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ABSTRACT

Digital Twins, virtual models that accurately replicate the dynamic behavior of physical systems, are on
the cusp of a revolutionary transformation not only for the design but also for real-time control of dynamic
systems. In this tutorial, we define the key building blocks of Digital Twins and explore the key challenges
they face in enabling real-time decision making. We discuss adaptive intelligence, an innovative reasoning
framework that combines Al-driven approaches with simulation optimization techniques to enhance real-time
decision making capabilities —hence, the value— of Digital Twins.

1 INTRODUCTION

Computer simulation has become ““a tool of first resort” mainly due to the confluence of impressive advances
in computing hardware and significant developments in stochastic optimization techniques. As noted by
Laidler, Nelson, and Pavlidis (2025), “big data, big computing, and big consequences are pushing stochastic
simulation beyond its typical role of creating static system designs and good long-run average performance.”
Such an opportunity is most visible in Digital Twins, where computer simulation is bound to assume an
even more central role in real-time decision making. A digital twin (DT) “is a set of virtual information
constructs that mimics the structure, context, and behavior of a natural, engineered, or social system (or
system of systems), is dynamically updated with data from its physical twin, has a predictive capability, and
informs decisions that realize value” (National Academies of Sciences and Medicine 2024). DTs broadly
consist of four main components (dos Santos, Montevechi, Campos, Miranda, Queiroz, and Amaral 2024):
physical systems with humans, materials, and processes; virtual systems consisting of models
of physical systems; service systems enabling simulation, optimization, and communication between
the physical and virtual systems; and data systems reflecting the information transmitted between
systems to enable efficient decision making.

Infrastructure technologies (in both hardware and software) have made it possible to automate data
collection from physical systems, enabling the construction of digital models (Lugaresi 2024) and their
parametrization for simulation and experimentation (Cen, Herbert, and Haas 2020). Such digital objects,
typically referred to as digital shadows, receive real-time data from the physical system; however, any
operational modification recommended by the simulation executed on the digital object must be incorporated
manually into its physical counterpart (Kritzinger, Karner, Traar, Henjes, and Sihn 2018). Emerging
technologies are rapidly closing the loop for the automatic modification of operational parameters in the
physical system, giving rise to digital twins.

DTs are developed to ensure information continuity throughout a system’s life cycle, enable virtual
commissioning, perform real-time monitoring, view, analyze and control process state, predict system
behavior, and generate optimal operating policies. As depicted in Figure 1, the physical system provides
its digital twin with real-time data, improving the fidelity of the simulation models, while predictions
and decisions based on these models are provided to the physical system practically on a real-time basis,
modifying its operations (Zhou 2024). There exist nevertheless several challenges for on-line decision-
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Figure 1: The relationship between the physical system and its digital twin.

making in DTs, including modeling, analysis, and optimization. The objective of this tutorial is to address
the challenges that arise in synchronizing the physical and digital systems in a data-driven fashion to enable
real-time decision making. In particular, we will focus on the complementary roles AI/ML and simulation
optimization can play in enhancing the efficiency of modeling processes in the virtual system and
the efficacy of decision support in the service systems.

For modeling, in addition to building valid simulation models and verifying their correct execution, it
is also necessary to maintain the fidelity of these models over time. In other words, while validation and
verification aim to ensure the satisfactory mapping between the physical and virtual systems and the correct
functioning of the computational implementation, respectively, accreditation is necessary to evaluate the
model’s usability in guiding decisions (Sargent, Goldsman, and Yaacoub 2016; Sargent 2020).

For analysis and optimization, a DT must generate optimal operating policies by rapidly evaluating
alternatives through its simulation optimization algorithms to support real-time decision making for guiding
its physical counterpart (Zhou 2024). However, the duration of a simulation run depends on the complexity
of the modeled system, which contributes to the computational load, particularly when a large number of
potential solutions must be evaluated. Thus, determining optimal policies for large-scale systems through
“naive” simulation becomes inefficient, highlighting the need for reasoning that combines AI/ML techniques
with simulation-based optimization methods to expedite the decision making process.

