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ABSTRACT

Control variate (CV) is a powerful Monte Carlo variance reduction technique by injecting mean information
about an auxiliary related variable to the simulation output. Partly due to this way of leveraging information,
CV has been mostly studied in the context of mean estimation. In this paper, we study CV for general
nonlinear quantities such as conditional value-at-risk and stochastic optimization. While we can extend
the tools from mean estimation, a challenge in nonlinear generalizations is the proper calibration of the
CV coefficient, which deviates from standard linear regression estimators and requires influence function
or resampling. As a key contribution, we offer a general methodology that bypasses this challenge by
harnessing a weighted representation of CV and interchanging weights between the empirical distribution
and the nonlinear functional. We provide theoretical results in the form of central limit theorems to illustrate
our performance gains and numerically demonstrate them with several experiments.

1 INTRODUCTION

CV is a powerful variance reduction method in Monte Carlo estimation (Yang and Nelson 1989; L’Ecuyer
and Buist 2006; Glynn and Whitt 1989; Sun et al. 2023; Kim and Henderson 2007). Its main idea is to
utilize auxiliary variables that are correlated with the target simulation outputs, and by suitably combining
the auxiliary and target outputs, we obtain estimators that have smaller variance than naive Monte Carlo that
uses the target outputs alone. More specifically, when running simulation, we can often obtain some side
covariates or detailed dynamics of the simulated trajectories, and the CV method leverages our information
on these auxiliary outputs to enhance estimation efficiency. This approach, while attractively simple and
intuitive, has limitations nonetheless. It utilizes a linear-regression-based formulation and relatedly requires
the mean information of the auxiliary variables. As such, its main applicability has been confined largely to
mean estimation problems. On the other hand, many simulation tasks concern nonlinear statistical quantities,
such as quantiles, conditional value-at-risk (CVaR), and stochastic optimization problems. Specifically, the
map from the underlying distribution to the quantity of interest is nonlinear in these cases. However, existing
CV frameworks, while efficient in mean estimations, have not been adopted to more general nonlinear
functional settings.

This work studies a general approach to construct a CV estimator for nonlinear statistical quantities.
To give a sense of this problem, note that many nonlinear problems, even though they are not exactly
linear, are locally linearizable in the sense of being approximatable by a mean as sample size grows. The
idea resembles common Taylor series, in which the gradients in our context are captured via the so-called
influence function of the statistical quantity. From this view, it appears that we can borrow tools from
linear CV in the locally linearizable setting. While this is indeed the case conceptually, a core challenge
arises in calibrating the optimal coefficient in the CV formula. This latter coefficient bridges the CV with
the target simulation output, and needs to be properly selected via the simulation data. In the case of
mean estimation, the optimal coefficient can be calibrated readily via a linear regression calculation. In
the nonlinear setting, however, the optimal coefficient requires the influence function, which needs to be
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either calculated in closed form, or requires resampling approaches such as the bootstrap that substantially
increases the computation overhead.

In view of the above challenge, our main contribution is to build a methodology to construct CV
estimators for nonlinear quantities that bypass the bottleneck with respect to both influence function
knowledge and resampling need. Our key idea leverages a weighted representation of the classical CV
estimator, to our knowledge originated in Hesterberg (1996) and Hesterberg and Nelson (1998) in the
context of quantile estimation. These works consider quantile estimation via inverting the cumulative
distribution function (cdf). They apply CV on the cdf as the estimation target before taking its inverse and,
since the cdf is a function, they observe that an efficient approach to apply CV across the function input
values is to reformulate the CV estimator as a weighted Monte Carlo average, where the weights depend
only on the CV and hence avoid recomputing a new CV estimator at each input value of the cdf. Their
works essentially transform the quantile problem into a mean estimation problem where classical CV can
be applied. Our main idea in this paper is inspired from this approach, but we make it substantially more
general in the framework of local linearization. In particular, we show that, thanks to linearization, the
weights can be interchanged between the nonlinear functional and the empirical distribution, so that by
simply evaluating the nonlinear functional on a weighted empirical distribution, we achieve the same effect
as a CV estimator with a nearly optimally calibrated coefficient, without the aforementioned overhead.
Importantly, this approach does not apply only to the inversion operation on the cdf, but any “smooth”
functional on the cdf.

