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ABSTRACT

We propose a worldview to facilitate the discussion of how Monte Carlo simulation experiments are
conducted in a digital twin context. We use the term Monte Carlo digital twin to refer to a digital twin in
which a Monte Carlo simulation model mimics the physical twin. The worldview we propose encompasses
Nelson and Schmeiser’s classical worldview for simulation experiments and adds key components of a
Monte Carlo digital twin including a predictor, a decision maker, and bidirectional interaction between the
Monte Carlo digital twin and the physical twin. We delineate the proposed worldview components in three
examples.

1 INTRODUCTION

The use of Monte Carlo simulation models in a digital twin framework has become a popular topic at
the Winter Simulation Conference, with an established dedicated track, “Simulation as Digital Twin.” In
the 2024 Winter Simulation Conference, Onggo and Currie (2024) discuss the idea that the evolution
of simulation models from a mostly offline setting to an increasingly online setting implies that some
traditionally offline simulation concepts, such as input modeling, require updates for the online setting.
Building on the idea of updating traditional simulation concepts, in this paper we propose an expansion
of Nelson and Schmeiser’s Monte Carlo simulation worldview (discussed in Section 2) to facilitate the
discussion of how Monte Carlo simulation is used in a digital twin context. While diagrams indicating
the integration of simulation with digital twins have appeared before (e.g., those in Biller et al. (2022)
and Zhou (2024)), to the best of our knowledge, this is the first appearance of a detailed worldview at the
Winter Simulation Conference.

The concept of a digital twin does not require the use of Monte Carlo simulation per se — the concept,
as defined in the report by the National Academies of Sciences, Engineering, and Medicine (NASEM)
(National Academies of Sciences, Engineering, and Medicine 2023, p. 21), is broader; we refer to this
definition as the NASEM definition:

A digital twin is a set of virtual information constructs that mimics the structure, context, and
behavior of a natural, engineered, or social system (or system-of-systems), is dynamically
updated with data from its physical twin, has a predictive capability, and informs decisions
that realize value. The bidirectional interaction between the virtual and the physical is
central to the digital twin.

The NASEM report that contains this definition notes that the definition of a digital twin may vary by
sub-discipline, and also quotes the following definition as being one of the origins of the term digital twin,
attributed to a NASA report by Shafto et al. (2012):

A digital twin is an integrated multiphysics, multi-scale, probabilistic simulation of a vehicle
or system that uses the best available physical models, sensor updates, fleet history, etc., to
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mirror the life of its flying twin. The digital twin is ultra-realistic and may consider one
or more important and interdependent vehicle systems, including propulsion and energy
storage, life support, avionics, thermal protection, etc.

For completeness, we also asked OpenAl ChatGPT (2025) for a definition of a digital twin and obtained
the following in response (with citations corrected due to minor hallucinations in the original transcript
and notation changed to avoid conflicts with later definitions):

A digital twin is a data-driven, model-integrated computational artifact designed to represent,
synchronize with, and support decision-making about a physical system. Formally, a digital
twin is a triplet (M, D,C), where:

*M is a model component: a parametrized, simulatable representation of the physical
system’s state and evolution. The model may be physics-based, data-driven, or hybrid,
and it must capture the system’s behavior.

*D is a data pipeline, responsible for streaming observational or operational data from
the physical system to the model. This enables state estimation, model calibration, and
anomaly detection (Rasheed et al. 2020).

*C is a coupling mechanism that provides bi-directional interaction between physical
and digital layers. It supports monitoring, control, and experimentation (Fuller et al.
2020).

Together, the triplet (M, D, C) encapsulates the defining features of a digital twin: high-
fidelity modeling, real-time synchronization, and actionable decision integration. This
formalism generalizes the original vision of Grieves and Vickers (2017) and aligns with
scalable architectures such as those described by Kapteyn et al. (2021).

Essential properties include fidelity, synchrony, adaptivity, and interactivity. These properties
distinguish a digital twin from static or offline models and enable its use in dynamic, data-rich,
operational settings.

