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ABSTRACT

The linearly constrained simulation optimization problem entails optimizing an objective function that is
evaluated, approximately, through stochastic simulation, where the finite-dimensional decision variables
lie in a feasible region defined by known, deterministic linear constraints. We assume the availability of
unbiased gradient estimates. When the feasible region is bounded, existing algorithms are highly effective.
We attempt to extend existing algorithms to also allow for unbounded feasible regions. We extend both
the away-step (AFW) and boosted Frank-Wolfe (BFW) algorithms. Computational experiments compare
these algorithms with projected gradient descent (PGD). An extension of BFW performs the best in our
experiments overall, performing substantially better than both PGD and AFW. Moreover, PGD substantially
outperforms AFW. We provide commentary on our experimental results and suggest avenues for further
algorithm development. The article also showcases the use of the SimOpt Library in algorithm development.

1 INTRODUCTION

The problem we consider is to

min f(x) =Ef(x,&) (1

xeZ

where the non-empty feasible region 2" is the linearly constrained region {x € R? : Ax < b}, the matrix A
and vector b are deterministic and known, & is some random element, the distribution of which does not
depend on x, and the function f(x,-) is real-valued and integrable for all feasible x. We assume that the
function f(x) can only be observed through realizations of f(x,&) obtained from a simulation oracle that
generates i.i.d. replications of & and then evaluates f(x,&). This problem is then a linearly constrained
simulation optimization problem (LCSOP). We further assume that we have sufficient regularity so that the
function f(-,&) is differentiable in its first argument, x, for all realizations of &, and that the (pathwise)
derivative Vf(x,&) of f(-,£) at the point x is integrable and unbiased as an estimator of Vf(x), for all
feasible x. We further assume that we can observe i.i.d. realizations Vf(x,&;) based on i.i.d. realizations
i=0,1,2,... of &.

LCSOPs are important. For example, Cornell University solved a problem during the COVID-19
pandemic that determined surveillance testing capacity for different campus groups (Frazier et al. 2022).
There the goal was to select testing rates for the groups so as to minimize pandemic outcomes like infections
over a full semester. A single linear constraint represented the bounded testing capacity. The pandemic
outcomes were estimated through a stochastic simulation. This problem can be formulated as a LCSOP. If
one relaxes the bound on testing capacity and instead adds a cost term to the objective function for high
testing rates, the problem becomes a LCSOP with an unbounded feasible region. This latter formulation
is closer to what happened in practice, where an initial bound on testing capacity was increased when the
potential epidemic prevention benefits of more testing were better understood.

A broad class of algorithms can be brought to bear on LCSOPs. For example, Boonsiriphatthanajaroen
et al. (2024) explored projected gradient descent (PGD), an away-step Frank-Wolfe (AFW) algorithm and an
active set method in combination with 4 different line search strategies through computational comparisons
on LCSOPs. There it was found that PGD and the Frank-Wolfe algorithm typically outperformed the active
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set method, though not universally. One of the problems explored in that paper involved an unbounded
feasible region, but the variant of the Frank-Wolfe algorithm that was employed required a bounded feasible
region. To handle this difficulty, a linear constraint was added that rendered the feasible region bounded
and that was sufficiently “loose” that it was not expected to change the optimal solution to the problem.
While this strategy allowed the Frank-Wolfe algorithm to make progress, the algorithm struggled on this
problem compared to the other algorithms.

Given the strong overall performance of the Frank-Wolfe algorithm in Boonsiriphatthanajaroen et al.
(2024), except on an unbounded problem, we are motivated to seek an improved Frank-Wolfe algorithm for
LCSOPs that requires no tailoring when encountering a problem with an unbounded feasible region. It is
important that no tailoring be required, to minimize the knowledge required of a user. We want to retain the
strong performance of the Frank-Wolfe algorithm on bounded problems, while also ensuring competitive
performance on unbounded problems. (Problems with unbounded feasible regions are common in practice,
e.g., in inventory problems with unbounded order quantities, or in capacity expansion problems where
capacity comes at a cost rather than being constrained.) Wang et al. (2022) develop a Frank-Wolfe method
for linearly constrained unbounded regions, but their method applies only to very specially structured
feasible regions that are a direct sum of a linear subspace and a bounded constraint set.