Modeling and optimization challenges are particularly acute in applications with high complexity, high
uncertainty, and limited data where dynamics underlying the system are not well understood —consequently
only crudely approximated by the digital models. As a result, the DT should be calibrated to reflect the
physical system as accurately as possible before it can be optimized to identify an effective control policy
for the physical system (Zheng, Xie, Ryzhov, and Choy 2025). As a result, there has been growing interest
both in the broader research community and within the Winter Simulation Conference (WSC) in the role
artificial intelligence and machine learning (AI/ML) can play in enhancing the real-time decision making
capabilities of DT.

This tutorial is organized as follows: Section 2 provides a formal characterization of real-time decision
making in DTs. Approaches for stochastic optimization via simulation are also discussed. Section 2.2
proposes the adaptive intelligence framework by discussing the synergies between AI/ML and simulation
for reasoning to support real-time decision making in DT. Section 4 closes the tutorial by highlighting
promising venues for future research and development.
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2 FORMAL CHARACTERIZATION

Traditionally, the digital object on the right-hand side of Figure 1, typically a simulation model, uses two
sets of inputs, including a control policy governing the behavior of the system, X, and the context in the
form of data from the physical system, Y. The execution of the simulation model, in turn, yields, as the
simulation output, an estimate of the performance of the system, J(X,Y) given the specific context. The
objective of the simulation experiment is to determine the optimal decision (say, the best policy) given the
context, namely

X*(Y) =argminJ(X,Y),
Xe®

where O is the set of potential policies. Since the performance of interest does not typically have a closed-
form functional representation, it is estimated as the sample average of a number (say, N) of independent
Monte Carlo samples, W;:

J(X,Y) = Ew[f(X,W,Y)] i (X, Wi, Y

where f is the performance function that does not admit a closed form.
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Figure 2: Simulation optimization within a context.

Within the context of simulation optimization, ranking and selection (R&S) aims at identifying the best
policy among a possibly large, but finite, set of competing policies through noisy experiments. As DTs
must provide the physical system with an optimal operating policy practically in real time, we formulate
R&S algorithms under a fixed-budget setting aiming at efficiently allocating the available sampling budget
to alternative policies. To maximize the quality of the final selection, the exploration/exploitation trade-off
must be managed in an effective fashion. As illustrated in Figure 2, a larger sampling budget for Monte
Carlo simulation (inner loop (0 and 1): exploitation) enhances estimation accuracy while a larger search
budget (outer loop (2): exploration) enables the evaluation of a larger number of alternative policies, moving
the decision maker closer to optimality.
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2.1 A Brief Recap of OCBA

To maximize decision quality, typically expressed in terms of the probability of correct selection (PCS),
Optimal Computing Budget Allocation (OCBA) adaptively manages the exploration/exploitation trade-off.
To this end, Chen, Lin, Yiicesan, and Chick (2000) solve the following optimization problem

max PCS
Ni,Ny,....Ny

K
subject to ZN,- =N,
i=1
where N; represents the simulation budget allocated to policy i and N is the total simulation budget. The
asymptotically optimal budget allocation scheme follows the following ratios:

(5-)°
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where o; is the standard deviation of the performance associated with policy i and &; is the “distance”
between the expected performance of the “best” policy b and that of policy i. In other words, the compu-
tational budget allocated to a policy is directly proportional to its variance and inversely proportional to
the square of its distance from the current best policy. Ryzhov (2016) asserts that OCBA yields optimal
performance. The speedup achieved by OCBA is demonstrated next through with a small illustration.

&"9

ey

Example. Consider a two-stage tandem queueing system where jobs arrive to the first queue according
to a Poisson process with unit intensity. The processing times are random variables distributed uniformly
U(1, 39) at the first stage, and U(5, 45) at the second stage. The objective is to allocate 31 servers across
the two stages so as to minimize the average waiting time of the jobs. In addition, a constraint is imposed
whereby each stage should be allocated at least 11 servers. For a 99% probability of correct selection
(PCS), Table 1 shows the speed up factor achieved by OCBA with respect to the traditional allocation
procedures that are proportional to estimator variance (Rinott 1978).

Table 1: Speedup factor of OCBA over traditional procedures for PCS = 99%.

