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ABSTRACT

The growing complexity of public health emergencies requires modeling tools that are both scientifically
robust and operationally scalable. As part of the EU Horizon 2020 STAMINA project, we deployed the
Flu and Coronavirus Simulator (FACS), a geospatial agent-based model designed to simulate the spread of
infectious diseases at local and regional levels. This paper presents a case study from a UK Public Health
Workshop, where FACS supported the evaluation of epidemic response scenarios. We describe how FACS
integrates demographic, spatial, and epidemiological data, and outline key enhancements, such as location-
based parallelization and FabSim3-enabled automation, which enable large-scale simulation. We detail
the scenario designs and outcomes, highlighting the intersection of simulation projections and intervention
planning. Finally, we reflect on communicating results to stakeholders and bridging the gap between
modeling and policy. This work demonstrates how geospatially grounded, scalable agent-based simulations
can provide meaningful insights into regional intervention planning within operational timeframes.

1 FACS: THE FLU AND CORONAVIRUS SIMULATOR

The COVID-19 pandemic, triggered by the novel Coronavirus, posed unprecedented challenges globally,
requiring timely and informed decisions across multiple levels of governance (Rockett et al. 2020).
Understanding the dynamics of infectious disease transmission, particularly at sub-national scales, proved
critical for effectively managing such crises. Traditional models, such as the Susceptible, Infected, Recovered
(SIR) framework, have primarily focused on national-scale analyses, often overlooking regional heterogeneity
and the impact of localised intervention measures (Thomas et al. 2020).

Several agent-based and compartmental models were developed during the COVID-19 pandemic to
address these limitations and support public health decision-making at national and local levels. Notable
examples include CovidSim (Ferguson et al. 2020), an early agent-based model developed at Imperial
College London; Covasim (Kerr et al. 2021), an open-source agent-based model focused on intervention
analysis; models from the JUNIPER Consortium, including OpenABM-Covid19; CityCOVID (Liu et al.
2021), a granular urban-scale agent-based simulator, CitySEIRCast (Bilal et al. 2023), which combined SIR
modeling with city-specific forecasts, and CALMS (Mintram et al. 2022), to predict the lifelong impacts
of COVID-19 on the health and economy. Compared to these models, FACS emphasizes high-resolution
geospatial integration, operational scalability through parallelization, and scenario customization explicitly
tailored for regional and local epidemic response.

FACS builds on the Simulation Development Approach (SDA), a structured framework that integrates
geospatial layouts, demographic profiles, and epidemiological parameters to support detailed, region-specific
simulations and forecasting (Imran et al. 2022). SDA outlines the steps needed to build simulation models
by constructing realistic environments that incorporate data on residential distributions, building types,
mobility patterns, and local healthcare facilities, while also finding potential bottlenecks in the development
process. This structured methodology ensures that the resulting models are transparent, reproducible, and
adaptable to new regions or evolving public health challenges.
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As FACS has evolved, the SDA has remained central to its architecture, supporting adaptability to larger-
scale and more complex scenarios while preserving its core strength: providing insights into the localised
impacts of disease spread and public health interventions. Designed to reflect real-world complexity,
FACS integrates demographic, epidemiological, and spatial data to simulate how agents interact, move,
and respond to evolving health policies.

Figure 1 presents the overall FACS modeling workflow, from scenario selection and data ingestion
to model construction, refinement, and execution. The diagram also highlights the integration of public
health measures (e.g., travel restrictions, facility closures) and the deployment of FabSim3 (Groen et al.
2016; Groen et al. 2023) for high-performance computing resources to support large-scale simulations.
FabSim3 supports a plugin-based architecture tailored to domain-specific applications, including pandemic
modeling through the FabCovid19 plugin. This plugin streamlines the process of running FACS at scale
by packaging simulation inputs into region-specific formats, enabling users to efficiently customise and
launch many large-scale epidemiological simulations across diverse HPC environments.
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Figure 1: This diagram shows the complete FACS pipeline from scenario selection to analysis. Data from
geographical, epidemiological, and demographic sources is used to construct the simulation model, define
agent behaviours, and embed public health interventions. Simulations are executed using the FACS engine
and FabSim3, with results validated and analysed to support policy decision-making.