In this paper we attempt to develop a Frank-Wolfe algorithm for general LCSOPs. The new algorithms
we explore are not a direct extension of the standard Frank-Wolfe algorithm (Frank and Wolfe 1956). Rather,
we first choose to extend the AFW algorithm (Wolfe 1970, §8) and, separately, the boosted Frank-Wolfe
(BFW) algorithm (Combettes and Pokutta 2020). These algorithms have demonstrated strong performance
on bounded feasible regions and are thus natural candidates for extension. Our first extensions allow these
algorithms to incorporate not just vertices of the feasible region in specifying the search direction, but also
extreme directions. Further details are discussed in Section 2.

In Section 4 we compare the empirical performance of the new algorithms, along with projected gradient
descent, on a suite of test problems that consists of a mix of bounded and unbounded LCSOPs. The test
problems are briefly described in Section 3. We elect not to include active-set methods in the comparison
because their performance lagged the others that were explored in Boonsiriphatthanajaroen et al. (2024).

The results in Section 4 indicate some promise, but there is a repeated problem, that we term “plateauing,”
on problems with an unbounded feasible region where the algorithms fail to make much progress for many
iterations. Investigation of the results suggests that plateauing arises because the algorithms are heading
in an unbounded direction, i.e., a direction in which the feasible region is unbounded, but the unbounded
direction is poorly aligned with the negative gradient.

Accordingly, in Section 5 we provide some algorithm adjustments that, we hope, address the plateauing
effect. Some of these new algorithms are motivated by cutting-plane algorithms for convex optimization
problems, in that they entail adding constraints based on an interaction between the convex structure of
the objective function and the (estimated) gradients. Empirical results for all of the proposed algorithms
are given in Section 6, and, in Section 7, we discuss what we learn from the experiments and conclude.

We view the main contributions of the paper to be the design of the new Frank-Wolfe algorithm
variants and their empirical comparisons that shed light on their performance relative to selected competing
algorithms.

2 ALGORITHMS

Let x; be the incumbent solution in the kth iteration. Let f denote a simulation estimator of the function
f. e.g., the usual sample-average approximation f(x) =n"' Y™, f(x;&) with (&1,&,...) denoting an iid
sequence where each &; is equal in distribution to the random element &. Let g; be the estimated gradient
at xg, which, in the setting where f(-,&) is appropriately differentiable and some extra regularity holds,
could be taken to be the infinitesimal perturbation analysis estimator n= 'Y | f'(xx, &;). The algorithms
described below need a line search method to determine step sizes, for which we use interpolation, which
performed well in Boonsiriphatthanajaroen et al. (2024).
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2.1 Projected Gradient Descent

Algorithm 1, Projected Gradient Descent (PGD), adapted from Iusem (2003), moves in the direction of the
negative gradient, uses an L, projection &2 back to the feasible region to retain feasibility, then performs
a linesearch in the direction of the projected point. The projection is obtained by solving a quadratic
program using CVXPY (Diamond and Boyd 2016, Agrawal et al. 2018). Stepsizes are constrained to an
iteration-specific maximum stepsize that is chosen adaptively.

Algorithm 1 Projected gradient descent (PGD).
Initialize feasible solution xo € .2"; maximum step size '™ € [1,0); step size discount factor r € (0,1)
for k=0,1,2,... do

di < —8k
Vi1 ¢ X+ 1 dy
if yr11 is NOT feasible then
Yirt & P (Y1)
dk < (yk%:niafk)
end if
Let % = argminye(g yna f(xi+7yd;) (line search)
if 7 = 7" then

ax k ax
A
else
ﬁnux <_ r,y;{nax
end if
X1 < X+ Yiedk
end for

2.2 Away-Step Frank-Wolfe

The original Frank-Wolfe algorithm (Frank and Wolfe 1956) iteratively moves towards a vertex of the
feasible region that is obtained by solving a linear program that minimizes a linearization of the objective
function. This can result in zigzagging behavior, which is inefficient; see Figure 1. Algorithm 2, the AFW
algorithm (Wolfe 1970; Julien and Jaggi 2015), additionally allows a step in a direction that moves away
from a “bad” vertex. A vertex representation of the current solution is maintained as a convex combination of

a subset of the vertices ¥ of the feasible region, which is standard, plus a conic combination of the extreme

directions of the feasible region, ', which is new. More precisely, we write x; =Y,y Ocv(k)v +Y e vak)w,

(k)

where all coefficients are non-negative and ), . Ocvk = 1. Define the active vertex set at iteration k, .7 %),

to be all vertices (not extreme directions) with positive coefficients, i.e. .7*) = {v € ¥ |ocv(k) >0} We
initialize our solution xy to be a vertex vy € ¥/, so we initialize all coefficients to be zero except vy which
has coefficient 1.