No. of alternatives 4 10 20 50 75 100
Speedup 1.7 35 65 128 163 19.6

2.2 Contextual R&S

Note that while OCBA is 3 to 20 times faster than traditional R&S procedures, such speed up may still not
be sufficient for real-time decision making. Moreover, this speed up is obtained within a given context,
Y. Contextual R&S, also known as R&S with covariates, extends ranking and selection to personalized
decision-making, in which the best policy is not universal, but varies as a function of some observable
covariates that characterize the specific context. The goal of contextual R&S is to devise a selection process
that identifies the best alternative once the context is revealed. The context therefore introduces a third
layer of complexity, namely generating a sufficient number of contexts to ensure coverage, in addition to
the exploration/exploitation trade-off.

Contextual R&S therefore consists of an offline and an online stage (Hong and Jiang 2019). Given
the tight time frame for online decision-making, a large portion of the literature focuses on exploration
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during the offline stage. As a result, we can label the exploration phase as the learning stage. Within the
learning stage, the literature can be further categorized into two streams based on their representation of
the context space. The first stream assumes a discrete context space with moderate cardinality, M, allowing
exhaustive sampling of all K x M design-context combinations. For instance, Gao, Du, and Chen (2019)
derive the optimal budget allocation ratios analogous to Equation (1) for constructing an adaptive procedure
by maximizing an aggregated metric, namely

s

max PCS

Ny, 0 l:1pm m
K M

subject to Z Z N, =N,
i=lm=1

where p,, denotes the likelihood of observing a particular context, N;, represents the simulation budget
allocated to a design-context combination, and A is the total simulation budget. Gao, Du, and Chen (2024)
illustrate this method through an application to personalized medicine. Similarly, the dynamic procedure
of Li, Lam, and Peng (2024) leverages the Gaussian mixture model to exploit cluster information; Shi,
Peng, and Zhang (2023) adapt Top-Two Thompson Sampling and show asymptotic optimality under
certain conditions. Further examples under this setting include Jin, Li, and Lee (2019), Alban, Chick, and
Zoumpoulis (2021), Cakmak, Wang, Gao, and Zhou (2024), and Zhang, Chen, Huang, and Peng (2024).

The second stream deals with a continuous context space where exhaustive sampling is no longer possible.
To overcome this challenge, most authors first construct metamodels to characterize the underlying mean
performance function of each design over the context space before developing decision-making models. For
example, Hu and Ludkovski (2017), Pearce and Branke (2017), and Ding, Hong, Shen, and Zhang (2022)
utilize a Gaussian process to model the mean performance function. To guide the sampling process, popular
strategies from Bayesian optimization such as the Upper Confidence Bound (UCB), Expected Improvement
(ED), and Knowledge Gradient (KG) are widely employed alongside various approximation techniques to
explore the continuous context space. Subsequently, on-line decision making is simply reduced to plugging
the observed covariates into the metamodel to evaluate performance. In contrast, Keslin, Nelson, Plumlee,
Pagnoncelli, and Rahimian (2022) first select a finite set of contexts to conduct traditional R&S at the
selected contexts and use the k-nearest neighbors method to directly construct the decision-making model.
In the next section, we propose to enrich the on-line decision making stage through adaptive intelligence
that harnesses the synergies between AI/ML and simulation optimization —in particular, to handle the
settings where the observed covariates are different from what had been evaluated during the off-line stage
necessitating on-line reasoning, as illustrated in Figure 3.

3 REASONING WITH DTS: EXPLOITING THE SYNERGIES BETWEEN SIMULATION AND
AI/ML

The key feature that distinguishes a DT from conventional simulations is the bi-directional interaction that
exists between the two systems: the physical system continually provides its digital twin with real-time data,
improving the fidelity of the simulation models, while predictions and decisions based on these models are
provided to the physical system, modifying its operations (Zhou 2024). DTs therefore present significant
challenges for simulation modeling, analysis, and optimization. To create the digital system, in addition
to building valid simulation models and verifying their correct execution, it is also necessary to maintain
the fidelity of these models over time; thus, model calibration is of paramount importance. In return, to
support real-time decision making, a DT must rapidly complete its evaluation by executing its simulation
optimization algorithms for guiding its physical counterpart.