FACS has been previously validated and applied in multiple contexts, including national and international
collaborations, including STAMINA H2020 (Bakalos et al. 2022), as a flexible and scalable simulation
tool. While earlier publications have focused on FACS’s technical design and initial applications, this paper
highlights its operational deployment in a public health workshop setting, emphasising its role in real-time
scenario analysis and policy evaluation.

2 FACS: A TOOL FOR LOCAL EPIDEMIC DECISION-MAKING SUPPORT

Agents in FACS represent individuals within the population, each assigned attributes such as age, health
status, and mobility patterns. These agents interact within an Ecosystem comprising different location
types, including homes, schools, hospitals, and public spaces, each defined by parameters such as size,
density, and function. Agent interactions and transitions between health states (e.g., susceptible, exposed,
infectious, recovered) are governed by agents’ behavioural rules, their spatial proximity, and probabilistic
transmission dynamics, allowing interventions such as vaccination campaigns for virus mutations and
lockdown measures.

As part of the EU Horizon 2020 STAMINA project, FACS facilitated communication between modellers,
policymakers, and public health stakeholders by enabling scenario-driven exploration of intervention
strategies. The simulator was evaluated and deployed in trials across a wide range of partner countries,
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including the UK, Turkey, Spain, Slovenia, Romania, Lithuania, Greece, the Netherlands, the Czech
Republic, and Austria. These trials varied in scope, ranging from full-scale regional modeling to focused
intervention scenario testing, demonstrating FACS’s adaptability to diverse public health contexts. This
was further demonstrated through a case study with the London North West University Healthcare NHS
Trust, where FACS was used to forecast hospital and ICU admissions across the boroughs of Brent, Ealing,
and Harrow. Model outputs were validated against anonymised NHS data and refined through expert
consultation, highlighting FACS’s capacity to support rapid, data-driven decision-making under real-world
constraints (Imran et al. 2022).

In the Workshop Dry-run, we simulated eighteen regions, including Cumbria, Lancashire, Cheshire,
Sussex, Surrey, and Berkshire, organised into two distinct geographical clusters: the North West and the
South East, as shown in Figure 2. This subdivision was designed to provide us with greater control over
computational parallelization, while enabling a comparative analysis between two demographically and
geographically distinct areas.

Il North West
[l South East

Figure 2: This map highlights the North West and South East regions of England, where FACS was
deployed to simulate COVID-19 transmission dynamics as part of the UK Public Health Agency Workshop
activities. The subdivision into two distinct areas enabled the controlled testing of parallelization strategies
and supported a comparative analysis of intervention effectiveness across regions with different demographic
and mobility characteristics.

Combining fine-grained agent-based simulation with real-world geospatial and demographic data enabled
stakeholders to explore targeted intervention strategies and anticipate region-specific outcomes. In particular,
the subdivision into North West and South East regions provided a valuable testbed for assessing how
computational scalability could be achieved while preserving epidemiological relevance. Building on these
foundations, the next stage of development focused on enhancing FACS’s ability to operate at scale, automate
workflows, and produce insights across large and complex health system scenarios.

3 MAKING FACS SCALABLE AND CAPABLE OF SUPPORTING ACTIONABLE RESULTS

Developing an accurate and flexible simulator is an essential first step, but it is not, on its own, sufficient
for real-world application. Throughout this work, we use "actionable" to refer to the simulation capacity
to generate robust, reproducible results that can meaningfully support decision-making processes in public
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health planning. To be operationally sound, a simulator must be capable of representing complex regional
dynamics, scaling to large populations, and accommodating modifications in response to evolving public
health requirements. Without these capabilities, even the most sophisticated models risk remaining academic
exercises, disconnected from the practical demands of epidemic response.

A key architectural decision to make FACS actionable involved distributing the workload across
more computational resources. To achieve this, we adopted a location-based parallelization strategy,
similar to the approach used in the FLEE model (Ghorbani et al. 2024; Groen et al. 2024), in which
physical environments, such as schools, offices, and hospitals, are assigned to separate processes. This
approach enables parallelization and concurrent computation across the simulation space while minimizing
communication overhead between agents.