Vertices and extreme directions are obtained by solving a linear program. Let LP(r) be a function that
returns either a vertex solution to the linear program max,c o~ (r,x) when the solution is finite, or an extreme
direction u of unit norm such that (r,u) > 0 and such that x+ Au is feasible for any feasible x and A > 0.

In each iteration, we first solve LP(—gy), i.e., we solve a linear program whose objective function
is the linearized function. If the optimal solution is a vertex, s, then the potential search direction is
d,f W — s —xz, i.e., we search in the direction of that vertex. If, instead, the linear program is unbounded and
returns the (normalized) extreme direction si, then the potential search direction is d,f W — st. Separately,
we also compute the worst active vertex, v;, meaning that v; maximizes (g, v) over all active vertices,
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and then define the potential search direction df = x; — v¢. We then select either d,f W or d? as the search
direction, whichever maximizes a certain dot product.

The key difference with the usual AFW algorithm for bounded feasible regions is that the linear program
can be unbounded. In that case, we use the extreme direction that is returned by the linear program solver
as a search direction. The “bookkeeping” for maintaining the representation of the current point as not
only a convex combination of extreme points, which is standard, but also a conic combination of extreme
directions, which is new, is also slightly more complicated.

Depending on which kind of step we take, we have different limits on the maximum possible step
size. For a normal FW step towards a vertex of the form d,f W — st — x¢, the maximum step size is 1,
corresponding to a move to the target vertex s;. For an away step, we have to limit the maximal possible
step size so that the weight on the worst active vertex, v, remains positive. The update to the current
solution i8 x| = xx + Y (xx — vx), which implies that the weight on the worst vertex, vy, changes from its

current value, ocv(,]f), to (1+ yk)ocv(f)

(k) (k)
at most oy, /(1 — o).

In the case that the search direction is the extreme direction, d,f W — s, obtained by solving the linear
program, the step size is more complicated. We retain a parameter, %;"*" that limits the maximum possible
step size in Iteration k. In each iteration of this form we perform a line search for the step size ¥ € [0, 7]
If the optimal step size, ¥ is attained at the endpoint, %", then we increase the maximal step size by a
.(ge.:ome.tric) grow.th factor, i.e., we set ¥ = y}’{"“x /r for some r < 1. If, instead, the optimal step size, ¥,
is interior to the interval then we reduce the maximal step size to 7.

At the end of each iteration, we update the vertex representation of x; as follows:

— Y. For this to remain nonnegative, we require that the step size y; be

1. Normal FW Step with search direction s — xi:
oIf y = ¥ = 1, then set .7/ F+1) {s }
oIf y < " = 1, then set . * 1) = 70 {51
*Update the weights as(k+1) =(1 yk)as(k) + %
*Update the weights ol = =(1-y)oy )) for all v e ¥\ {5}

*Update the weights D) =(1-—mn) Bw forallwe %
2. Away step with search dlrectlon Xy — vk
oIf 1 = ¥, then set K+ = 70\ {1}
oIf 1 < ", then set S+ =7 (k)
*Update the weights Otv(fﬂ) =(1+ Yk)(xv(f) — %
*Update the weight af ) = (1+ }/k)ocv( ) for all v e .7k I\ {wi}.
*Update the weights (kD) =(14+mn%) BW forallwe %
3. Extreme direction with search direction sy:

*Update the weight ﬁs (k+1) Bs(kk) + ¥ for the unbounded direction sy

2.3 Boosted Frank-Wolfe

The AFW algorithm (Algorithm 2) was introduced to mitigate the zig-zagging behavior of the standard
Frank-Wolfe algorithm. However, its search direction can still be poorer than that of gradient descent.
Algorithm 3, the BFW algorithm, is adapted from Combettes and Pokutta (2020) to allow an unbounded
feasible region. Within each iteration, k, it attempts to represent the negative gradient as a conic combination
of the vertices, 7, as in the original work, but also, in our setting, the extreme directions of the feasible
region. This approach implicitly addresses the optimization subproblem

min | — g —d|P%, @
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Algorithm 2 Away-step Frank-Wolfe (AFW).
Initialize xy to be a vertex v, set Ocl(,o)

re(0,1)

for k=0,1,2,... do
si < LP(—gy); the usual Frank-Wolfe vertex or an extreme direction
Vi 4= argmax, . o) (gk,v); a “bad” vertex