While the descriptions above identify important components, especially the digital twin as defined by
OpenAl’s ChatGPT, our interest is a concise worldview with further precision about components and their
relationships, so as to facilitate thought and meaningful discussion. We consider only digital twins in which
“the set of virtual constructs that mimics the structure, context, and behavior of a system” per the NASEM
definition, and the model component M per the ChatGPT definition, is a Monte Carlo simulation model.
Thus, the system can be characterized by probability models (Asmussen and Glynn 2007; Nelson and Pei
2021), and its performance can be assessed using simulation experiments. We refer to such a setting as a
Monte Carlo digital twin.

In what follows, we first recall Nelson and Schmeiser’s simulation worldview in Section 2. Then, we
introduce the proposed Monte Carlo digital twin worldview in Section 3. Section 4 contains examples,
deliberately simplified, that describe the elements of the worldview in context. Section 5 contains concluding
remarks.

2 NELSON AND SCHMEISER’S SIMULATION WORLDVIEW

Nelson and Schmeiser’s simulation worldview concisely encapsulates the idea that the purpose of a simulation
experiment is to analyze a system’s performance by using Monte Carlo to estimate an unknown performance
measure 8. This simulation worldview has conceptual origins in Barry Nelson’s 1983 thesis (Nelson 1983).
In particular, the top of p. 20 in Nelson (1983) discusses inputs, outputs, and estimators. The third chapter,
“Simulation,” develops the worldview in great detail, but without using the diagram or the word “worldview.”
Further discussion appears in the Winter Simulation Conference papers Nelson and Schmeiser (1983) and
Schmeiser (1984).
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Figure 1: A scan of the first known appearance of Nelson and Schmeiser’s simulation worldview in diagram

form, as part of Schmeiser’s IE 590G course notes at Purdue University from Fall 1989. IE 590G later
obtained the permanent course number and title “IE 581 Simulation Design and Analysis.”

The simulation worldview seems to have first appeared in diagram form as part of Schmeiser’s class
notes from October 1989; see Figure 1. A similar diagram appears in Schmeiser (1999), where the simulation
experiment is written as the sequence of transformations

G—oU—=X—Y 0. (1)

Here, G represents the random number generator, U represents the random numbers, X represents the input
random variables or data, ¥ represents the output random variables or data, and 6 represents the point
estimator of the (not necessarily scalar) performance measure 0, e.g., a mean, quantile, or other properties
of the distribution of the output random variables. The logic model and the probabilistic input model,
which are annotated in Figure 1 but not explicitly shown in (1), are crucial for a complete description of
a simulation experiment. The logic model transforms the input data X into the output data Y, and the
probabilistic input model transforms the random numbers U into the input data X. We adopt the version
of Nelson and Schmeiser’s simulation worldview shown in Figure 2, which explicitly includes the input
model, the logic model, and 8, where 6 is labeled generally as an unknown “desired parameter.”

Figure 2 provides a scaffolding for discussing the components of a Monte Carlo simulation model.
Since its first appearance, the simulation worldview has been used by the authors to organize content and
discussion in their simulation courses: first in Schmeiser’s IE 581 at Purdue as Figure 1, in Pasupathy’s
ISE 5424 at Virginia Tech as Figure 2, and also in Hunter’s IE 581 at Purdue as Figure 2. Further, an
iteration on (1) appears in Larry Leemis’s course notes for IE 680 at William and Mary (Leemis 2025,

G— U — MUy _ylogic oy e g
model model
generator random input output estimator desired
numbers variables variables parameter

Figure 2: Nelson and Schmeiser’s worldview for discussing Monte Carlo simulation models, modified by
Pasupathy to include the desired parameter 0. Every straight arrow in the diagram means ““as an input to,”
and the squiggly arrow means “is an estimator for.”
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p. 3); in personal communication, Leemis also describes using the simulation worldview as a scaffolding
for discussion.