Figure 3 presents a high-level view of the FACS ecosystem and its parallelization strategy. Agents are
assigned demographic attributes and initialised with needs that drive them to visit different location types,
such as shopping centres or markets, where exposure risk depends on proximity-based interactions. The
simulation distributes location types across multiple processes, with each process managing a group of
locations and executing agent interactions independently. At the end of each timestep, processes synchronise
and update the global state before advancing the simulation clock. This loop continues until completion,
after which results are aggregated and exported for analysis.
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Figure 3: Overview of the FACS simulation architecture. (Left) The core simulation loop, where an agent
has needs that prompt them to visit a location. By visiting locations, the agent may become exposed to or
spread infections. (Right) The parallel processing strategy, in which location types are distributed across
multiple processes and run concurrently to advance the simulation’s timestep.

Additionally, we integrated FACS with FabSim3, a job management toolkit developed by the Modelling
& Simulation Group at Brunel University of London. FabSim3 automates the pre-processing, execution, and
post-processing of simulation tasks across high-performance computing environments such as the ARCHER?2
Supercomputer (Beckett et al. 2024) through the FabCovid19 plugin. Additional supercomputing facilities
can be integrated into this plugin with minimal adaptation.

While FabSim3 enabled efficient deployment on supercomputing platforms, the UK Public Health
Workshop simulations demanded more computational logistics. Generating results required exploring
numerous scenarios, each replicated hundreds of times to ensure statistical robustness. Due to the high
cost and restricted allocation windows on supercomputers, we sought more scalable and cost-efficient
high-performance computing resources to support high-throughput large-scale simulations.
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Drawing on prior experience with Grid Computing from the European Organisation for Nuclear Research,
and its Ixplus computing systems, as well as the UK Tier-2 GridPP network, we introduced additional
resources available at Brunel University of London to support FACS large-scale simulations (Britton
et al. 2009). Although full FabSim3 integration was not yet possible due to differences in authentication
workflows, such as certificate authority management and proxy generation, we successfully used Grid
computing manually to run thousands of simulation instances in parallel, substantially accelerating scenario
evaluation for the workshop.

In the next section, we explain how FACS has been applied to modeling healthcare operations and
epidemiological forecasting. We also discuss how it has been integrated with discrete-event simulation
frameworks, such as CHARM, to help decision-making in complex healthcare environments.

4 SIMULATION AS A DECISION SUPPORT TOOL IN PUBLIC HEALTH

In the face of uncertainties surrounding disease transmissibility, public compliance, healthcare capacity, and
emerging variants, simulation tools provide a controlled environment for testing assumptions, anticipating
outcomes, and informing evidence-based decisions (Howerton et al. 2023).

Agent-based simulations (Taylor 2014), in particular, enable decision-makers to explore “what-if”
scenarios that reflect real-world heterogeneity, such as how disease dynamics differ between communities,
how interventions such as school closures or travel restrictions affect transmission, or how hospital systems
might cope with surge conditions (Imran et al. 2022). These insights are crucial not only for national-level
strategy but also for regionally tailored responses, where mobility patterns, demographic structures, and
resource availability vary widely (Saha et al. 2023).

FACS is designed with interoperability in mind, enabling integration within broader simulation toolchains
to address complex, multi-layered challenges in public health planning. One such integration is with the
dynamiC Hospital wARd Management (CHARM) model (Anagnostou et al. 2022), a discrete-event
simulation tool focused on hospital operations planning. CHARM simulates dynamic patient flows across
Intensive Care Units (ICU), emergency departments, and elective care units, accounting for fluctuating bed
availability and ward reconfiguration strategies. When linked with FACS in a sequential hybrid architecture,
CHARM receives localised hospitalisation forecasts generated from FACS epidemiological outputs, using
them as input triggers for dynamic resource allocation simulations (Anagnostou et al. 2013; Anagnostou
and Taylor 2024).

Asiillustrated in Figure 4, multiple CHARM instances can be initialised concurrently, each corresponding
to a different healthcare facility, using parallelized FACS outputs. This design allows for scalable analysis
of healthcare system pressures under various outbreak conditions while maintaining regional granularity.
The FACS—-CHARM integration thus enables decision-makers to not only anticipate disease burden at the
population level but also to simulate operational responses at the hospital level, supporting more precise,
system-aware intervention planning across various parts of the healthcare network.