=1 and all other coefficients to 0, set a step size discount factor

JFV s —xi  if the LP solution was a vertex
k Sk if the LP solution was an unbounded direction
d,ﬁ‘ < xx— V¢ (away direction)
if —gldf'V > —gl'dl then
dk — di
" e {argminye[(m f (xx + vdy) if LP gives a vertex solution

arg min¢(g ymar) f(xx +7vdy) if LP gives an unbounded direction

e "ZM if LP gives an unbounded direction and % = "
ktl Ye if LP gives an unbounded direction and y < ¢
else
di + dl?
Ye <f— arg mmye[o,ocf,,’z) J(1-a®) f(xx+7vdy) (line search)
end i

Xk+1 €= X+ YVedk
Update the weights a® giving the vertex representation of x| to o
end for

k+1)

where g; is the estimated gradient of the solution x; at iteration k. The domain over which we explore
consists of the conic combinations of ¥ — xi, which is standard, and the extreme directions of 2", which
is new.

Within each iteration, the algorithm successively refines the direction d by attempting to improve its
alignment with the negative estimated gradient, —g;, by projecting onto a one-dimensional line using the
Non-Negative Matching Pursuit Algorithm (Locatello et al. 2017); see Figure 2. Alignment is measured
by the function align, defined as

uly .
align(u,v) = {| if u,v #0,

—1 ifu=0orv=0,

which is, essentially, the cosine of the angle between the vectors u and v. The algorithm successively
improves the alignment, in each iteration solving a linear program that identifies the vertex or the extreme
direction that best can be used to reduce the difference between the negative gradient and the current search
direction, stopping only when it fails to improve the alignment by at least some minimal threshold, §, which
is typically set to 1073, In Algorithm 3, T denotes the maximum number of these alignment-improvement
steps permitted in the Boosted Direction Oracle, and it is typically set to 10. When T =1, BFW reduces
to the standard Frank-Wolfe method. The maximum step size ¥"* is determined from the minimum ratio
test. The maximum step size could be infinite if the feasible region is unbounded in the search direction.
In this case, we actually perform a line search over step sizes on the interval [0, 1]. For default BFW
parameter choices and line search parameters, see the implementation in the SimOpt Library (2025).
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Figure 1: The AFW algorithm mitigates zigzagging behavior in the original Frank-Wolfe algorithm, by
moving not just towards vertices, but also away from vertices. The BFW algorithm has even more flexibility
in choosing a search direction.

Figure 2: Computing the search direction. In (a), Vertex C solves the linear program, and we project the
negative gradient onto ug, leaving the residual ;. In (b), Vertex B solves the linear program, and we project
the residual, r{, onto uy, leaving the residual r», which sufficiently improves alignment and thus defines the
direction d in (c). In (d), the alignment between the direction d and the negative gradient is highlighted.

3 PROBLEMS

Here we provide only brief remarks on the choices of test problems. For full details on the test problems,
see the SimOpt Library (2025).

Our test problems consist of 10 random instances of each of 1) the Constrained Stochastic Activity
Network (SAN), 2) the Stochastic Max Flow (SMFCVX) problem, and 3) the Open Jackson Network (OJN)
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Algorithm 3 Boosted Frank-Wolfe (BFW).
Initialize x( to be a vertex v, maximum number of oracle steps 7', an improvement tolerance 6.
for k=0,1,2,... do
Estimate the gradient Vf(x;) by gk
di, Ay < Boosted Direction Oracle(T, 6, g)
dk —dy / Ak
' <= maximum step size computed from minimum ratio test
Ve = argminyg g yma) f(xx+7ydy;) (line search)
X1 4 X+ Vedi
end for

Algorithm 4 Boosted direction oracle.