In terms of theoretical results, we establish central limit theorems (CLTs) for our CV estimator, and
demonstrate our ability to obtain asymptotically optimal coefficient without the computation overhead.
We showcase our approach in estimating risk measures and solutions and optimal values of stochastic
optimization problems. Moreover, in the latter setting, we further develop an asymptotic characterization
of the optimality gap to illustrate our efficiency gain in terms of the optimality of the estimated solution via
our CV. We illustrate our effectiveness through several canonical examples, including newsvendor problems
and linear regression with correlated input features, showing that our CV estimators achieve substantial
variance reduction particularly in low signal-to-noise settings.

1.1 Related Works

Our work is related to several aspects of CV. First regards the calibration of the coefficient in the CV
formula, which is rather limited to our best knowledge. This is potentially attributed to the fact that,
for mean estimation, this calibration can be readily conducted using direct empirical plug-in (Glasserman
2004; Asmussen and Glynn 2007). Beyond this, our conceptual foundation comes mainly from Hesterberg
(1996), who studied CV and importance sampling when bootstrapping nonlinear statistics, and the work
Hesterberg and Nelson (1998) shortly after. In particular, these works observed that a CV estimator for
mean estimation using the plug-in estimate of the optimal coefficient can be written in the form of a
weighted estimator, where the weights depend only on the CV and not the target statistic itself. From this
observation, their approaches first convert nonlinear problems into estimating a cdf and apply CV on the
latter as a mean estimation. Our approach further leverages their idea to combine with local linearization,
and importantly, uses it to bypass the knowledge influence function and computation overhead introduced
by resampling approaches.

Our work is related to, but also should be significantly contrasted with, Glynn and Whitt (1989) that
investigated nonlinear CV. The nonlinearity that they address regards how to combine target simulation
outputs with CVs, i.e., nonlinearly versus linearly combining them. This nonlinearity is different from
ours, which is in the target quantity and concerns its relation with the underlying probability distribution.
In terms of insights, Glynn and Whitt (1989) proved that nonlinear CV offers no asymptotic advantage
over linear ones under suitable regularity conditions. This result supports the general choice to focus on
linear CVs, even in the context of nonlinear statistics that we consider.
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A significant line of CV research focuses on the construction of good CVs using auxiliary information.
Kim and Henderson (2007) considered a parameterized family of CVs, and developed an optimization
problem to search for good candidates. Tsai et al. (2023) developed a framework that adaptively selects
CVs in ranking-and-selection problems. Glynn and Whitt (1989) developed CVs for queueing problems by
leveraging Little’s law, which they call an indirect estimator. Viewing their indirect estimator as a nonlinear
CV, they further prove that nonlinear CVs are asymptotically equivalent to linear ones in terms of efficiency
under standard assumptions. In the Markov Chain setting, Henderson and Glynn (2002) constructed CV
by approximating martingales, which arise from the solution to Poisson’s equation. Building on this
idea, Henderson and Simon (2004) further developed an adaptive scheme that achieves better CV as the
simulation proceeds. More recently, machine learning-based methods have been developed for constructing
CVs, including neural, regression-based, and kernel-based approaches (Blanchet et al. 2023; Müller et al.
2020; Oates et al. 2017; Liu et al. 2017; Portier and Segers 2019). These works have different focuses from
our goal to study the application of CV to nonlinear statistical quantities, but their ways of constructing
good CVs would likely continue to be applicable to our nonlinear settings.

CVs have also been used in stochastic optimization algorithms (Johnson and Zhang 2013; Reddi et al.
2016; Wang et al. 2013; Fang et al. 2018). The seminal stochastic variance-reduced method, proposed by
Johnson and Zhang (2013), uses periodically computed full-batch gradients as CVs to reduce the variance of
gradient estimation and thus accelerate convergence. Wang et al. (2013) introduced a CV approach based on
estimated low-order moments to reduce the variance of stochastic gradients, improving convergence speed
and stability in both convex and non-convex settings. However, these methods primarily focus on reducing
the variance of gradient estimators, which are still targeting the mean of the underlying distribution. In
particular, while our work addresses variance reduction for stochastic optimization as an example, we view
the target objective as a nonlinear functional that is fundamentally different from these works.

Finally, recent developments in prescriptive analytics or contextual optimization also make use of
auxiliary covariates for improving decision-making under uncertainty (Elmachtoub and Grigas 2022;
Elmachtoub et al. 2023). Bertsimas and Kallus (2020) proposed a general framework for learning data-
driven decision rules that minimize expected cost conditional on observed features, bridging predictive
modeling and optimization. Srivastava et al. (2021) studied contextual stochastic optimization problems
where side information is used to inform decisions, proposing a regularized Nadaraya-Watson approach to
estimate conditional expectations and optimize decisions accordingly. While our work similarly leverages
auxiliary information, our focus is on variance reduction rather than better learning approaches. These two
ideas can be naturally combined, as we will illustrate in our contextual optimization example.