In this context, simulation tools such as FACS are not merely an academic exercise but a practical
decision-support tool, especially when embedded into public health workflows and aligned with stakeholder
priorities. Its value lies in its ability to uncover dynamics that might otherwise go unnoticed and support
informed, timely, and locally relevant public health action.

5 SCENARIO DESIGN AND SIMULATION RESULTS

Designing meaningful simulation scenarios requires close collaboration between developers and stakeholders
to ensure that both epidemiological contexts and public health interventions are accurately represented.
In our case studies, scenario selection was guided by verifying the completeness and relevance of input
data, including high-resolution regional maps, demographic profiles, and geolocated infrastructure such as
residential buildings, offices, schools, and public facilities. This systematic process also emphasized the
importance of transparent documentation to enable future validation, comparison, and reuse of scenarios.
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Figure 4: FACS—-CHARM integration for parallelized healthcare simulation. This architecture supports
scalable analysis of healthcare system pressures based on epidemic forecasts. Each layer presents a FACS
simulation for one geographical region (e.g., Cumbria, Sussex, Oxfordshire, etc.). The hospitalisation data
from each facility is used to initialise an instance of the CHARM simulation, which models bed occupancy
and patient flow. These instances of CHARM can be executed independently and concurrently.

FACS supports the simulation of complex disease dynamics through flexible input configurations.
The system is capable of modeling diseases with different transmission rates and intervention responses,
including mutation handling and vaccination rollouts. Once the model is configured, we run extensive
simulations comprising hundreds of replications across various parameter variations. This approach ensures
statistical robustness and increases confidence in the results by accounting for stochastic variability in agent
behaviours and interactions.

The policy requirements and population behaviours were carefully encoded into the simulation setup,
ensuring alignment with real-world decision-making contexts. Epidemiological parameters, including
infection rates, incubation periods, vaccination effects, and variant profiles, were validated through expert
consultation as necessary. Building on this foundation, we designed and executed a series of FACS
simulation scenarios tailored to the Public Health Workshop, focusing on evaluating intervention strategies
across distinct regional clusters.

Extensive pilot simulations, involving hundreds of replications across various parameter variations,
were conducted to capture stochastic variability in agent behaviours within each simulation scenario.
In this context, "pilot" refers to preliminary simulation runs designed to verify model setup, parameter
sensitivity, and computational scalability before full-scale execution. Each region, such as Cumbria, Sussex,
or Berkshire, was modelled as an independent simulation, minimizing data dependencies and enabling
parallel execution across high-performance computing resources.

Simulation outputs provided temporal and spatial trends, including hospital admissions and ICU demand,
which were validated against available empirical data. Results were presented through intuitive visualisations
and scenario comparisons to support transparent, evidence-based discussions.

To explore the impact of different school reopening strategies on COVID-19 transmission dynamics,
eight scenarios were developed in collaboration with the UK Public Health Agency, as summarized in
Table 1. These scenarios varied the timing, extent, and structure of school resumptions across the simulated
regions, and were defined as follows:

A key metric for monitoring epidemic trends is the time-varying reproduction number, R(t), defined as
the average number of secondary infections generated by a single infected individual (Pouw et al. 2021).
While extracting R(t) from agent-based models such as FACS is non-trivial due to population heterogeneity,
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Table 1: Scenario timeline and school reopening strategies evaluated during the UK Public Health Workshop.

Date Strategy
01/03/2020 - . . N
15/06/2020 Restrictions and measures following the actual timeline
Scenario| Scenario| Scenario| Scenario| Scenario | Scenario | Scenario| Scenario
15/06/2020 — Alll 2 3 4 S 6 7 8
24/07/2020 All Early | Primary . Two Classes
schools Secondary| Transition .
¢ schools years schools hool weeks split
Sy resume | resume | resume SCRoo’s years ON/OFF | AM/PM
shut resume resume
24/07/2020 — _ . .
15/08/2020 Restrictions and measures following the actual timeline

we approximate it using infection counts with a 10-day lag:

1(1)

RO = =10

Where I(t) represents new infections on day t, and the denominator approximates the infectious period.
This method provides a practical estimate of R, although it relies on population-level averaging and does
not account for transmission paths. More granular alternatives, such as transmission trees, can offer insights
into which individual transmitted the illness to others, but are less practical for scenario-level comparisons.
In Table 2, we calculated an average peak R of 2.15 in the North West and 2.03 in the South East across
all eight scenarios.