To address these challenges, AI/ML techniques offer significant support even though they might, at
first glance, appear incompatible with simulation modeling and analysis: simulation explicitly models the
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Figure 3: Ranking and Selection with On-Line Reasoning.

logic of a system that maps input parameters into the output performance of interest while ML models are
mostly black boxes that fit a parameterized statistical model for input-output mapping (Haas 2024). There
exist, however, significant synergies between the two techniques, as depicted in Figure 4, including the
generation of scenarios to be explored, the evaluation of scenario robustness, the construction of robust
metamodels, and the determination of model fidelity.
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Figure 4: AI/ML’s impact on metamodeling.

Following a brief overview of the potential contributions of AI/ML to the generation of well-calibrated
digital models, we will focus on the potential synergies between AI/ML and simulation optimization,
particularly on enhancing the ability of the digital system to enable real-time decision making in its
physical counterpart. To that end, we first discuss, in Section 3.1, how AI/ML is teamed up with simulation
optimization techniques such as Monte Carlo Tree Search (MCTS) to create a world-class Go player. In
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Section 3.2, we then review in greater detail an adaptive intelligence concept for leveraging multi-fidelity
information via a flexible algorithmic framework to implement efficient real-time decision making in DTs.

Neural networks (NN) have been developed to improve parameter estimation for input modeling to
drive simulations (Cen, Herbert, and Haas 2020). Miao, Huang, and Hu (2025) empirically investigate the
efficacy of generative models such as Generative Adversarial Networks (GAN), Variational Autoencoders
(VAE), Normalizing Flows, and Diffusion Models for capturing complex dependencies in input models that
drive simulations. NNs have also been deployed to enhance metamodeling of the performance function
of interest (Cen and Haas 2022). do Amaral, Montevechi, de Carvalho Miranda, and de Sousa Junior
(2022) provide a comprehensive overview of various metamodel-based simulation optimization methods
and their applications. For instance, polynomial regression is the most common approach in practice (Li,
Ng, Xie, and Goh 2010). However, polynomials offer poor fidelity for highly nonlinear, multidimensional
problems. In such settings, nonlinear functions such as Kriging and radial basis functions (RBFs) are
recommended (Parnianifard and Azfanizam 2020). Advances in learning-based algorithms such as Support
Vector Machines (SVM), Decision Trees (DST), Random Forests (RF) have made ML a viable approach for
metamodeling (Mohammad Nezhad and Mahlooji 2014). Early experiments with large language models
(LLM) provide encouraging results for generative Al-assisted simulation model generation (Carreira-Munich,
Paz-Marcolla, and Castro 2024). In the same spirit, Matta and Lugaresi (2023) further extend process
mining for automated model generation.

Once adequately trained, NNs are extremely efficient in supporting real-time decision making (Wang,
Kallus, and Sun 2024). For instance, by implementing a recurrent neural network inspired simulation
approach, Wang and Hong (2022) extend the analysis and optimization of a capacitated multi-echelon
production-inventory system under a base stock policy, which was originally analyzed by Glasserman and
Tayur (1994) and Glasserman and Tayur (1995), to an industrial scale. Similarly, graph neural networks have
emerged as a highly effective deep learning architecture for combinatorial optimization problems (Norman,
Dawadi, and Yedidsion 2024; Soykan and Rabadi 2024). Kumar, Peng, Wu, and Zeevi (2025) evaluate the
ability of large-language models (LLM) to solve stochastic modeling problems by evaluating the solutions
generated by LLM models to graduate-level homework and doctoral qualifying exam questions.

Training NNs, however, requires significant quantities of data, which may not be readily available
from the physical system. Computer simulation may play a key role here. For instance, to efficiently
manage the bi-directional interaction between the physical and digital systems, Zheng, Xie, Ryzhov, and
Choy (2025) use model-based reinforcement learning (MBRL) specifically to construct digital models of
systems whose dynamics are not fully understood. More specifically, they consider a setting where a DT
is specified by a finite number of calibration parameters, which are set based on a limited amount of
expensive physical experimental data.Using an actor-simulator framework, the control policy obtained by
simulating the digital twin is used to guide the acquisition of new data from the physical system with
the overall goal of determining an optimal control policy for the physical system. In other words, the
approach alternates between calibrating the digital twin, identifying information to be acquired in the next
experiment, and learning an RL policy to optimize the physical system. Their framework is anchored
on an uncertainty function quantifying the discrepancy between the two systems with respect to the RL
objective of maximizing the cumulative discounted reward. During calibration, the next experiment is
selected to maximize the uncertainty function; in contrast, during policy optimization, the reward function
is augmented by penalizing high-uncertainty actions. This approach results in a targeted exploration of the
state-action space, identifying those regions that yield the greatest benefit for policy optimization.

