
Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

DESIGNING A FRANK-WOLFE ALGORITHM FOR SIMULATION OPTIMIZATION
OVER UNBOUNDED LINEARLY CONSTRAINED FEASIBLE REGIONS

Natthawut Boonsiriphatthanajaroen1, and Shane G. Henderson1

1School of Operations Research and Information Engr., Cornell University, Ithaca, NY, USA

ABSTRACT

The linearly constrained simulation optimization problem entails optimizing an objective function that is
evaluated, approximately, through stochastic simulation, where the finite-dimensional decision variables
lie in a feasible region defined by known, deterministic linear constraints. We assume the availability of
unbiased gradient estimates. When the feasible region is bounded, existing algorithms are highly effective.
We attempt to extend existing algorithms to also allow for unbounded feasible regions. We extend both
the away-step (AFW) and boosted Frank-Wolfe (BFW) algorithms. Computational experiments compare
these algorithms with projected gradient descent (PGD). An extension of BFW performs the best in our
experiments overall, performing substantially better than both PGD and AFW. Moreover, PGD substantially
outperforms AFW. We provide commentary on our experimental results and suggest avenues for further
algorithm development. The article also showcases the use of the SimOpt Library in algorithm development.

1 INTRODUCTION

The problem we consider is to
min
x∈X

f (x) = E f (x,ξ) (1)

where the non-empty feasible region X is the linearly constrained region {x ∈Rp : Ax≤ b}, the matrix A
and vector b are deterministic and known, ξ is some random element, the distribution of which does not
depend on x, and the function f (x, ·) is real-valued and integrable for all feasible x. We assume that the
function f (x) can only be observed through realizations of f (x,ξ) obtained from a simulation oracle that
generates i.i.d. replications of ξ and then evaluates f (x,ξ). This problem is then a linearly constrained
simulation optimization problem (LCSOP). We further assume that we have sufficient regularity so that the
function f (·,ξ) is differentiable in its first argument, x, for all realizations of ξ , and that the (pathwise)
derivative ∇ f (x,ξ) of f (·,ξ) at the point x is integrable and unbiased as an estimator of ∇ f (x), for all
feasible x. We further assume that we can observe i.i.d. realizations ∇ f (x,ξi) based on i.i.d. realizations
i = 0,1,2, . . . of ξ .

LCSOPs are important. For example, Cornell University solved a problem during the COVID-19
pandemic that determined surveillance testing capacity for different campus groups (Frazier et al. 2022).
There the goal was to select testing rates for the groups so as to minimize pandemic outcomes like infections
over a full semester. A single linear constraint represented the bounded testing capacity. The pandemic
outcomes were estimated through a stochastic simulation. This problem can be formulated as a LCSOP. If
one relaxes the bound on testing capacity and instead adds a cost term to the objective function for high
testing rates, the problem becomes a LCSOP with an unbounded feasible region. This latter formulation
is closer to what happened in practice, where an initial bound on testing capacity was increased when the
potential epidemic prevention benefits of more testing were better understood.

A broad class of algorithms can be brought to bear on LCSOPs. For example, Boonsiriphatthanajaroen
et al. (2024) explored projected gradient descent (PGD), an away-step Frank-Wolfe (AFW) algorithm and an
active set method in combination with 4 different line search strategies through computational comparisons
on LCSOPs. There it was found that PGD and the Frank-Wolfe algorithm typically outperformed the active

979-8-3315-8726-0/25/$31.00 ©2025 IEEE 3346

Boonsiriphatthanajaroen and Henderson

set method, though not universally. One of the problems explored in that paper involved an unbounded
feasible region, but the variant of the Frank-Wolfe algorithm that was employed required a bounded feasible
region. To handle this difficulty, a linear constraint was added that rendered the feasible region bounded
and that was sufficiently “loose” that it was not expected to change the optimal solution to the problem.
While this strategy allowed the Frank-Wolfe algorithm to make progress, the algorithm struggled on this
problem compared to the other algorithms.