Accept as input 7', the maximum number of iterations, &, a parameter to indicate sufficient alignment,
and g, the estimated gradient
Initialize dy to be a zero vector for the direction, A =0 to be a normalizing term.
forr=0,1,2,....,T — 1 do

r; <— —g —d;; this is the running residual

v; <— LP(r;); solve the LP

if LP returned a vertex solution then

W=V, —X
else

w =
end if

Up <= argmaXye . d,/||d; |} rf'u; see Locatello et al. (2017) to understand this step
A= ug /|| u]

d —d, + My,
if align(—g,d’) —align(—g,d,) > 0 then
dt+1 —d
A+ A if u, =w
A=A/l i g = —di |
else
break
end if
end for

return d;, A

problem, for a total of 30 test problems. All problems are convex, and we obtain gradient estimates using
infinitesimal perturbation analysis. Both SAN and OJN have unbounded feasible regions, while SMFCVX
has a bounded feasible region. The SAN problem involves minimizing the maximum-length path from a
source node to a sink node in a feed-forward network. The task durations (arc lengths) are random, though
controlled through decision variables specifying their means. The SMFCVX problem entails maximizing
the flow through a capacitated network, the capacities of which are random but partially controlled through
decision variables. The OJN problem entails minimizing the mean steady-state number of jobs in an open
Jackson queueing network, with decision variables giving the mean service rates.
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4 INITIAL EXPERIMENTS

All of our experiments use the SimOpt Library (2025). In reporting the results, we compare the various
algorithms based only on the simulation replications used; we do not compare the algorithms on their
processing time. This is deliberate; see Eckman et al. (2023) for a detailed justification of this approach.
In short, the reason is that simulation models can be computationally expensive to run compared with
deterministic algorithmic elements such as computing projections in PGD or solving linear programs in
the Frank-Wolfe algorithm variants.

All problems are run using common random numbers across all solvers, to ensure a fair comparison;
see Eckman et al. (2023). We ensure different random problem instances are generated using different
substreams, and each distinct problem factor and model factor has its own individual subsubstream. We
name the problems we generated by the names introduced in Section 3 with the instance’s label. For
example, the problem “SAN-R10” is the 10" instance of the SAN problem.

SOLVER SET on SAN-R10 SOLVER SET on OPENJACKSON-R4
Mean Objective Curve i Mean Objective Curve
g 250 —— boost-decomposition —S o [P — boost-decomposition
3 3 8]
P >7
200 c
& S 6
= =
v
2 150 c 53
3 >
[T w 4
()
< 100 g,
T €, B
8 9 21
o 50 =,
o 0l DEESSSSSassa
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

Budget Budget

Figure 3: An instance of SAN tackled using Algorithm 3 exhibits a plateau in the budget interval 250 — 750
(left), and an instance of OJN has a plateau in the budget interval 500 — 2000.

Algorithm 3, which we name Decomposition, attempts to align the negative gradient with a conic
combination of Frank-Wolfe and extreme directions. The use of a combination of vertices as well as
extreme directions can improve the alignment with the negative gradient compared to the standard Frank-
Wolfe algorithm. However, poor alignment is still possible when the feasible region is unbounded. Poor
alignment is evident in progress plots. These plots give the estimated objective function value of the best
solution found to date on the vertical axis and the expended budget, as measured in simulation replications,
on the horizontal axis. Plateaus are evident in Figure 3, in which the objective function is not improved
for an extended period.

S ADDITIONAL ALGORITHMS

To mitigate the plateau effect observed in Figure 3, we propose several variants of the BFW algorithm that
incorporate a few key modifications. These modifications are mostly intended to enhance the set of search
directions available to the BFW algorithm, thereby better aligning the search direction to the negative
gradient.

1. Negative Gradient:
We compute the search direction dj as described in Algorithm 3. If the maximum step size 3"
computed from the minimum ratio test is infinite, we recompute ¥ using the direction of the
negative gradient. If this recomputed 7"** is non-zero, we replace the search direction, di, with
the negative gradient; otherwise we keep the original dj.
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2. Outward Cutting: When the search direction is unbounded, we add a new constraint (cut), hoping
that the cut creates new vertices. The new cut at such an iteration, k, is (gx,x) < (gk,xx) where
Xi is the current solution at iteration k. This cut is valid if we use sample-average approximation
with a fixed sample size and the gradient estimate, g, is obtained using infinitesimal perturbation
analysis.