2 CONTROL VARIATES ESTIMATOR FOR MEAN ESTIMATION

Suppose we aim to estimate the statistical functional ϕ(P) of a random variable Y with unknown distribution
P, where an auxiliary random variable X can be generated alongside. We assume that the expectation µX
of X is known. To begin with, we first consider ϕ(P) as the mean of Y , i.e., ϕ(P) = E[Y ]. For a generic
random variable U , when U1, . . . ,Un are i.i.d. samples from its distribution, we denote the sample mean
by Ū .

Given i.i.d. observations {(Yi,Xi)}n
i=1, let Pn denote the corresponding empirical marginal distribution

of Y . The vanilla Monte Carlo estimator for ϕ(P) is

ϕ(Pn) = Ȳ =
1
n

n

∑
i=1

Yi.

The CV estimators exploit the information contained in X to construct an unbiased estimator with
reduced variance compared to the vanilla Monte Carlo estimator. For clarity, we call X the CV and, for a
fixed β ∈ R, the CV estimator associated with β is defined as

ϕβ (Pn) = Ȳ −β (X̄ −µX). (1)
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Note that we have abused notation slightly above (and throughout the rest of this paper too) that ϕβ (Pn)

depends also on X̄ , which is suppressed to lighten notation when there is no confusion. A straightforward
calculation deduces that the optimal choice β ∗ minimizing the variance of ϕβ (Pn) is

β
∗ =

Cov(X ,Y )
Var(X)

.

This β ∗ can be viewed as the idealized coefficient in the linear regression of Y against X − µX , and the
CV estimator outputs precisely the intercept. With β ∗, we obtain the optimal variance reduction ratio over
the vanilla Monte Carlo estimator

Var(ϕβ ∗(Pn))/Var(ϕ(Pn)) = 1−ρ
2, ρ = Corr(X ,Y ) (2)

That is, when X and Y are more correlated (either positively or negatively), more variance can be reduced.
In the extreme case where X and Y are perfectly aligned, the CV estimator completely eliminates the
randomness and outputs µY . In practice, β ∗ is typically unknown, and an empirical approximation β̂ is
used:

β̂ =
∑i(Xi − X̄)(Yi − Ȳ )

∑ j(X j − X̄)2 ,

which achieves asymptotically the same variance reduction ratio as in Eq. (2).
We also point out that using X directly as the CV may not always be efficient. By Eq. (2), the variance

reduction ratio depends on the correlation coefficient between data Y and the CV. When the dependence
between X and Y is nonlinear, a naive application of X as the CV for E[Y ] may be ineffective. For example,
suppose we want to estimate the mean of Y = 1

1+X2 , where X follows a uniform distribution between [0,1].
Although Y is fully determined by X , the correlation Corr(X ,Y ) is zero, leading to no variance reduction
by Eq. (2). However, if we instead use f (X) = X2 as the CV, the optimal variance reduction rate becomes
approximately 70%, which is a significant reduction. This observation motivates the use of a transformation
f (X) as the CV instead of X itself. By Eq. (2), the optimal choice of f is the function of X that maximizes
ρ . Specifically, the optimal CV function f ∗(X) is f ∗(X) = E[Y |X ]. However, this optimal choice is often
intractable in practice. There is a broad line of works discussing how to construct good CVs. When the
distribution of X is known, one can construct good approximations to E[Y |X ] using regression techniques,
basis expansions (e.g., polynomials, splines), or other methods that exploit known structure in the problem.
The problem has been widely studied (e.g., see Kim and Henderson 2007; Tsai et al. 2023; Glynn and
Whitt 1989; Blanchet et al. 2023; Müller et al. 2020; Oates et al. 2017; Liu et al. 2017; Portier and Segers
2019), but as our focus is on the use of CVs for nonlinear statistics, we omit further discussion of these
strategies.

We denote the CV estimator using the CV function f and parameter β by

ϕβ , f (Pn) = Ȳ −β ( f̄ −µ f ), where µ f = E[ f (X)].

This notation will be used when we establish results for CV for general statistics.
Finally, note that we have contained our discussion in the case where we only use one CV. Our discussion

and approach extend naturally to using multiple CVs, but this extension is conceptually straightforward
and for simplicity we focus on the univariate case in this paper.