Given the strong overall performance of the Frank-Wolfe algorithm in Boonsiriphatthanajaroen et al.
(2024), except on an unbounded problem, we are motivated to seek an improved Frank-Wolfe algorithm for
LCSOPs that requires no tailoring when encountering a problem with an unbounded feasible region. It is
important that no tailoring be required, to minimize the knowledge required of a user. We want to retain the
strong performance of the Frank-Wolfe algorithm on bounded problems, while also ensuring competitive
performance on unbounded problems. (Problems with unbounded feasible regions are common in practice,
e.g., in inventory problems with unbounded order quantities, or in capacity expansion problems where
capacity comes at a cost rather than being constrained.) Wang et al. (2022) develop a Frank-Wolfe method
for linearly constrained unbounded regions, but their method applies only to very specially structured
feasible regions that are a direct sum of a linear subspace and a bounded constraint set.

In this paper we attempt to develop a Frank-Wolfe algorithm for general LCSOPs. The new algorithms
we explore are not a direct extension of the standard Frank-Wolfe algorithm (Frank and Wolfe 1956). Rather,
we first choose to extend the AFW algorithm (Wolfe 1970, §8) and, separately, the boosted Frank-Wolfe
(BFW) algorithm (Combettes and Pokutta 2020). These algorithms have demonstrated strong performance
on bounded feasible regions and are thus natural candidates for extension. Our first extensions allow these
algorithms to incorporate not just vertices of the feasible region in specifying the search direction, but also
extreme directions. Further details are discussed in Section 2.

In Section 4 we compare the empirical performance of the new algorithms, along with projected gradient
descent, on a suite of test problems that consists of a mix of bounded and unbounded LCSOPs. The test
problems are briefly described in Section 3. We elect not to include active-set methods in the comparison
because their performance lagged the others that were explored in Boonsiriphatthanajaroen et al. (2024).

The results in Section 4 indicate some promise, but there is a repeated problem, that we term “plateauing,”
on problems with an unbounded feasible region where the algorithms fail to make much progress for many
iterations. Investigation of the results suggests that plateauing arises because the algorithms are heading
in an unbounded direction, i.e., a direction in which the feasible region is unbounded, but the unbounded
direction is poorly aligned with the negative gradient.

Accordingly, in Section 5 we provide some algorithm adjustments that, we hope, address the plateauing
effect. Some of these new algorithms are motivated by cutting-plane algorithms for convex optimization
problems, in that they entail adding constraints based on an interaction between the convex structure of
the objective function and the (estimated) gradients. Empirical results for all of the proposed algorithms
are given in Section 6, and, in Section 7, we discuss what we learn from the experiments and conclude.

We view the main contributions of the paper to be the design of the new Frank-Wolfe algorithm
variants and their empirical comparisons that shed light on their performance relative to selected competing
algorithms.

2 ALGORITHMS

Let xk be the incumbent solution in the kth iteration. Let f̂ denote a simulation estimator of the function
f , e.g., the usual sample-average approximation f̂ (x) = n−1

∑
n
i=1 f (x;ξi) with (ξ1,ξ2, . . .) denoting an iid

sequence where each ξi is equal in distribution to the random element ξ . Let gk be the estimated gradient
at xk, which, in the setting where f (·,ξ) is appropriately differentiable and some extra regularity holds,
could be taken to be the infinitesimal perturbation analysis estimator n−1

∑
n
i=1 f ′(xk,ξi). The algorithms

described below need a line search method to determine step sizes, for which we use interpolation, which
performed well in Boonsiriphatthanajaroen et al. (2024).

3347

Boonsiriphatthanajaroen and Henderson

2.1 Projected Gradient Descent

Algorithm 1, Projected Gradient Descent (PGD), adapted from Iusem (2003), moves in the direction of the
negative gradient, uses an L2 projection PX back to the feasible region to retain feasibility, then performs
a linesearch in the direction of the projected point. The projection is obtained by solving a quadratic
program using CVXPY (Diamond and Boyd 2016, Agrawal et al. 2018). Stepsizes are constrained to an
iteration-specific maximum stepsize that is chosen adaptively.

Algorithm 1 Projected gradient descent (PGD).
Initialize feasible solution x0 ∈X ; maximum step size γmax