3. Cutting: This is similar to the previous variation, but a new cut is added in every iteration.

4. Away: In addition to directions that are towards vertices and extreme directions, we also allow the
algorithm to consider away directions of the form x; — vx where x; is the solution at iteration k and
vy is the bad vertex that is computed in the same manner as in the AFW algorithm. In this variant,
we add vertices to the active set if they are selected in the Boosted Direction Oracle and remove
the “bad” vertex from the active set when its weight reaches O.

6 PRIMARY EXPERIMENTS

SOLVER SET on OPENJACKSON-R4
SOLVER SET on SAN-R10 Mean objective Curve

Mean Objective Curve

[} —— boost-decomposition
@ 250 - boost-decompaosition = 8 boost-neggrad
= boost-neggrad g —— boost-outcutting
g - boost-outcutting p —— boost-cutting
= 200 = boost-cutting o6 = boost-away
o - boost-away e
s g
[}
c 150 >
2 o
[
2 100 =
= { | Y " Thew
= 1 U 21 e
g 3% —
= 50 == a | R o e
L0 ] By E T I .,
(@) i e 0
0 25'0 5(50 75'0 10'00 12'50 15'00 1-,'50 2000 0 250 500 750 1000 1250 1500 1750 2000

Budget Budget

Figure 4: An instance of SAN (left), and OJN (right), tackled using variants of Algorithm 3.

Figure 4 illustrates the performance of the BFW variants on the same problems shown in Figure 3,
to demonstrate that plateauing has been reduced. In the SAN-R10 problem, both the away-step and
decomposition methods exhibit plateau behavior (their curves lie on top of one another), whereas the
negative gradient and cutting-plane variants significantly reduce this effect. While the decomposition
method tends to move steadily toward the interior of the feasible region (not shown in the plots, but
observed in the experiment), the negative gradient method follows the negative gradient direction more
closely, leading to improved performance. The cutting-plane methods (both outward cutting and cutting)
alleviate the plateau by introducing additional constraints. These constraints generate new vertices, which
enrich the set of directions available for constructing search directions. In the OPENJACKSON-R4 problem,
the cutting-plane method outperforms the other variants. In this instance, cutting has a better performance
than outward cutting. The additional constraints and resulting vertices from adding cuts at each step
appear to enhance the search direction, accelerating convergence and helping to avoid the plateau. This
improvement is particularly notable when the search direction leads to a bounded maximum step size, (not
shown), allowing the algorithm to make meaningful progress. In comparison, the decomposition method
often moves deeper into the interior without such bounded steps, resulting in slower convergence.

Figure 5 summarizes the performance of all BFW variants on all test problems. To recap, Eckman et al.
(2023) where the curves in Figure 5 are introduced, the area-under-curve plot computes the mean and standard
deviation of the area under the progress curve on different macroreplications, while the CDF solvability
profile gives the fraction of problems solved to within 20% of the initial optimality gap. The scatter plot
suggests similar overall performance among the variants. However, both the cutting and outward cutting
methods exhibit higher standard deviations and significantly larger mean areas in one of the SAN problem
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Figure 5: Area scatter plot of different variants of BFW solvers (left) and CDF solvability profile at level
0.2 (right) on all test problems.

instances. While these methods aim to enrich the search space by introducing additional constraints, the
added cuts may inadvertently remove useful vertices, thereby impairing rather than enhancing the available
search directions as shown in the area under progress curves where cutting-plane methods have high mean
areas on one problem instance. The CDF solvability profile indicates that all variants are able to solve
most problems within the given budget, with the negative gradient variant showing a slight performance
advantage over the others.

CDF-Solvability Profile for SOLVER SET
SOLVER SET Profile of CDFs of 0.2-Solve Times

Areas Under Progress Curves s
2 — pod
10 e pod ‘%‘ 10 :v e
:Zst negarad o — boost-neggrad -
| - =
m 08 2 F g
< b
s 0.6 '§’
>
& o4 §
g <
0.2 g
o L
0.0 '-h" = 8
-]
& . . : .
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Mean Area Fraction of Budget

Figure 6: Area scatter plot on different solvers (left) and CDF solvability profile at level 0.2 (right).