The potential for collaboration between simulation optimization and NN is illustrated in Figure 5,
where the y-axis, Learning Coverage, reflects the intensity of training the NN has received while the x-axis
shows the remaining 7ime to the Decision Point corresponding to the computational budget available for
the simulation optimization algorithms. The way ML and simulation optimization are combined to enable
real-time decision making is illustrated in further detail over the next two subsections.
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Figure 5: Adaptive intelligence for real-time decision-making.

3.1 How “Deepminded” is Al for Decision Making: from Monte Carlo Tree Search to AlphaGo

Players of the board game Go face a tremendously large decision space at every turn. To put the depth
of the decision space into context, a player can choose, on average, between 150 to 250 possible moves
per turn. In comparison, chess players have an average number of 37 moves per turn. Furthermore, the
number of moves in Go typically ranges from 180 to 250 compared to 40 to 60 moves in a chess game.
The number of possible board configurations in Go is estimated to be around 10'7°! In comparison, the
number of atoms in the observable universe is estimated to be between 1078 and 1082. A Go player or a Go
computer program also needs to make a decision in a fairly short amount of time. In major international
tournaments such as the Samsung Cup, each player has 3 hours of main time. After using the main time,
the player enters five periods of 60-second byo-yomi within which a move must be made. If the player
takes more than 60 seconds to make the move, the current period expires and a new period starts. After
the full five minutes are exhausted, the player must ultimately make a move within the next 60 seconds;
otherwise, the player loses the game. Because of the complexity and the depth of the decision space, a
human-expert level Go computer program had long been regarded as out of reach in the foreseeable future
before the development of deep neural networks (DNN).

A board game like Go represents an ideal DT environment in many important ways. The state of the
system, i.e., the board configuration, is known perfectly to the virtual system along with the rules of the
game. Conceptually, the virtual system can evaluate the outcome of the game for all possible moves and
select the winning move. The information flow from the virtual system to its physical twin is also trivial.
A human assistant simply places a piece on the game board following the “optimal” decision made by the
DT. Therefore, the critical task of the DT is to efficiently evaluate the strength of each possible move in
an extremely large game space.

Monte Carlo Tree Search (MCTS) is a depth-first tree search algorithm using Monte Carlo samples,
designed to effectively address the very large number of moves per turn (Fu, Qiu, and Xu 2024). Before
the widely publicized success of Google DeepMind’s AlphaGo (Silver, Huang, Maddison, Guez, Sifre, Van
Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot, et al. 2016) that beat a top human Go
player, Lee Sedol, in 2016 (referred to as AlphaGo Lee), the most powerful commercial Go programs such
as Crazy Stone (Coulom 2007), Fuego (Enzenberger, Miiller, Arneson, and Segal 2010), and Pachi (Baudi$
and Gailly 2011) were based on MCTS. These MCTS-driven Go programs represent the application of
simulation optimization for DT-based decision making, as captured in the bottom right quadrant of Figure 5.
However, these MCTS-driven Go programs require a considerable amount of computational time to simulate
the game tree before a strong move can be identified. Without the assistance of Al, they only achieve
strong amateur (human) player level.
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Before the arrival of DNNSs, earlier efforts to use neural networks to predict moves only led to computer
Go programs with very limited play strength. The deep convolutional neural network-based (DCNN) Go
program of Clark and Storkey (2015) advanced this “pure” Al approach, using a DCNN trained in a
supervised learning (SL) pipeline to predict a move in any state of the game board. While the DCNN
achieves fairly strong predictive accuracy, the actual playing strength is limited and turns out to be slightly
worse than MCTS-based Go programs like Fuego. Nontheless, DCNN Go is much faster in making a move
than MCTS Go programs. Therefore, despite the sophisticated Al used, due to the limited training relative
to the extremely large game space, the DCNN Go program only represents the bottom left quadrant of
Figure 5.