0 ∈ [1,∞); step size discount factor r ∈ (0,1)
for k = 0,1,2, ... do

dk←−gk
yk+1← xk + γmax

k dk
if yk+1 is NOT feasible then

yk+1←PX (yk+1)

dk← (yk+1−xk)
γmax

k
end if
Let γk = argminγ∈[0,γmax

k] f̂ (xk + γdk) (line search)
if γk = γmax

k then
γmax

k ← γmax
k
r

else
γmax

k ← rγmax
k

end if
xk+1← xk + γkdk

end for

2.2 Away-Step Frank-Wolfe

The original Frank-Wolfe algorithm (Frank and Wolfe 1956) iteratively moves towards a vertex of the
feasible region that is obtained by solving a linear program that minimizes a linearization of the objective
function. This can result in zigzagging behavior, which is inefficient; see Figure 1. Algorithm 2, the AFW
algorithm (Wolfe 1970; Julien and Jaggi 2015), additionally allows a step in a direction that moves away
from a “bad” vertex. A vertex representation of the current solution is maintained as a convex combination of
a subset of the vertices V of the feasible region, which is standard, plus a conic combination of the extreme
directions of the feasible region, W , which is new. More precisely, we write xk = ∑v∈V α

(k)
v v+∑w∈W β

(k)
w w,

where all coefficients are non-negative and ∑v∈V α
(k)
v = 1. Define the active vertex set at iteration k, S (k),

to be all vertices (not extreme directions) with positive coefficients, i.e. S (k) = {v ∈ V |α(k)
v > 0}. We

initialize our solution x0 to be a vertex v0 ∈ V , so we initialize all coefficients to be zero except v0 which
has coefficient 1.

Vertices and extreme directions are obtained by solving a linear program. Let LP(r) be a function that
returns either a vertex solution to the linear program maxx∈X ⟨r,x⟩ when the solution is finite, or an extreme
direction u of unit norm such that ⟨r,u⟩> 0 and such that x+λu is feasible for any feasible x and λ > 0.

In each iteration, we first solve LP(−gk), i.e., we solve a linear program whose objective function
is the linearized function. If the optimal solution is a vertex, sk, then the potential search direction is
dFW

k = sk−xk, i.e., we search in the direction of that vertex. If, instead, the linear program is unbounded and
returns the (normalized) extreme direction sk, then the potential search direction is dFW

k = sk. Separately,
we also compute the worst active vertex, vk, meaning that vk maximizes ⟨gk,v⟩ over all active vertices,

3348

Boonsiriphatthanajaroen and Henderson

and then define the potential search direction dA
k = xk− vk. We then select either dFW

k or dA
k as the search

direction, whichever maximizes a certain dot product.
The key difference with the usual AFW algorithm for bounded feasible regions is that the linear program

can be unbounded. In that case, we use the extreme direction that is returned by the linear program solver
as a search direction. The “bookkeeping” for maintaining the representation of the current point as not
only a convex combination of extreme points, which is standard, but also a conic combination of extreme
directions, which is new, is also slightly more complicated.

Depending on which kind of step we take, we have different limits on the maximum possible step
size. For a normal FW step towards a vertex of the form dFW

k = sk− xk, the maximum step size is 1,
corresponding to a move to the target vertex sk. For an away step, we have to limit the maximal possible
step size so that the weight on the worst active vertex, vk, remains positive. The update to the current
solution is xk+1 = xk + γk(xk−vk), which implies that the weight on the worst vertex, vk, changes from its
current value, α

(k)
vk , to (1+ γk)α

(k)
vk − γk. For this to remain nonnegative, we require that the step size γk be

at most α
(k)
vk /(1−α

(k)
vk).

In the case that the search direction is the extreme direction, dFW
k = sk, obtained by solving the linear

program, the step size is more complicated. We retain a parameter, γmax
k that limits the maximum possible

step size in Iteration k. In each iteration of this form we perform a line search for the step size γk ∈ [0,γmax
k].

If the optimal step size, γk is attained at the endpoint, γmax
k , then we increase the maximal step size by a

(geometric) growth factor, i.e., we set γmax
k+1 = γmax

k /r for some r < 1. If, instead, the optimal step size, γk,
is interior to the interval then we reduce the maximal step size to γk.

At the end of each iteration, we update the vertex representation of xk as follows:

1. Normal FW Step with search direction sk− xk:
• If γk = γmax

k = 1, then set S (k+1) = {sk}
•If γk < γmax

k = 1, then set S (k+1) = S (k)∪{sk}
•Update the weights α

(k+1)
sk = (1− γk)α

(k)
sk + γk

•Update the weights α
(k+1)
v = (1− γk)α

(k)
v for all v ∈S (k) \{sk}

•Update the weights β
(k+1)
w = (1− γk)β

(k)
w for all w ∈W

2. Away step with search direction xk− vk:
• If γk = γmax

k , then set S (k+1) = S (k) \{vk}
•If γk < γmax

k , then set S (k+1) = S (k)

•Update the weights α
(k+1)
vk = (1+ γk)α

(k)
vk − γk

•Update the weight α
(k+1)
v = (1+ γk)α

(k)
v for all v ∈S (k) \{vk}.