Table 2: R-values for North West (NW) and South East (SE). For full R-values, see Figure 7.

ey

Date R-value NW R-value SE
15/06/2020 0.93 0.92
04/07/2020 1.14 1.11
15/07/2020 2.15 2.03
24/07/2020 1.66 1.61

In addition to estimating the reproduction number, we approximated hospitalisation trends based on
ICU admissions. On average, patients admitted to the ICU spent approximately two days in the hospital
beforehand, and roughly one in ten hospitalised patients required ICU care. Using this relationship, we
estimated the number of hospitalisations H(t), from ICU admissions C(t), as follows:

2

Here, H(t) estimates the number of hospitalizations on day t, and C(t) represents the number of ICU
admissions, assuming 10% of hospitalized patients require ICU care approximately two days after admission.
This approximation helps align simulation outputs with historical data for Validation.

To evaluate the impact of different school reopening strategies on epidemic trajectories, we conducted
simulation experiments across all eight scenarios outlined previously. Figure 5 presents the predicted
hospitalisation trends per 100,000 population for both the North West and South East regions. Model
predictions represent each scenario in comparison to available historical data. Differences in peak magnitude,
timing, and resource demand across scenarios provide insights into the relative epidemiological and healthcare
impacts of various reopening strategies.

H(t) = 10 x C(t +2)
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Figure 5: Predicted hospitalisations per 100,000 population across Scenarios 1-8. Each panel displays
model projections for the North West (NW) and South East (SE) regions, alongside historical data. Scenarios
vary by school reopening strategy, with impacts reflected in the magnitude and timing of epidemic peaks
and hospital resource demand.

Simulations were first conducted independently for each of the 18 regions, covering eight distinct school
reopening scenarios per region. Results were then aggregated into North West and South East groupings
for comparative analysis. Figure 6 shows validation results, with simulated hospitalisation trends plotted
against observed data and shaded areas indicating 95% confidence intervals. Although both infection and
hospitalisation trends were compared to historical records, more weight was given to hospitalisation data
due to its greater reliability and accuracy. The simulations accurately captured the timing and magnitude
of the epidemic peak, supporting their use in scenario evaluation.

To further evaluate the impact of school reopening strategies, we analysed the progression of the
reproduction number R(t) across the North West and South East regions. Figure 7 presents the simulated
R-value trajectories under all eight scenarios, with solid coloured lines representing different intervention
strategies and vertical dashed lines indicating key policy dates. Variations in the magnitude and timing of R-
value increases highlight how different reopening approaches influenced transmission dynamics regionally.
Notably, scenarios involving full school reopening exhibited sharper rises in R-values compared to staggered
or partial reopening strategies.
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Figure 6: Validation of simulated hospitalisation trends against historical data for the North West (left)
and South East (right) regions. Solid lines represent the FACS simulation mean; shaded areas denote
95% confidence intervals across replication, with the shaded areas containing approximately 95% of the
simulation ensemble results, indicating aleatoric uncertainty in the code.
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Figure 7: Simulated reproduction number (R-value) trajectories for the North West (left) and South East
(right) regions across all eight school reopening scenarios. Solid coloured lines represent different scenarios,
and vertical dashed lines indicate key policy dates. These results show the dynamic response of R-values to
different intervention strategies and highlight regional differences in epidemic resurgence risk. The R-value
curves begin slightly later than the scenario timelines, as their computation relies on preceding infection
data and stabilises only once sufficient case history has been generated within the simulation.

R-values below 1.0 indicate that the epidemic is shrinking, while values above 1.0 reflect continued
transmission and potential growth of the outbreak. R-values greater than 2.0 are expected during early
phases of an epidemic, or in scenarios where interventions are limited or delayed.