The phenomenal success of AlphaGo serves as a compelling demonstration of adaptive intelligence,
a sophisticated form of Al characterized by its capacity to attain “superhuman performance” by adapting
the Al models’ predictions to the current state of the game, using real-time insights generated through
MCTS simulations. AlphaGo thus represents the top right quadrant of Figure 5. In AlphaGo, the service
system of the DT includes a policy network pg(a|s) trained from SL pipeline and a value network vg(s),
which predicts the winning rate from a state s, and the MCTS algorithm. The value network vy (s) is derived
using self-play data generated with an improved policy network p,(als). The policy network p,(als) is
trained using reinforcement learning starting from ps(als). The improved p,(als) has a winning rate of
80% against ps(als) and is thus used to generate better training data for the value network vg(s) using
self-play.

AlphaGo trained and deployed several DNNs, which played different structural roles from the perspective
of the DT framework. A key component of the virtual system is the fast policy network p(a|s) used by
AlphaGo for quickly sampling moves in its simulation of the game tree from a leaf node expanded until
the end of the game. This is an instance of using a lightly trained NN to improve both the computational
efficiency and the prediction accuracy for the virtual system. Later with a trained value network vy (s) to
predict the winning rate from a state s, AlphaGo may terminate the simulation early when the outcome
of the game is quite certain to further improve the efficiency of the virtual system of a DT. With the fast
policy network, it is expected that MCTS would have better performance, but would still fall short of
expert human player level. An earlier version of AlphaGo with a less accurate policy network and value
network that defeated European Go champion Hui Fan in 2015 was referred to as AlphaGo Fan. AlphaGo
Fan achieved a play strength much higher than using just state-of-the-art Al (DCNN Go) and MCTS only.
With improved Al training, AlphaGo Lee further improved over AlphaGo Fan.

DeepMind further improved the DNN structure and came up with a reinforcement learning training
pipeline that did not use any human knowledge, e.g., without the supervised learning policy network
Po(s,a), and named the new Go program AlphaGo Zero (Silver, Schrittwieser, Simonyan, Antonoglou,
Huang, Guez, Hubert, Baker, Lai, Bolton, et al. 2017). The new DNN combines the policy network and
the value network into a single network, which results in a slightly reduced accuracy for predicting moves,
but improved value predictions and better performance when combined with MCTS. The improved Al
makes AlphaGo Zero the strongest computer Go program reported.

It is worth noting that when the DNN of AlphaGo Zero is used without MCTS, which is mapped to the
top left quadrant of Figure 5, its play strength is even slightly worse than that of AlphaGo Fan, although
it is considerably stronger than MCTS Go programs. From the evolution of computer Go programs, one
insight we derive is no matter how “deepminded” Al is, a search process using the virtual system allows the
computer program to adapt to the current state of the game board and achieve significant improvement in
play strength. Therefore, the efficiency of MCTS and the way MCTS uses information from Al to deliver
adaptive intelligence have considerable impact on the quality of the decision. Figure 6 depicts the play
strength (measured by Elo rating) of these different Go programs as summarized in Silver, Schrittwieser,
Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton, et al. (2017).

To demystify the setting, let us briefly expand on how the MCTS in AlphaGo Lee works. The supervised
policy network pq(als) is used in AlphaGo to provide the prior probabilities of moves when a leaf node is
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Figure 6: Improving computer Go program by combining MCTS and Al to achieve adaptive intelligence.

expanded. It is worth noting AlphaGo performs better with ps(als) instead of using the improved policy
network p,(als). For a leaf node s;, its value V(s;) is evaluated using both the value network vg(s) and
the simulated outcome z;, using the roll-out policy network p(als), in the form of a weighted average:

V(sp) = (1—A)ve(sy) +Azp. 2)

The MCTS algorithm then back-propagates V (s.) to update the visit count N(s,a) and the action value
O(s,a) for edges that the algorithm traverses in the simulation:

(ngE

N(s,a) =) I(s,a,i), Q(s,a)=

1

where I(s,a,i) is an indicator function that takes the value of one if the ith simulation traverses edge (s,a)
and zero otherwise. If at time ¢, a decision has to be made after n simulations, MCTS uses an upper
confidence bound (UCB) type of selection rule to choose an action under the current state s;:

Cpo‘(stva)