•Update the weights β
(k+1)
w = (1+ γk)β

(k)
w for all w ∈W

3. Extreme direction with search direction sk:
•Update the weight β

(k+1)
sk = β

(k)
sk + γk for the unbounded direction sk

2.3 Boosted Frank-Wolfe

The AFW algorithm (Algorithm 2) was introduced to mitigate the zig-zagging behavior of the standard
Frank-Wolfe algorithm. However, its search direction can still be poorer than that of gradient descent.
Algorithm 3, the BFW algorithm, is adapted from Combettes and Pokutta (2020) to allow an unbounded
feasible region. Within each iteration, k, it attempts to represent the negative gradient as a conic combination
of the vertices, V , as in the original work, but also, in our setting, the extreme directions of the feasible
region. This approach implicitly addresses the optimization subproblem

min
d
∥−gk−d∥2, (2)

3349

Boonsiriphatthanajaroen and Henderson

Algorithm 2 Away-step Frank-Wolfe (AFW).

Initialize x0 to be a vertex v, set α
(0)
v = 1 and all other coefficients to 0, set a step size discount factor

r ∈ (0,1)
for k = 0,1,2, ... do

sk← LP(−gk); the usual Frank-Wolfe vertex or an extreme direction
vk← argmaxv∈S (k)⟨gk,v⟩; a “bad” vertex

dFW
k ←

{
sk− xk if the LP solution was a vertex
sk if the LP solution was an unbounded direction

dA
k ← xk− vk (away direction)

if −gT
k dFW

k ≥−gT
k dA

k then
dk← dFW

k

γk←

{
argminγ∈[0,1] f̂ (xk + γdk) if LP gives a vertex solution
argminγ∈[0,γmax

k] f̂ (xk + γdk) if LP gives an unbounded direction

γmax
k+1 ←

{
γmax

k
r if LP gives an unbounded direction and γk = γmax

k

γk if LP gives an unbounded direction and γk < γmax
k

else
dk← dA

k
γk← argmin

γ∈[0,α(k)
vk /(1−α

(k)
vk)]

f̂ (xk + γdk) (line search)

end if
xk+1← xk + γkdk
Update the weights α(k) giving the vertex representation of xk+1 to α(k+1)

end for

where gk is the estimated gradient of the solution xk at iteration k. The domain over which we explore
consists of the conic combinations of V − xk, which is standard, and the extreme directions of X , which
is new.

Within each iteration, the algorithm successively refines the direction d by attempting to improve its
alignment with the negative estimated gradient, −gk, by projecting onto a one-dimensional line using the
Non-Negative Matching Pursuit Algorithm (Locatello et al. 2017); see Figure 2. Alignment is measured
by the function align, defined as

align(u,v) =

{
uT v
||u||·||v|| if u,v ̸= 0,

−1 if u = 0 or v = 0,

which is, essentially, the cosine of the angle between the vectors u and v. The algorithm successively
improves the alignment, in each iteration solving a linear program that identifies the vertex or the extreme
direction that best can be used to reduce the difference between the negative gradient and the current search
direction, stopping only when it fails to improve the alignment by at least some minimal threshold, δ , which
is typically set to 10−3. In Algorithm 3, T denotes the maximum number of these alignment-improvement
steps permitted in the Boosted Direction Oracle, and it is typically set to 10. When T = 1, BFW reduces
to the standard Frank-Wolfe method. The maximum step size γmax

k is determined from the minimum ratio
test. The maximum step size could be infinite if the feasible region is unbounded in the search direction.
In this case, we actually perform a line search over step sizes on the interval [0,1]. For default BFW
parameter choices and line search parameters, see the implementation in the SimOpt Library (2025).

3350

Boonsiriphatthanajaroen and Henderson

Figure 1: The AFW algorithm mitigates zigzagging behavior in the original Frank-Wolfe algorithm, by
moving not just towards vertices, but also away from vertices. The BFW algorithm has even more flexibility
in choosing a search direction.

Figure 2: Computing the search direction. In (a), Vertex C solves the linear program, and we project the
negative gradient onto u0, leaving the residual r1. In (b), Vertex B solves the linear program, and we project
the residual, r1, onto u1, leaving the residual r2, which sufficiently improves alignment and thus defines the
direction d in (c). In (d), the alignment between the direction d and the negative gradient is highlighted.