3 A MONTE CARLO DIGITAL TWIN WORLDVIEW

As with Nelson and Schmeiser’s simulation worldview, our aim is to create a Monte Carlo digital twin
worldview that provides a scaffolding for discussion. The proposed worldview in Figure 3 expands upon
Figure 2 to explicitly delineate between the processes that occur in real time in the physical world and
those that occur in digital time in the virtual world. In particular, Figure 3 includes a physical twin, which
can be updated by a decision maker and which produces data that is sent to the Monte Carlo digital twin.
The Monte Carlo digital twin encompasses the simulation worldview and adds the predictor. The predictor
receives data in the form of the physical twin decision variable values & and other information D, as well
as the response ¥ from the physical twin. The predictor also controls the Monte Carlo simulation model
by initiating updates to the logic model and input model using decision variables x and data D, which are
analogous to the corresponding objects ¥ and D from the physical twin, and then sending seeds to the
generator in service of observing the resulting estimator 8 from the Monte Carlo simulation model. The
estimator 6 is constructed from output variables ¥ which are analogous to the response ¥ in the physical
twin. The predictor processes the information available from the physical twin and the information it
collects from the Monte Carlo simulation model to produce an estimator (£*, 8*) for the desired prediction,
which is conveyed to the decision maker. The choice of the term predictor, and the related terms desired
prediction and estimated prediction, are consistent with the NASEM definition’s requirement that the digital
twin has a predictive capability. We acknowledge that our nomenclature is somewhat arbitrary; other terms

physical .
! (real time 7) de(?lSIOIl
: response variables o context
V% physical twin k— § —— decision — C
maker

%
T
(%,D) data

virtual (digital time T) 4 /

Monte Carlo digital twin predictor ———  (£*, é*) (X, 0%)

i estimated desired

rediction rediction

(x,D) b b

L G U — Py oy Y e g
: model model !
! generator random input output estimator desired
! numbers variables variables parameter
\ Monte Carlo simulation model :

Figure 3: The proposed Monte Carlo digital twin worldview, where straight arrows mean “as an input to,”
and squiggly arrows mean “is an estimator for.”
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for the entity currently called predictor include analyzer, controller, coupler (from the ChatGPT definition),
optimizer, searcher, and seeker. Another term for desired prediction would be ideal performance.

From Figure 3, three features explicitly or implicitly characterize Monte Carlo digital twins:

1. Decision Variables: Decision variables & form the mechanism by which a decision maker alters
the physical twin, based on advice from the predictor and other contextual considerations. Decision
variables X have their counterpart x in the digital twin.

2. Physical-Virtual Feedback Loop: The physical twin outputs the current state of the decision
variables ¥ and data D to the predictor, as well as the response from the physical twin ¥; ()?,75)
and ¥ may be available at the same or different real times ¢. The predictor uses this information
and its ability to control the generator to construct the estimated prediction (£*, é*), where £* is
the estimated decision variable value which produces the estimated predicted performance for the
physical twin, 8*. The decision maker closes the loop by combining information from the predictor
with contextual information C to update the physical twin.

3. Predictor-Simulation Feedback Loop: The predictor updates the input model and the logic model
of the simulation using virtual decision variable and data values (x,D). The predictor then uses
the updated simulation model to perform simulation experiments by determining the number of
simulation replications to conduct at the given value of x, sending the relevant seeds to the generator,
and possibly also varying the values of the virtual decision variables x to perform “what-if” analyses.
The ultimate goal of the predictor’s simulation experiments is to construct the estimated predictions
(£*,6%), which are part of the physical-virtual feedback loop.

To keep the figure relatively simple, time is implicit in each loop of Figure 3. Specifically, there are
two inherent clocks corresponding to physical time ¢ and virtual time 7. Each element of the figure is a
function of one clock, with the exception of the predictor which interacts with both clocks. There are also
two implicit decision rules, which occur in physical time #: (i) How often does the physical twin send data
to the predictor? and (ii) How much time is given to the predictor to simulate and explore different values
of the virtual decision variables x? Although implicit in Figure 3, time arises explicitly in our examples in
Section 4. Finally, Figure 3 implicitly assumes that the clock in the Monte Carlo simulation model runs
(much) faster than real time.

The worldview in Figure 3 reflects only the relationships between the results of many modeling processes
and choices, such as choice of random number generator, input modeling, output analysis, variance reduction,
verification, validation, and recalibration. A significant amount of logic and complication can be embedded
within any component or arrow in Figure 3. For example, the predictor requires a variety of coordinating
and predictive capabilities which are not explicitly detailed. Similarly, each arrow from (x,D) to the input
model and the logic model requires transforming the data into a format which enables an update to the
Monte Carlo simulation model. Further logic may also be required to recalibrate a Monte Carlo digital
twin; see Rhodes-Leader and Nelson (2023) and He et al. (2024).