3 CHALLENGES AND REMEDY IN NONLINEAR GENERALIZATIONS

Suppose now the target quantity ϕ(P) is nonlinear in P, such as a quantile, a risk measure, or a solution
or optimal value to a stochastic optimization problem. A natural application of CVs suggests modifying
the estimator ϕ(Pn) by subtracting a linear combination of the CVs:

ϕβ , f (Pn) = ϕ(Pn)−β ( f̄ −µ f ), (3)
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where the CV f (X) is pre-specified and β is the constant coefficient as in the mean estimation case.
While the above appears similar to the usage of CV in mean estimation, we consider and argue that the

calibration of the optimal coefficient β needs more substantial handling. For mean estimation, the optimal
coefficient is given by the linear regression coefficient, which primarily depends on the covariance between
Y and f (X) and is readily estimable by a plug-in estimator. In contrast, for a general nonlinear ϕ , the
optimal β ∗ depends on the covariance between the influence function IFϕ(Y ;P) and f (X). Specifically,

β
∗ = Var( f (X))−1Cov(IFϕ(Y ;P), f (X)). (4)

Here, the influence function can be defined in terms of the Gateaux derivative of ϕ with respect to P
(Hampel et al. 2011). This leads to a challenge because, for many problems, the influence function
IFϕ(Y ;P) can be difficult to compute or estimate. In such cases, we may consider resampling methods
like the bootstrap, and using the fact that Cov(ϕ(P), f (X))≈ Cov(IFϕ(Y ;P), f (X))/n, but these methods
can introduce substantial computational overhead and additional noises due to the Monte Carlo runs in the
resampling.

To overcome this bottleneck, we take inspiration from the weighted Monte Carlo view of CVs, to
our knowledge first studied in Hesterberg (1996) and Hesterberg and Nelson (1998). Rather than relying
on direct calibration of β that depends on a covariance with the influence function, we exploit the fact
that classical CV estimators can be reformulated as weighted averages. In the case of mean estimation,
such a weighted average is exactly equivalent to the original CV formula in Eq. (1). In the nonlinear
case, however, note that the target quantity is not a mean to begin with, and there is no exact definition
of weighting. Nonetheless, many nonlinear quantities are locally linearizable, so that we can indeed put
weights on the linearized target. However, this local linearization would contain the influence function
which gives rise to its appearance in the optimal β ∗ in Eq. (4). Our key insight is that, by weighting the
empirical distribution first and then evaluating ϕ on it, we achieve an estimator that well approximates the
weighted local linearization, and in turn Eq. (3) with an optimally calibrated coefficient. Importantly, these
weights depend only on the auxiliary variable X but not the influence function, thus effectively bypassing
the aforementioned bottleneck.

To describe our approach concretely, we construct a weighted empirical distribution

P̃n(·) = (1/n)
n

∑
i=1

WiI(Yi ∈ ·), where Wi =
1
n
+

( f̄ − f (Xi))( f̄ −µ f )

∑ j( f (X j)− f̄ )2 . (5)

The weights Wi depend solely on f and not on Y , making them accessible even when the target statistic
depends on Y in a more complicated way. Our new CV estimator for nonlinear target ϕ(P) is

ϕCV (Pn) = ϕ(P̃n). (6)

Note that computing ϕCV (Pn) does not require influence function nor resampling approaches. Instead, we
only need to evaluate ϕ using a weighted empirical distribution.

We note that the weights Wi in Eq. (5) are not guaranteed to be nonnegative in finite sample, though
they are nonnegative asymptotically. The negative weights in finite sample could create computational
challenges sometimes. For example, in the stochastic optimization setting, as we will see later, negative
weights lead to a nonconvex problem. Therefore, in practice, a modification to enforce nonnegativity might
be necessary.
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We provide an intuitive explanation of our CV estimator. First, in the mean estimation case, the standard
CV estimator associated with β̂ can be written as

ϕ
β̂ , f (Pn) = ϕ(Pn)− β̂ ( f̄ −µ f )

= Ȳ −

(
∑

n
i=1( f (Xi)− f̄ )(Yi − Ȳ )

∑
n
j=1( f (X j)− f̄ )2

)
( f̄ −µ f )

= Ȳ −
n

∑
i=1

(
( f (Xi)− f̄ )( f̄ −µ f )

∑
n
j=1( f (X j)− f̄ )2

)
(Yi − Ȳ )

= ϕ(P̃n).