3 PROBLEMS

Here we provide only brief remarks on the choices of test problems. For full details on the test problems,
see the SimOpt Library (2025).

Our test problems consist of 10 random instances of each of 1) the Constrained Stochastic Activity
Network (SAN), 2) the Stochastic Max Flow (SMFCVX) problem, and 3) the Open Jackson Network (OJN)

3351

Boonsiriphatthanajaroen and Henderson

Algorithm 3 Boosted Frank-Wolfe (BFW).
Initialize x0 to be a vertex v, maximum number of oracle steps T , an improvement tolerance δ .
for k = 0,1,2, ... do

Estimate the gradient ∇ f (xk) by gk
dk,Λk← Boosted Direction Oracle(T,δ ,gk)
dk← dk/Λk
γmax

k ← maximum step size computed from minimum ratio test
γk← argminγ∈[0,γmax

k] f̂ (xk + γdk) (line search)
xk+1← xk + γkdk

end for

Algorithm 4 Boosted direction oracle.
Accept as input T , the maximum number of iterations, δ , a parameter to indicate sufficient alignment,
and g, the estimated gradient
Initialize d0 to be a zero vector for the direction, Λ = 0 to be a normalizing term.
for t = 0,1,2, ...,T −1 do

rt ←−g−dt ; this is the running residual
vt ← LP(rt); solve the LP
if LP returned a vertex solution then

w = vt − x
else

w = vt

end if
ut ← argmaxu∈{w,−dt/∥dt∥} rT

t u; see Locatello et al. (2017) to understand this step
λt ← rT

t ut/∥ut∥2

d′← dt +λtut

if align(−g,d′)−align(−g,dt)≥ δ then
dt+1← d′

Λ =

{
Λ+λt if ut = w
Λ(1−λt/∥dt∥) if ut =−dt/∥dt∥

else
break

end if
end for
return dt ,Λ

problem, for a total of 30 test problems. All problems are convex, and we obtain gradient estimates using
infinitesimal perturbation analysis. Both SAN and OJN have unbounded feasible regions, while SMFCVX
has a bounded feasible region. The SAN problem involves minimizing the maximum-length path from a
source node to a sink node in a feed-forward network. The task durations (arc lengths) are random, though
controlled through decision variables specifying their means. The SMFCVX problem entails maximizing
the flow through a capacitated network, the capacities of which are random but partially controlled through
decision variables. The OJN problem entails minimizing the mean steady-state number of jobs in an open
Jackson queueing network, with decision variables giving the mean service rates.

3352

Boonsiriphatthanajaroen and Henderson

4 INITIAL EXPERIMENTS

All of our experiments use the SimOpt Library (2025). In reporting the results, we compare the various
algorithms based only on the simulation replications used; we do not compare the algorithms on their
processing time. This is deliberate; see Eckman et al. (2023) for a detailed justification of this approach.
In short, the reason is that simulation models can be computationally expensive to run compared with
deterministic algorithmic elements such as computing projections in PGD or solving linear programs in
the Frank-Wolfe algorithm variants.

All problems are run using common random numbers across all solvers, to ensure a fair comparison;
see Eckman et al. (2023). We ensure different random problem instances are generated using different
substreams, and each distinct problem factor and model factor has its own individual subsubstream. We
name the problems we generated by the names introduced in Section 3 with the instance’s label. For
example, the problem “SAN-R10” is the 10th instance of the SAN problem.

Figure 3: An instance of SAN tackled using Algorithm 3 exhibits a plateau in the budget interval 250−750
(left), and an instance of OJN has a plateau in the budget interval 500−2000.

Algorithm 3, which we name Decomposition, attempts to align the negative gradient with a conic
combination of Frank-Wolfe and extreme directions. The use of a combination of vertices as well as
extreme directions can improve the alignment with the negative gradient compared to the standard Frank-
Wolfe algorithm. However, poor alignment is still possible when the feasible region is unbounded. Poor
alignment is evident in progress plots. These plots give the estimated objective function value of the best
solution found to date on the vertical axis and the expended budget, as measured in simulation replications,
on the horizontal axis. Plateaus are evident in Figure 3, in which the objective function is not improved
for an extended period.