[+ N(s.a)° ©)

a; = argmax Q(s;,a) +
a

We conclude this section with two remarks related to the two key MCTS steps described above. First,
equation (3), the MCTS selection policy, is based on the well-known UCB policy for multi-armed bandit
problem with an objective to minimize cumulative regret. For the Go program as well as for many other
applications, the objective is to select the best decision for the current state instead of minimizing cumulative
regret. Fu, Qiu, and Xu (2024) showed how an OCBA policy designed for MCTS (Li, Fu, and Xu 2021)
can improve the performance of MCTS for applications such as a computer Othello program. Second,
equation (2) is a crude way to combine information from Al, vg(sz), and from the simulation, zz. It is
rigid and involves a hyperparameter A that requires tuning with no clear guidance. Next, we show how to

combine estimates from multiple sources in a flexible and rigorous way to achieve better performance.

3.2 Enhanced Reasoning with DTs

While academic and industrial communities explore ML and deep learning (DL) methods, real-world
implementations impose severe constraints on model selection. First, complex models like DNNs are
suitable only in data-rich environments, which are not always available. Second, simpler models provide
better interpretability, but may sacrifice accuracy, highlighting the trade-off between interpretability and
accuracy. Finally, real-time applications in adaptive systems emphasize the importance of computational
efficiency and speed. The increasing complexity of physical systems and the inherent stochasticity in
operating environments make it challenging to obtain high-quality predictions using AI/ML — particularly
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in high-dimensional problems. The difficulty is compounded by the expansive decision space, making it
even tougher to ensure accurate decision-making with a constrained computing budget.

To address these challenges, Goodwin, Xu, Celik, and Chen (2024) propose the Sequential Allocation
using Machine learning Predictions as Light-weight Estimates (SAMPLE) method as another example
of adaptive intelligence. By integrating simulation optimization with ML predictions, SAMPLE offers a
robust framework that combines lightweight ML models with high-accuracy digital twin simulation output
to enhance decision-making capabilities for discrete decision spaces. By lightweight ML models, we refer
to ML models that are trained offline and deployed online to make predictions in real time, but possibly with
substantial prediction errors. In other words, SAMPLE prioritizes lightweight ML models, focusing on ease
of training, interpretability, and efficiency in online decision-making. In particular, SAMPLE improves the
accuracy of decision-making during real-time simulation optimization by integrating ML predictions with
simulation data by efficiently allocating the online sampling budget.

SAMPLE operates in two distinct stages: off-line (simulation) learning and simulation optimization
to enable on-line reasoning for real-time decision making, separated by whether the context Y has been
observed. The goal in the off-line (simulation) learning stage is to train an appropriate ML model using
simulation data that had been collected across various contexts, ¥;, and policy alternatives, X;. This trained
model therefore enables SAMPLE to predict outcomes for different policies without running additional
simulations during the real-time optimization stage. Consider Figure 7 where we let Y;,i =1,2,--- |n,
represent the contexts and X, j = 1,2,---,m, denote the policy alternatives. The utility of a policy X;
in a given context Y, denoted as f(X;,Y), can only be estimated through stochastic simulations. The
simulation sample mean f(X;,Y) is assumed to be an unbiased estimator of f(X;,Y), with the simulation
output following a normal distribution with a mean f(X;,Y) and variance szi. In addition, let gx(X;,Y)

represent the prediction from the k" ML model fitted during the off-line (simulation) learning step, where
8(X;,Y) ={&1(X;,Y), - gk (X, Y)}.
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Figure 7: The framework of SAMPLE.

The computational efficiency of SAMPLE is grounded in the ordinal transformation (OT) concept
introduced in Xu, Zhang, Huang, Chen, Lee, and Celik (2014) and Xu, Zhang, Huang, Chen, Lee, and
Celik (2017). As shown in the right side of Figure 8, alternative decisions X in a discrete decision space are
evaluated using an ML model and ranked based on the ML predictions. Compared to the indexing scheme
of decisions based on their covariates shown on the left side of Figure 8, the ordinal space reveals the
clustering of decisions based on their performance. It is worth noting that the clustering of decisions based
on the ML predictions are well aligned with the clustering based on the high-fidelity simulation results
despite possibly significant errors in ML predictions. OT thus provides a flexible and robust way to exploit
ML to improve the efficiency of simulation optimization techniques that use expensive DT simulations.
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Figure 8: Overview of ordinal transformation.