The proposed Monte Carlo digital twin worldview implies that errors in decision-making arise (only)
due to three sources of error: (i) modeling error, due to deviations in the representation of the physical
twin by the digital twin; (ii) estimation error, due to the deviation of the Monte Carlo estimator 6 from the
desired parameter 0; and (iii) prediction error, due to the deviation of estimated prediction (£*, é*) from
the desired prediction (x*,0*). Whereas the modeling error arises as a result of modeling approximations
and coding errors, the estimation error and the prediction error arises from simulation uncertainty, e.g., not
performing enough Monte Carlo replications, and numerical uncertainty, e.g., not solving an optimization
problem to infinite precision, respectively.

A Monte Carlo digital twin worldview should have two properties: (i) a given real-world system
could have many digital twin instantiations encompassed by the worldview, and (ii) given a digital twin
instantiation, we (anyone) should be able to identify the various worldview components. We think Figure 3
attains these two properties.
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4 EXAMPLES

To illustrate the proposed Monte Carlo digital twin worldview in context, we now present three examples.
The first example is an M/M/X queueing system with the number of servers X as the decision variable. The
second example is a newsvendor problem with restocking and time-dependent demand. To illustrate the
worldview beyond the context of optimization, the third example considers anomaly detection in a water
transmission network. In each of the examples, we describe the components of the Monte Carlo digital
twin worldview depicted in Figure 3. Keep in mind the following two points:

1. Our examples intentionally increase in complexity, with the first example being trivial. All three
examples are simpler than a typical messy real-world application.

2. Monte Carlo is one of three ways to “do” probability; the other two are closed-form analytics
and numerical analyses. One user might find a closed-form or numerical solution while another
might use Monte Carlo. Within the context of Monte Carlo, the model can range from “crude” to
more-efficient, via any variance-reduction techniques.

4.1 Queue with Variable Number of Servers

Let the physical twin be a literal M/M/% queuing system, with a single First-In First-Out queue, known
constant arrival rate A > 0, and known equal service rates i > 0. The number of servers, ¥ € {0,1,2,...,10},
is the single decision variable, which is updated in the physical system every five minutes. The response Y
is the random vector of physical wait times, measured as the time taken from when a customer enters the
queue to starting service, and observed as y; D contains the current queue length O and elapsed service
times for customers currently in service, S 1,S2, ... ,Sx. For convenience, define the elapsed service time of
an idle or non-existent server to be zero.

Let W be the wait time of a random customer arriving to the queue during the next five minutes. For x
servers, the performance measure is the desired parameter

6(x) :=Pr{W < 3minutes|x, 0 = 4,5 = 51,5 = &,...,5: = §:}.

The optimal number of servers, x*, is the minimal value of x so that 8 > 0.95, or x = 10 if the threshold
cannot be met. (Yes, the authors know that conditioning on the elapsed services times is unnecessary,
because the service times are exponential. Our user seems not to know.)

Ignoring that a sophisticated user can easily find more efficient approaches, our user’s digital twin
is a crude Monte Carlo simulation model that perfectly reflects the physical twin. At the beginning of
every physical five-minute interval, the predictor is awakened by the physical twin with its wait times ¥,
its current number of servers X, its queue length §, and its current elapsed service times §1,35,. .., 5k

The predictor estimates the next five minutes’ optimal number of servers x* using the dlgltal twin. For
each feasible number of servers x, and for each of 1000 independent and identically distributed replications,
the predictor runs the Monte Carlo model, with the initial state being the current physical queue length §
and elapsed service times §71,52, .. .,Sy; the run lengths are long enough to determine the wait time for each
customer arriving during the digital five-minute interval. For each x, the estimator é(x) is the fraction of
digital customers that waited no more than three minutes. The predictor estimates the optimal number of
servers x* and performance at the optimal number of servers 8* = 6(x*) by assuming that 6(x) = 6(x);
that is, it sets £* to the smallest value x for which at least 95% of digital customers waited no more than
three minutes (or to £* = 10 if no x values achieve this goal), and sets the estimated predicted performance
to 6 = H(%*).