5 ADDITIONAL ALGORITHMS

To mitigate the plateau effect observed in Figure 3, we propose several variants of the BFW algorithm that
incorporate a few key modifications. These modifications are mostly intended to enhance the set of search
directions available to the BFW algorithm, thereby better aligning the search direction to the negative
gradient.

1. Negative Gradient:
We compute the search direction dk as described in Algorithm 3. If the maximum step size γmax

k
computed from the minimum ratio test is infinite, we recompute γmax

k using the direction of the
negative gradient. If this recomputed γmax

k is non-zero, we replace the search direction, dk, with
the negative gradient; otherwise we keep the original dk.

3353

Boonsiriphatthanajaroen and Henderson

2. Outward Cutting: When the search direction is unbounded, we add a new constraint (cut), hoping
that the cut creates new vertices. The new cut at such an iteration, k, is ⟨gk,x⟩ ≤ ⟨gk,xk⟩ where
xk is the current solution at iteration k. This cut is valid if we use sample-average approximation
with a fixed sample size and the gradient estimate, gk, is obtained using infinitesimal perturbation
analysis.

3. Cutting: This is similar to the previous variation, but a new cut is added in every iteration.
4. Away: In addition to directions that are towards vertices and extreme directions, we also allow the

algorithm to consider away directions of the form xk−vk where xk is the solution at iteration k and
vk is the bad vertex that is computed in the same manner as in the AFW algorithm. In this variant,
we add vertices to the active set if they are selected in the Boosted Direction Oracle and remove
the “bad” vertex from the active set when its weight reaches 0.

6 PRIMARY EXPERIMENTS

Figure 4: An instance of SAN (left), and OJN (right), tackled using variants of Algorithm 3.

Figure 4 illustrates the performance of the BFW variants on the same problems shown in Figure 3,
to demonstrate that plateauing has been reduced. In the SAN-R10 problem, both the away-step and
decomposition methods exhibit plateau behavior (their curves lie on top of one another), whereas the
negative gradient and cutting-plane variants significantly reduce this effect. While the decomposition
method tends to move steadily toward the interior of the feasible region (not shown in the plots, but
observed in the experiment), the negative gradient method follows the negative gradient direction more
closely, leading to improved performance. The cutting-plane methods (both outward cutting and cutting)
alleviate the plateau by introducing additional constraints. These constraints generate new vertices, which
enrich the set of directions available for constructing search directions. In the OPENJACKSON-R4 problem,
the cutting-plane method outperforms the other variants. In this instance, cutting has a better performance
than outward cutting. The additional constraints and resulting vertices from adding cuts at each step
appear to enhance the search direction, accelerating convergence and helping to avoid the plateau. This
improvement is particularly notable when the search direction leads to a bounded maximum step size, (not
shown), allowing the algorithm to make meaningful progress. In comparison, the decomposition method
often moves deeper into the interior without such bounded steps, resulting in slower convergence.

Figure 5 summarizes the performance of all BFW variants on all test problems. To recap, Eckman et al.
(2023) where the curves in Figure 5 are introduced, the area-under-curve plot computes the mean and standard
deviation of the area under the progress curve on different macroreplications, while the CDF solvability
profile gives the fraction of problems solved to within 20% of the initial optimality gap. The scatter plot
suggests similar overall performance among the variants. However, both the cutting and outward cutting
methods exhibit higher standard deviations and significantly larger mean areas in one of the SAN problem

3354

Boonsiriphatthanajaroen and Henderson

Figure 5: Area scatter plot of different variants of BFW solvers (left) and CDF solvability profile at level
0.2 (right) on all test problems.

instances. While these methods aim to enrich the search space by introducing additional constraints, the
added cuts may inadvertently remove useful vertices, thereby impairing rather than enhancing the available
search directions as shown in the area under progress curves where cutting-plane methods have high mean
areas on one problem instance. The CDF solvability profile indicates that all variants are able to solve
most problems within the given budget, with the negative gradient variant showing a slight performance
advantage over the others.

Figure 6: Area scatter plot on different solvers (left) and CDF solvability profile at level 0.2 (right).

Figure 6 compares PGD, AFW, and BFW with negative gradient. The area scatter plot indicates that
BFW generally outperforms both PGD and AFW. While PGD exhibits a lower standard deviation in area,
it also shows a larger mean area under the progress curve, suggesting a slower convergence toward the
optimal solution. AFW, on the other hand, has both higher standard deviation and mean area than the
other two algorithms, indicating more variability in performance, though it may perform well on some
instances. In the solvability profile, both BFW and PGD solve nearly all instances, whereas AFW solves
only approximately 75% of the problems.