Figure 6 compares PGD, AFW, and BFW with negative gradient. The area scatter plot indicates that
BFW generally outperforms both PGD and AFW. While PGD exhibits a lower standard deviation in area,
it also shows a larger mean area under the progress curve, suggesting a slower convergence toward the
optimal solution. AFW, on the other hand, has both higher standard deviation and mean area than the
other two algorithms, indicating more variability in performance, though it may perform well on some
instances. In the solvability profile, both BFW and PGD solve nearly all instances, whereas AFW solves
only approximately 75% of the problems.

Figure 7 shows the performance of the three algorithms—PGD, AFW, and BFW with negative gra-
dient—on the SMFCVX-R5 and OPENJACKSON-R6 problems. On SMFCVX-RS5, both AFW and BFW
reach good-quality solutions very quickly, but eventually PGD finds a better solution. In this example, the
optimal solution lies on or near a vertex, and AFW can quickly move toward it, resulting in fast conver-
gence. In contrast, BFW prioritizes search directions that are closely aligned with the negative gradient,
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SOLVER SET on SMFCVX-R5 SOLVER SET on OPENJACKSON-R6
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Figure 7: Mean progress curves of SMFCVX-R5 (left) and OPENJACKSON-R6 (right).

which may not point directly toward a vertex, thereby slowing its performance. Still in the SMFCVX-R5
plot, PGD exhibits two distinct phases in its progress curve: it initially moves quickly along the negative
gradient with increasing step sizes, but after reaching the boundary around budget 750 its progress slows
considerably. In the OPENJACKSON-R6 problem, AFW performs poorly with the unbounded feasible
region, particularly in the budget range of 500 — 1500, where it repeatedly selects an unbounded direction
with little improvement. In contrast, PGD steadily follows the negative gradient, and BFW outperforms
both alternatives.

7 DISCUSSION AND CONCLUSIONS

When the feasible region is bounded, the algorithms we developed all work relatively well. The key
challenge is to also handle unbounded feasible regions. Our first algorithms exhibit a plateauing effect,
in which the algorithms appear to stall for some period of time before once again making rapid progress.
This plateauing effect seems to arise when searching in unbounded directions, i.e., with search directions
that permit unbounded step sizes while remaining feasible.

Plateauing arises when there are limited resources for choosing a direction. The AFW algorithm exhibits
a more pronounced plateauing effect because it is restricted to moving toward or away from vertices and
along extreme directions. In contrast, BFW forms a combination of directions toward both vertices and
extreme points, resulting in directions that more closely align with the negative gradient. This allows
greater flexibility and reduces plateauing. While PGD does not exhibit this effect, similar behavior can
occur when the algorithm repeatedly hits the boundary and projects back into the feasible region.

We proposed several algorithmic modifications to attempt to obviate plateauing in the BFW algorithm.
All of the new variants perform better; performance is significantly improved, though still not completely
satisfactory, with some residual plateauing. Of our proposed modifications, the variant of BFW that permits
a search in the direction of the negative gradient performed the best in both speed in making progress
towards an optimal solution and in the quality of the solution attained once the simulation budget was
expended. Other variants do better in selected problem instances, but BFW with negative gradient searches
is reliable and fast. Cutting plane algorithms may be worth further study, especially since they can render
the feasible region bounded, but they can also limit the search direction options due to removing vertices.

Our extension of the AFW algorithm for unbounded regions has mostly disappointing performance,
which arises primarily due to the plateauing effect. We have attempted to limit that effect through various
algorithmic innovations, but the effect persists in experiments. We conjecture that there is an interaction
between the choices of search directions and the step sizes for the line search that, with further study, might
improve the performance. The algorithm does, however, perform well compared to the other algorithms
when the optimal solution lies near a vertex.
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Both PGD and BFW with negative gradient searches perform reasonably well, but the latter was the
clear winner in our experiments.

In conclusion, we believe that our newly developed BFW algorithm (with negative gradient searches)
shows strong promise, whether the feasible region is bounded or unbounded, and that we have been
successful in our goal of delivering a Frank-Wolfe style algorithm that can handle unbounded feasible
regions. The algorithm still exhibits some plateauing effects that merit further study. On a perhaps related
note, we believe there is the potential for “scaling” issues, in which the algorithm may not adapt when we
change the scale of the decision variables; the algorithm is not “scale free.”

As a final comment, this article showcases the utility of SimOpt in algorithm development.
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