The predictor passes (£*, é*) to the decision maker. Having an idealized context C, the decision maker
simply sets the number of physical servers, %, to the predictor’s estimated optimal number of servers; that
is, ¥ = £*. Contextual concerns such as timing, costs, illness, and server maintenance are left to real-world
examples. Also due to this example’s simplicity, notice that the predictor had no use for knowing the
previous time interval’s wait-times response .
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4.2 Newsvendor with Restocking and Time-Dependent Demand

Consider a physical twin consisting of a periodically-restocked 24-hour newsstand selling newspapers
to arriving customers. That is, the newsstand is replenished with £;_; > 0 additional newspapers at the
beginning of the ith time increment [(i —1)38,i8), i € {1,2,...} for some & > 0, say every three hours starting
from 5am. (While we consider only a constant restocking time interval 6 below, a more complicated model
could allow random or event-based restocking.) Customers arrive and purchase an available newspaper at
price p dollars per unit, where the total number of customers in increment i is denoted by the demand
random variable D;. If no newspaper is available, the customer leaves the newsstand with no purchase.
At the end of each m time increments, which we refer to as a news cycle, newspapers obtained at cost
c dollars per unit expire and are sold at a salvage price of s dollars per unit. For example, a newsstand
may be restocked by adding newspapers every three hours at Sam, 8am, 11am, and so on, but after m = 8
time increments, all unsold newspapers are considered expired and sold for salvage at price s; see Figure 4.
Fresh newspapers are stocked for the next news cycle.

16 20 36
"

5a 8a lla 2Ip 5Ip 8Ip 1 ip 2a 5a 8a "

-V

news cycle of m = 8§ increments

Figure 4: A timeline for the newsvendor with restocking and time-dependent demand.

The decision maker is the entity with the power to place orders and make changes to the newsstand
(physical twin), such as a human newsstand manager or an algorithmic controller. Thus, the decision maker
determines the decision variable, which is the number of additional newspapers to stock %;_; before the
start of each time increment i > 1. The decision maker makes this decision while taking into account
the system context, denoted C, which may inform updates or changes to the newsstand. Such contextual
information may include anticipated events that could affect demand for newspapers in the next cycle.

The physical twin produces a random profit for the newsvendor in each time increment, as follows. At
time t = 0 and perhaps based on context C, the decision maker stocks Xy newspapers. The profit at the end
of the first time increment, [0, ), is

pmin(D1 ,)Z()) — Cf() +S()Z() - min(D1 ,)f())) if m= 1,
pmin(Dy, %) — cXo otherwise.

71 (%) = {

The number of unsold and unsalvaged newspapers at the end of the first time increment that are carried
forward to the beginning of the next time increment [§,26) is

)f(mr_ Xo—min(Dl,)Zo) ifm;él,
L () otherwise.

At the beginning of the next time increment [§,28), the decision maker has the option to add % > 0
newspapers at cost ¢; we assume the replenishment is instantaneous. We now write the profit expression for
increments i > 2 recursively by conditioning on the number of unsold and unsalvaged newspapers carried
forward from the previous time increment, i;’_z. Then the newsstand obtains a profit at the end of time
increment i > 2 as

Yi(fifl ‘)?itz :f;r—z)
_f pmin(Dy, &, +xi-1) —cxig +s(ij;2 +x;—1 —min(D;, £, +xi,1)) ifimodm=0, (2
| pmin(Dy, 7, +xim1) —exiy otherwise,

3340



Hunter, Pasupathy, and Schmeiser

where the number of unsold and unsalvaged newspapers at the end of the ith time increment is

T { x5+ xi1 —min(Dj,x;, +x.1) if i mod m # 0,
: 0 otherwise.

In each time increment i, the physical twin produces data containing the time of sale of each newspaper,
denoted by D; = {S;1,...,Siv.}, where N; = min(Dy,x0) and N; = min(D;, %, +x;_1), i > 2 is the total
number of newspapers sold in increment i (implicitly conditional on the leftover newspapers from the prior
increment). Notice that unless the demand D; is smaller than the total number of newspapers available at the
beginning of increment i, we do not observe D;. Instead, we observe the demand which is right-censored
by the number of newspapers available.