Figure 7 shows the performance of the three algorithms—PGD, AFW, and BFW with negative gra-
dient—on the SMFCVX-R5 and OPENJACKSON-R6 problems. On SMFCVX-R5, both AFW and BFW
reach good-quality solutions very quickly, but eventually PGD finds a better solution. In this example, the
optimal solution lies on or near a vertex, and AFW can quickly move toward it, resulting in fast conver-
gence. In contrast, BFW prioritizes search directions that are closely aligned with the negative gradient,

3355

Boonsiriphatthanajaroen and Henderson

Figure 7: Mean progress curves of SMFCVX-R5 (left) and OPENJACKSON-R6 (right).

which may not point directly toward a vertex, thereby slowing its performance. Still in the SMFCVX-R5
plot, PGD exhibits two distinct phases in its progress curve: it initially moves quickly along the negative
gradient with increasing step sizes, but after reaching the boundary around budget 750 its progress slows
considerably. In the OPENJACKSON-R6 problem, AFW performs poorly with the unbounded feasible
region, particularly in the budget range of 500−1500, where it repeatedly selects an unbounded direction
with little improvement. In contrast, PGD steadily follows the negative gradient, and BFW outperforms
both alternatives.

7 DISCUSSION AND CONCLUSIONS

When the feasible region is bounded, the algorithms we developed all work relatively well. The key
challenge is to also handle unbounded feasible regions. Our first algorithms exhibit a plateauing effect,
in which the algorithms appear to stall for some period of time before once again making rapid progress.
This plateauing effect seems to arise when searching in unbounded directions, i.e., with search directions
that permit unbounded step sizes while remaining feasible.

Plateauing arises when there are limited resources for choosing a direction. The AFW algorithm exhibits
a more pronounced plateauing effect because it is restricted to moving toward or away from vertices and
along extreme directions. In contrast, BFW forms a combination of directions toward both vertices and
extreme points, resulting in directions that more closely align with the negative gradient. This allows
greater flexibility and reduces plateauing. While PGD does not exhibit this effect, similar behavior can
occur when the algorithm repeatedly hits the boundary and projects back into the feasible region.

We proposed several algorithmic modifications to attempt to obviate plateauing in the BFW algorithm.
All of the new variants perform better; performance is significantly improved, though still not completely
satisfactory, with some residual plateauing. Of our proposed modifications, the variant of BFW that permits
a search in the direction of the negative gradient performed the best in both speed in making progress
towards an optimal solution and in the quality of the solution attained once the simulation budget was
expended. Other variants do better in selected problem instances, but BFW with negative gradient searches
is reliable and fast. Cutting plane algorithms may be worth further study, especially since they can render
the feasible region bounded, but they can also limit the search direction options due to removing vertices.

Our extension of the AFW algorithm for unbounded regions has mostly disappointing performance,
which arises primarily due to the plateauing effect. We have attempted to limit that effect through various
algorithmic innovations, but the effect persists in experiments. We conjecture that there is an interaction
between the choices of search directions and the step sizes for the line search that, with further study, might
improve the performance. The algorithm does, however, perform well compared to the other algorithms
when the optimal solution lies near a vertex.

3356

Boonsiriphatthanajaroen and Henderson

Both PGD and BFW with negative gradient searches perform reasonably well, but the latter was the
clear winner in our experiments.

In conclusion, we believe that our newly developed BFW algorithm (with negative gradient searches)
shows strong promise, whether the feasible region is bounded or unbounded, and that we have been
successful in our goal of delivering a Frank-Wolfe style algorithm that can handle unbounded feasible
regions. The algorithm still exhibits some plateauing effects that merit further study. On a perhaps related
note, we believe there is the potential for “scaling” issues, in which the algorithm may not adapt when we
change the scale of the decision variables; the algorithm is not “scale free.”

As a final comment, this article showcases the utility of SimOpt in algorithm development.

ACKNOWLEDGMENTS

This work was partially supported by National Science Foundation Grants DMS-2230023 and OAC-2410950.

REFERENCES
Agrawal, A., R. Verschueren, S. Diamond, and S. Boyd. 2018. “A Rewriting System for Convex Optimization Problems”.