To support the robustness of our results, we refer to prior work where we conducted a comprehensive
sensitivity analysis of the FACS model using sensitivity analysis and Sobol indices (Saha, Ghorbani,
Suleimenova, Anagnostou, and Groen 2023). This analysis examined how key epidemiological parameters,
including infection rates, incubation period, and mild recovery period, influenced health outcomes across
different geographic configurations. The findings indicated that the sensitivity of model outputs is context-
dependent. For instance, the infection rate was more dominant in spatially segregated regions, while
recovery dynamics played a larger role in mixed-population settings. These insights validated the model’s
responsiveness to key assumptions and provided a broader context for interpreting variability in the scenario
outcomes presented here.
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6 CONNECTING DATA TO POLICY: IMPLICATIONS AND INSIGHTS

Turning complex simulations into policy-relevant insights requires more than technical accuracy; it demands
clarity, contextualisation, and trust. FACS supports this process through visual outputs designed to convey
both the direction and confidence of predicted trends. These include spatial heatmaps of infection clusters,
scatter plots for key sites (e.g., schools, supermarkets), and time-series overlays comparing simulated and
historical hospitalisations. Together, these outputs help identify local hotspots, assess intervention effects,
and validate patterns against observed outcomes.

To support time-sensitive decision-making, results are summarised in structured reports, slide packs,
and dashboards. These include scenario assumptions, ICU forecasts, and cumulative infections, with visuals
prioritised for interpretability. Outputs are also shared with analysts and domain experts to support model
refinement and internal alignment.

Direct engagement with stakeholders and policymakers, via workshops, dry runs, and briefings, was
central to aligning simulations with decision-making contexts. We worked closely with the UK Health
Security Agency and other partners to ensure outputs were correctly interpreted. Special attention was
given to results that challenged expectations, such as delayed peaks or limited effects from anticipated
interventions. In these cases, open discussion of model assumptions and uncertainties helped foster trust
and turn scepticism into productive dialogue.

Rather than offering definitive forecasts, decision-support tools such as FACS act as boundary objects
between technical and policy communities. By revealing scenario sensitivities and trade-offs, they help
structure conversations around risk, capacity, and timing. Ultimately, this approach strengthens the
connection between simulation data and real-world public health planning, ensuring that insights are
not just generated but also actionable.

7 CONCLUSION AND FUTURE WORK

The COVID-19 pandemic led to the development of many modeling frameworks, each offering distinct
strengths and perspectives. FACS represents one such approach, developed with a particular emphasis
on localised decision support, high-performance scalability, and flexible data integration. It incorporates
modeling, simulation, and decision support into a modular framework. Its agent-based architecture captures
behavioural, spatial, and temporal complexity while remaining adaptable across scales. The simulation
engine enables high-resolution scenario analysis, with outputs validated against empirical data and translated
into accessible visualisations that support policy engagement.

Deploying FACS in a live public health workshop involved technical and collaborative challenges. A core
team gathered and cleaned spatial, demographic, and epidemiological data, ran thousands of simulations,
and worked closely with stakeholders to align outputs with expectations. Tailored visualisations supported
interpretation and trust, enabling the timely delivery of validated insights.

As part of this effort, we simulated the spread of COVID-19 in eighteen regions across North West
and South East of England, and hospital demand in the boroughs of Brent, Ealing, and Harrow. The
workshop brought together NHS analysts, public health officials, modellers, and developers to compare
tools, refine outputs, and improve interpretability. A roundtable addressed simplification for non-technical
users and clarification of behavioural assumptions. Forecasts were validated against anonymised NHS
data and refined with clinical input. Stakeholders used FACS to explore reopening scenarios and capacity
thresholds, with feedback emphasising interpretability and alignment with internal analytics.

Outputs, including time-series plots, heatmaps, and ICU projections, were presented to support structured
discussions around timing, demand, and risk thresholds. Overlaying simulations with historical data
improved clarity, especially for non-modeling participants. Stakeholders valued collaborative interpretation,
transparent communication, GDPR compliance, real-time visualisation, and access to manuals and training.
In response, we enhanced stakeholder-facing tools, expanded disease coverage to measles, and supported
broader deployment alongside other modeling efforts.
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While we cannot verify a direct influence on policy decisions, the workshop provided a venue for
introducing simulation tools to public health stakeholders. As computational modeling becomes increasingly
embedded in policy, such engagements help clarify assumptions, foster trust, and build familiarity for future
integration into decision-making processes.

Looking ahead, we are exploring machine learning for post-simulation analysis, with initial steps led
by students. We also plan to refactor and document the codebase to support long-term maintainability and
facilitate adoption by external users. The FACS framework remains open-source and available at https:
//github.com/djgroen/FACS, including the FabCovid19 plugin: https://github.com/djgroen/FabCovid19.
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