The newsvendor would like to operate the newsstand to maximize the expected profit. To accomplish
this goal, the newsvendor implements a Monte Carlo digital twin for the purpose of estimating the restocking
policy which maximizes the expected profit in the next time increment, given data produced by the physical
twin so far. That is, in time increment i, given access to data from all time increments up to and including
i—1,i> 2, and looking forward from the start of time increment i+ 1, the newsvendor’s desired prediction
includes:

1. The optimal number of additional newspapers to stock at the beginning of the next time increment

i+ 1 to maximize the expected profit over the time interval [id, (i +1)6); that is,

x* = argmax, o B [Fis1 (i X, =% U
2. The expected profit under the optimal restocking amount x*,

0* =E Y1 (x* X, =% )]

To obtain an estimator for the desired prediction (x*,0*), the newsvendor implements a Monte Carlo
digital twin of the newsstand which can simulate the newsstand operations over the time horizon [i0, (i+1)6),
i > 1. The desired prediction implies that the desired parameter 6 for the embedded Monte Carlo simulation
model is the expected profit in the next time increment for a given restocking decision x. In this simulation
model, the input variables are the customer arrival times during the time horizon. To generate the customer
arrival times, we require a generator G which is capable of generating random numbers U, such as
mrg32k3a (L’Ecuyer et al. 2002), and an input model for the customer arrival process. Since the Monte
Carlo digital twin should predict the future as a function of the past, we assume a parametric form for the
customer arrival process which explicitly accounts for a long-term trend and cyclic behavior,

A(7) = exp{¥r_o BTt + nsin(wt+¢)} for all T >0,

where fBy,..., ﬁp,n ®,¢ are the parameters. The long-term trend is modeled through Y7 o BiT " and the
cyclic behavior is modeled through 7 sin(@7+ ¢) (Nelson and Pei 2021, p. 172). Then at the start of
time increment i > 2, the predictor sends the collected data D; = {S i1,872,...,8 le.} from the real-world
system to the input model. The arrow implies a function which updates the estimated arrival process model
parameters, denoted (ﬁl, ceey ﬁp, n,0, (ﬁ), perhaps using a combination of data from past increments with
the current increment, thus yielding the updated input model

2i(7) = exp{¥’_, Btk + A sin(@t+ @)} for all > 0;
see Lee et al. (1991). The input model yields the input variables, which consist of the virtual customer

arrival times. Assuming customers arriving according to the input model are served instantaneously, the
logic model appends each customer arrival time with a 1 if a newspaper is purchased and a 0 if no
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newspapers are available, where, for simplicity, we model each newspaper purchase as belonging to a
separate customer. The logic model has policy parameter x > 0 which specifies the number of newspapers
added at the beginning of the simulated time interval, and the system state variable maintained by the
simulation model includes the current number of newspapers available for purchase. Then, the output
variable for the simulation Y;; corresponds to the profit in the time increment i + 1 under the restocking
policy x. Given several replications, that is, several simulated customer arrival processes over the time
horizon 7 € [i8, (i +1)8], the output random variables are used to calculate the estimator  for the desired
parameter 6. Here, the desired parameter 0 is a vector including the expected profit and other desirable
quantities for decision-making, such as the probability of a stock-out.

Finally, the predictor belongs to both the physical-virtual feedback loop and the predictor-simulation
feedback loop. In this sense, it serves as the coupling mechanism C from the ChatGPT definition of
a digital twin. Its roles in each loop are as follows: The predictor controls the simulation as part of
the predictor-simulation feedback loop. Therefore, the predictor controls when the input model receives
updated data D. It also determines which value of x to simulate next and the required precision for the
estimator 6; thus, a simulation optimization algorithm is also embedded in the predictor. As part of the
physical-virtual feedback loop, the predictor interfaces with the data from the physical twin and makes the
estimated predictions available to the decision maker. Thus, in this setting, the predictor can declare that
a good-enough estimator for x* has been found using a stopping rule, or it can declare that there is not
enough real time to find a better estimator, and, thus, recommend an update to the real-world system based
on the available information.

4.3 Anomaly Detection in a Water Transmission Network

Consider a vendor who uses a large network of transmission lines to distribute water to storage facilities
or consumers. The digital twin can be used to detect impending anomalies in the operation of such a
network. In what follows, we provide an overview of the important components in such a digital twin, but
at a broader level of detail than in Subsection 4.2.

The physical twin in this example consists of transmission lines equipped with pressure sensors installed
at £ network locations, capable of recording and transmitting pressure data every § > 0 seconds. The data D
consists of realizations from a vector time series V (¢8),t =0,1,2,..., V(t8) = (V1(¢8),V(t3),...,V,(t8))
representing pressure observations at the £ fixed locations. The time series V(¢8),t =0,1,2,... can exhibit
significant serial correlation and seasonal variability in response to variations in demand for water.