Journal of Control and Decision 5(1):42–60.
Boonsiriphatthanajaroen, N., R. He, L. Liu, T. Ye, and S. G. Henderson. 2024. “Evaluating Solvers for Linearly Constrained

Simulation Optimization”. In Proceedings of the 2024 Winter Simulation Conference, edited by H. Lam, E. Azar, D. Batur,
S. Gao, W. Xie, S. Hunter, and M. D. Rossetti, 3482–3493. Piscataway, New Jersey: IEEE https://doi.org/10.1109/
WSC63780.2024.10838622.

Combettes, C. W., and S. Pokutta. 2020, 13–18 Jul. “Boosting Frank-Wolfe by Chasing Gradients”. In Proceedings of the 37th
International Conference on Machine Learning, edited by H. D. III and A. Singh, Volume 119 of Proceedings of Machine
Learning Research, 2111–2121. Virtual.

Diamond, S., and S. Boyd. 2016. “CVXPY: A Python-embedded Modeling Language for Convex Optimization”. Journal of
Machine Learning Research 17(83):1–5.

Eckman, D. J., S. G. Henderson, and S. Shashaani. 2023. “Diagnostic Tools for Evaluating and Comparing Simulation-Optimization
Algorithms”. INFORMS Journal on Computing 35(2):350–367.

Frank, M., and P. Wolfe. 1956. “An Algorithm for Quadratic Programming”. Naval Research Logistics Quarterly 3(1-2):95–110.
Frazier, P. I., J. M. Cashore, N. Duan, S. G. Henderson, A. Janmohamed, B. Liu, et al. 2022. “Modeling for COVID-19 College

Reopening Decisions: Cornell, a Case Study”. Proceedings of the National Academy of Sciences 119(2):e2112532119 https:
//doi.org/10.1073/pnas.2112532119.

Iusem, A. N. 2003. “On the Convergence Properties of the Projected Gradient Method for Convex Optimization”. Computational
& Applied Mathematics 22:37–52.

Julien, S. L., and M. Jaggi. 2015, 7–12 Dec. “On the Global Linear Convergence of Frank-Wolfe Optimization Variants”. In
Proceedings of the 29th International Conference on Neural Information Processing Systems, 496–504. Montreal, Canada.

Locatello, F., M. Tschannen, G. Rätsch, and M. Jaggi. 2017. “Greedy Algorithms for Cone Constrained Optimization with
Convergence Guarantees”. Advances in Neural Information Processing Systems 30:773–784.

SimOpt Library 2025. “Simulation Optimization (SimOpt) Library”. https://github.com/simopt-admin/simopt/tree/python_dev_
boom. Accessed Aug 19, 2025.

Wang, H., H. Lu, and R. Mazumder. 2022. “Frank–Wolfe Methods with an Unbounded Feasible Region and Applications to
Structured Learning”. SIAM Journal on Optimization 32(4):2938–2968 https://doi.org/10.1137/20M1387869.

Wolfe, P. 1970. “Convergence Theory in Nonlinear Programming”. In Integer and Nonlinear Programming, edited by J. Abadie,
1–36. North-Holland, Amsterdam.

AUTHOR BIOGRAPHIES
NATTHAWUT BOONSIRIPHATTHANAJAROEN is a Ph.D. student in Operations Research and Information Engineering
at Cornell University. His research interests are stochastic optimization algorithms and applications of simulation. His email
address is nb463@cornell.edu and his homepage is https://natthab.github.io/.

SHANE G. HENDERSON holds the Charles W. Lake, Jr. Chair in Productivity in the School of Operations Research and
Information Engineering at Cornell University. His research interests include simulation theory and a range of applications
including emergency services. He is an INFORMS Fellow. He is a co-creator of SimOpt, a testbed of simulation optimization
problems and solvers. His email address is sgh9@cornell.edu and his homepage is http://people.orie.cornell.edu/shane.

3357

https://doi.org/10.1109/WSC63780.2024.10838622
https://doi.org/10.1109/WSC63780.2024.10838622
https://doi.org/10.1073/pnas.2112532119
https://doi.org/10.1073/pnas.2112532119
https://github.com/simopt-admin/simopt/tree/python_dev_boom
https://github.com/simopt-admin/simopt/tree/python_dev_boom
https://doi.org/10.1137/20M1387869
mailto://nb463@cornell.edu
https://natthab.github.io/
mailto://sgh9@cornell.edu
http://people.orie.cornell.edu/shane

	279-inv195s3-file1

