelis, L., and M. L. Menten. 2007. “Die Kinetik der Invertinwirkung”. Biochemische Zeitschrift 49:333 – 369.
Miller, J. W. 2023. “Consistency of Mixture Models with a Prior on the Number of Components”. Dependence Model-

ing 11(1):20220150 https://doi.org/doi:10.1515/demo-2022-0150.
Mulukutla, B. C., M. Gramer, and W.-S. Hu. 2012. “On Metabolic Shift to Lactate Consumption in Fed-Batch Culture of

Mammalian Cells”. Metabolic Engineering 14(2):138–149.
Roberts, G. O., and R. L. Tweedie. 1996. “Exponential Convergence of Langevin Distributions and Their Discrete Approximations”.

Bernoulli 2(4):341–363.
Sisson, S. A., Y. Fan, and M. Beaumont. 2018. Handbook of Approximate Bayesian Computation. CRC press.
Sunnåker, M., A. G. Busetto, E. Numminen, J. Corander, M. Foll, and C. Dessimoz. 2013. “Approximate Bayesian Computation”.

PLoS Computational Biology 9(1):e1002803.
Tonn, M. K., P. Thomas, M. Barahona, and D. A. Oyarzún. 2019. “Stochastic Modelling Reveals Mechanisms of Metabolic

Heterogeneity”. Communications Biology 2(1):108.
Walsh, G., and E. Walsh. 2022. “Biopharmaceutical Benchmarks 2022”. Nature Biotechnology 40(12):1722–1760.
Wang, K., S. W. Harcum, and W. Xie. 2024. “Multi-Scale Kinetics Modeling for Cell Culture Process with Metabolic State

Transition”. arXiv preprint arXiv:2412.03883.
Wang, K., W. Xie, and S. W. Harcum. 2024. “Metabolic Regulatory Network Kinetic Modeling with Multiple Isotopic Tracers

for iPSCs”. Biotechnology and Bioengineering 121(4):1335–1353.
Xie, W., K. Wang, H. Zheng, and B. Feng. 2022. “Sequential Importance Sampling for Hybrid Model Bayesian Inference

to Support Bioprocess Mechanism Learning and Robust Control”. In 2022 Winter Simulation Conference (WSC), 2282–
2293 https://doi.org/doi:10.1109/WSC57314.2022.10015302.

Young, J. D. 2013. “Metabolic Flux Rewiring in Mammalian Cell Cultures”. Current Opinion in Biotechnology 24(6):1108–1115.
Yuan, H.-X., Y. Xiong, and K.-L. Guan. 2013. “Nutrient Sensing, Metabolism, and Cell Growth Control”. Molecular

Cell 49(3):379–387.

AUTHOR BIOGRAPHIES
KEILUNG CHOY is a Ph.D. candidate of Mechanical and Industrial Engineering at Northeastern University with expertise
in machine learning, computer simulation, and digital twin. Email: choy.k@northeastern.edu.

WEI XIE is an associate professor in Mechanical and Industrial Engineering at Northeastern University. Her research interests
include AI/ML, computer simulation, data analytics, and stochastic optimization. Her email address is w.xie@northeastern.edu.

KEQI WANG is a Ph.D. candidate of Mechanical and Industrial Engineering at Northeastern University with expertise in
machine learning, computer simulation, metabolic engineering and biomanufacturing. Email: wang.keq@northeastern.edu.

3489

https://doi.org/10.1109/WSC63780.2024.10838716
https://doi.org/doi:10.1515/demo-2022-0150
https://doi.org/doi: 10.1109/WSC57314.2022.10015302
mailto://choy.k@northeastern.edu
mailto://w.xie@northeastern.edu
mailto://wang.keq@northeastern.edu

	290-inv198s3-file1