(7)

This motivates our definition for ϕCV as in Eq. (6). Nonetheless, when ϕ is nonlinear, Eq. (7) no longer
holds. However, if ϕ is Hadamard differentiable at P, we have

ϕ
β̂ , f (Pn) = ϕ(P)+

1
n

n

∑
i=1

WiIFϕ(Yi;P)+Rem(Pn −P),

ϕCV (Pn) = ϕ(P̃n) = ϕ(P)+
1
n

n

∑
i=1

WiIFϕ(Yi;P)+Rem(P̃n −P).

where IFϕ(·;P) is the influence function. Rem(Pn−P) and Rem(P̃n−P) are second-order remainder terms.
As a result, although no longer equal, ϕCV (Pn) is still close to the optimal CV ϕ

β̂ , f (Pn).

4 THEORETICAL GUARANTEES FOR OUR CONTROL VARIATE ESTIMATOR

We provide formal justifications to our CV estimator for nonlinear statistical quantities. Our main result is
a central limit theorem of ϕCV , indicating that it achieves the optimal variance reduction ratio attainable
for the given f .
Theorem 1 Suppose that ϕ is Hadamard differentiable at P and that the class of influence functions
{IFϕ(Y ;P)} is Donsker. Then,

√
n(ϕCV (Pn)−ϕ(P)) d−→ N (0,σ2

CV ), (8)

where σ2
CV = (1−Corr(IFϕ(Y ;P), f (X))2)σ2, and σ2 = Var(IFϕ(Y ;P)) is the asymptotic variance of the

vanilla Monte Carlo estimator.
We briefly clarify key concepts involved in Theorem 1. Hadamard differentiability ensures that the

function ϕ admits a linear approximation locally. The influence function {IFϕ(Y ;P)} serves as the functional
gradient of ϕ evaluated at P, measuring the local sensitivity of ϕ with respect to changes of P along the
direction of a point mass at Y . The Donsker condition guarantees that the empirical process formed by the
influence functions converges weakly to a Gaussian process, which enables asymptotic normality of the
estimator. These assumptions are standard. For background, see (Van der Vaart and Wellner 1996) and
(Kosorok 2008).

Theorem 1 implies that our CV estimator gives rise to an asymptotic variance that is equal to the one
when coefficient β is chosen optimally, and thus revealing that we assimilate the auxiliary information in
f efficiently. To establish Theorem 1, we first consider the general CV for nonlinear statistical quantities
in Eq. (3) with a fixed, possibly suboptimal parameter β .
Lemma 1. Let β be a fixed CV parameter. Under the same assumption as in Theorem 1, the following
holds √

n(ϕβ , f (Pn)−ϕ(P)) d−→ N (0,σ2
β
), (9)
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where the asymptotic variance is

σ
2
β
= Var(IFϕ(Y ;P))−2βCov(IFϕ(Y ;P), f (X))+β

2Var( f (X)). (10)

The optimal CV coefficient minimizing σ2
β

is

β
∗ = Var( f (X))−1Cov(IFϕ(Y ;P), f (X)). (11)

The corresponding minimal variance for the given f satisfies

0 < σ
2
β ∗ = (1−Corr(IFϕ(Y ;P), f (X))2)σ2 ≤ σ

2, (12)

where σ2 = Var(IFϕ(Y ;P)).
The preceding lemma presents the relation of the asymptotic variance of CV estimator in Eq. (3) in

relation to the coefficient β . In particular, when β is well-calibrated, the CV estimator achieves the highest
possible asymptotic variance reduction ratio for the given CV function f . The following lemma further
formalizes this result for estimators that statistically consistently estimate β ∗.
Lemma 2. Let βn be any consistent estimator of β ∗ such that

√
n(βn −β ∗) = oP(1). Then

√
n
(
ϕβn, f (Pn)−ϕ(P)

) d−→ N (0,σ2
β ∗), (13)

where σ2
β ∗ , defined in Eq. (12), is the minimal asymptotic variance achieved by using the optimal β ∗.

By Lemma 2, estimating β ∗ does not affect the asymptotic efficiency of the CV estimator. In particular,
ϕ

β̂ , f (Pn) gives the optimal variance reduction ratio. Importantly, since the difference between ϕ
β̂ , f (Pn) and

ϕCV (Pn) are asymptotically negligible, Theorem 1 follows directly from Lemma 2.