The decision maker, with safety and efficiency as overarching goals, seeks to distinguish variations in
water pressure due to seasonal demand from those due to anomalous behavior, as might result from such
conditions as the build-up of line debris or leakage. The decision variable ¥ may be particular aspects
of the network that can be changed in response to an imminent anomaly, or to ensure a more efficient
functioning of the physical twin. Specifically, ¥ might represent the configuration of valves (“on” or “off™)
within the network, or the capacity of individual links in the network. For concrete discussion, suppose
the decision variable X represents the configuration of states (“on” or “off””) of the various valves in the
transmission network, and suppose x corresponds to a “what-if”” scenario, that is, an altered configuration
being considered by the decision maker. Toward facilitating such a “what-if” analysis, the predictor first
updates the input model using available data, and then seeks to use the Monte Carlo simulation model to
report the network performance under different network configurations specified by changing the values of
x. Using the notation in Figure 3, this corresponds to setting ¥ := {V(¢8),t =0,1,2,...} and D := 0.

The decision maker seeks a network configuration that results in a non-anomalous network pressure
behavior. To define this idea more precisely, suppose i, denotes the distribution of the water pressure V(¢)
at a future real time ¢, and U a reference distribution serving as the nominal distribution under regular
network operation. (Both V() and it’s distribution g, depend on the configurations %, although we have
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suppressed such dependence for notational convenience.) An anomaly is said to happen at real time ¢ if

o — [ 1 if lw(w) —y(w)| >,
t — .
0 otherwise,

where y: P([0,e0)) — R is some chosen statistical functional, e.g., the total variation of a probability
measure, P ([0,0)) is the set of probability measures supported on [0,e), and € > 0 is a chosen tolerance.
Then, the desired parameter is an indicator variable of whether an anomaly occurs,

0 =max{6;: k=1,2,...,s},

wheret] <t; <...<t; denotea given set of future times of interest where anomalous behavior will be checked.
These time increments may also be constructed in the service of finding the earliest time of occurrence
of the anomaly: ¢* :=inf{r € {t],1;,....6;}: |w(i;) — w(uo)| > €}. (Let t* = oo if |y (1) — y(Ho)| <
€ forall r € {t{,13,...,t;}.) The parameter 6 is unknown because y, is unknown for all future 7; it is
also clearly dependent on %, even though we have suppressed such dependence for convenience. The
decision maker implicitly seeks a conﬁguration X that ensures that 8 = 0 (or t* = o), that is, an £ such that
lw() —y(uo)| < € forall r € {t1 ,t2, ,t7}. If there is no such configuration, the decision maker may
settle for a configuration % that minimizes the deviation [y(t;) — y(Ho)|, a scenario we do not consider.

To understand how one might construct the estimator Bt of 6; for any ¢t > 0 (that is, an estimator OT
evaluated at 7 =), suppose we simulate »n initial segments V;(76),7 <t';i=1,2,...,n of an underlying
time series V = {V(7d),7 > 0} obtained from the Monte Carlo simulation of network water pressures at
the configuration x. (Again, for convenience of notation, we have suppressed the dependence of V on x.)
The simulated data can then be used to construct estimator ,ﬂt;_r,,,k =1,2,...,s of the true distributions
,ut;,k =1,2,...,s, which in turn can be used to construct the estimators

0= max{ét;,n: k= 1,2,...,s} where é,;n = 1(y () — W(o)| > €);

a standard error estimator s%:(é) can be constructed using batching methods (Su et al. 2024). While
various choices exist, a simple estimated prediction (£*, é*) corresponds to any configuration x = £* that
minimizes 6, along with 8* := §(£*). Finally, the estimated prediction (£*,0*) is communicated back to
the decision maker, who might then use any available contextual information C to decide which of the
altered configurations in £* should be chosen for incorporation in the physical twin as *.

5 CONCLUDING REMARKS

The proposed Monte Carlo digital twin worldview is designed to provide a concise and precise description
of the elements that constitute a Monte Carlo digital twin and how they interact. The three examples
of Monte Carlo digital twins elucidate how the various components of the proposed worldview arise in
different settings. We make no attempt to advocate for the use of digital twins; rather we hope to facilitate
discussion of this popular topic.
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