The details of the mathematical development are provided in (Goodwin, Xu, Celik, and Chen 2024).
Here, we focus on the implementation of SAMPLE in large-scale DTs. The decision-maker specifies
three key parameters for the online sampling stage: the total simulation budget N, the initial number of
simulation replications allocated to each policy ng, and the number of simulation samples allocated per
online iteration AN. Once the context Y is observed and the set of policy alternatives {Xj,---,X,,} are
known, ML predictions {g;: j=1,---,m} can be quickly obtained using the fitted model from the previous
stage. With this information, a Gaussian mixture model is then estimated to represent the distribution of
outcomes for the policy alternatives. As illustrated in Figure 7, SAMPLE proceeds as follows:

Step 0:  Initialize the parameters by setting n; = ng for j = 1,---,m, the iteration counter ¢ = 1, and
the expended simulation budget N; = mny. B
Step 1:  Simulate X;, j=1,---,m, for n; independent replications. Compute the sample mean f; and

the sample Variance 612 for each decision alternative X;.
Step 2:  Compute the posterior mean fj and variance 6]2 for each decision alternative X; by substituting
fj and 6j2 as follows (Peng, Xu, Lee, Hu, and Chen 2019):
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Step 3:  Compute n; for each decision alternative X; using the following equations (Chen, Lin,
Yiicesan, and Chick 2000, Chen and Lee 2010, Perry, Xu, Huang, and Chen 2022):
nj, Vj .
= "5'2,11#12#1 , m =V (6)
nj,  Vioj

Step 4:  Stop the process if N, reaches N, and select the decision with the highest posterior mean f j
as the optimal decision. Otherwise, proceed to Step 1 after updating the iteration counter
t =t—+1, and the expended simulation budget N, = N, + AN.

SAMPLE enhances the accuracy of decision-making during real-time simulation optimization by
combining the ML predictions with simulation data while efficiently allocating the online sampling budget.
When the objective is to identify a decision that maximizes a single objective, adaptive intelligence can
efficiently determine the best choice among a set of known decision alternatives for any given context.
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4 CONCLUDING COMMENTS

Digital Twins, virtual models that accurately replicate the dynamic behavior of physical systems, are on
the cusp of a revolutionary transformation not only for the design but also for real-time control of dynamic
systems. In this tutorial, we define the key building blocks of Digital Twins and explore the key challenges
they face in enabling real-time decision making.

DTs, which generalize and extend the power of simulation, have thus emerged as an important and
popular tool. To provide decision support for the physical system almost in real-time, DTs inherit the
challenges of efficiency in simulation optimization, which have been extensively investigated in the simulation
community. For instance, OCBA, which adaptively manages the exploration/exploitation trade-off with the
aim of maximizing the efficiency of simulation optimization, is 3 to 20 times faster than traditional R&S
procedures. However, such speed up may still not be sufficient for real-time decision making.

AI/ML techniques appear to be well positioned to further enhance the efficiency of traditional simulation
optimization approaches since, once well trained, they are very fast. However, training these black-box
models requires extensive data. Moreover, when a scenario occurs in an area where the model is not well
trained, the output of AI/ML may not be reliable. Additional training or adjustment of the AI/ML model
would prove to be expensive and excessively time consuming.

This tutorial therefore focused on exploring potential synergies between AI/ML models and simulation
optimization techniques in achieving adaptive intelligence. A concrete illustration of such synergies can
be found in the way AI/ML is teamed up with simulation optimization techniques such as MCTS to create
a world-class Go player. In this case, instead of performing additional training (or transfer learning) to
improve the metamodel, AI/ML is directly integrated into DT in response to the realized/observed scenario.

In another illustration of adaptive intelligence, SAMPLE provides a framework whereby an AI/ML
model, which had been trained offline, serves as an engine for the transformation of the decision space into
an ordinal space, strengthening the neighborhood structure. A multi-fidelity OCBA is then developed to take
advantage of this new neighborhood structure to maximize efficiency in evaluating alternative decisions.
SAMPLE is just one possible concept of adaptive intelligence. Other approaches that explore the synergies
between AI/ML and simulation optimization can surely be developed. This is why we believe that AI/ML
represents an important domain for simulation research.
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