5 FURTHER DISCUSSIONS

5.1 Misspecified Control Variates

Suppose we only know an approximation µ f +δ f of µ f , where δ f is deterministic or random. Given δ f ,
the optimal CV coefficient is given through the following least-squares problem:

β̂δ := argmin
β

E
[(
( f̄ −µ f −δ f )β − (ϕ(Pn)−ϕ(P))

)2
]

=
(
Var( f̄ )+δ

2
f
)−1 (

Cov( f̄ ,ϕ(Pn))−δ fE[ϕ(Pn)−ϕ(P)]
)
.

If δ f is random and potentially correlated with f̄ , then similar calculations yield:

β̂δ = M−1Var( f̄ )β ∗−M−1E[(ϕ(Pn)−ϕ(P))δ f ], M = Var( f̄ )−2Cov( f̄ ,δ f )+E[δ 2
f ] (14)

Eq. (14) shows that when the CV mean is misspecified by an amount δ f , the estimated coefficient β̂δ

deviates from the optimal β ∗. In particular, the first term scales β ∗ by a factor depending on the relative size
of the misspecification variance δ 2

f compared to the variance of f̄ . When δ 2
f is small relative to Var( f̄ ), the

effect of the first term is negligible, and β̂δ remains close to β ∗. The second term introduces an additional
bias that depends on the correlation between δ f and ϕ(Pn). Thus, small or uncorrelated misspecifications
in µ f have limited impact on the CV effectiveness, but large or systematically biased misspecifications can
downgrade the performance.
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5.2 Sample Average Approximation and Optimality Gap

A prime example of nonlinear statistical quantity is stochastic optimization, which encompasses a range
of statistics of interest. For example, quantile estimation can be viewed as a special case of using sample
average approximation (SAA) as an estimator of a solution to a stochastic optimization problem. Consider

ϕ(P) = argmin
θ

EX∼P[h(X ,θ)],

where h is a loss function. In the optimization context, a natural performance measure of a given solution
is the optimality gap:

G (θ) = EX∼P[h(X ,θ)]−EX∼P[h(X ,θ ∗)].

Assume that H(θ) = E[h(X ,θ)] is twice continuously differentiable, we have the following expansion

G (θ) =
1
2
(θ −θ

∗)2
∇

2H(θ ∗)+o(|θ −θ
∗|2). (15)

From Eq. (15), by the CLT for ϕCV (Pn), we can derive the following:

Corollary 2 Assume that θ̂n = ϕCV (Pn) is consistent and satisfies
√

n(θ̂n −θ ∗)
d−→ N (0,σCV ). Suppose

that H(θ) is twice continuously differentiable at θ ∗. Then the scaled optimality gap satisfies:

nG (θ̂n)
d−→ 1

2
U2

∇
2H(θ ∗), where U ∼ N (0,σCV ). (16)

6 EXAMPLES

6.1 Contextual Optimization

In contextual optimization, the decision-maker aims to select an optimal action or policy based on contextual
information (features or covariates) observed prior to making decisions. Formally, the goal is to minimize
a cost that explicitly depends on context X , typically represented as optimizing an objective of the form
E[h(Y,θ(X))], where θ(X) is the decision policy depending on the observed context X and Y is the
uncertainty. For an observed context x, the estimator of θ(x) can be estimated by solving

θ̂n(x) ∈ argmin
z∈Z

n

∑
i=1

wi(x;{X j}n
j=1)h(Yi,z),

where wi(x;{X j}n
j=1) are data-driven weights depending on the observed covariates {X j}n

j=1. The above
formulation for θ̂n(x) can also be viewed as SAA by considering g(z,x;{X j}n

j=1,Yi) = nwi(x;{X j}n
j=1)h(Yi,z).

Let f be the CV function specified in advance. We can apply CV by considering

θ̂
CV
n (x) ∈ argmin

z∈Z

n

∑
i=1

wCV
i ({X j}n

j=1)g(z,x;{X j}n
j=1,Yi),

where wCV
i ({X j}n

j=1) =
1
n +

( f̄− f (Xi))( f̄−µ f )

∑ j( f̄− f (X j))2 is obtained via our discussion in the previous sections.

6.2 Linear Regression

Linear regression defines a nonlinear statistic when viewed as a mapping from the data distribution to
the estimated coefficient. Specifically, suppose we want to regress Y ∈ R against X ∈ Rp. Also, suppose
there is another random vector C ∈ Rq that can be sampled along with X and is correlated with X and Y .
We consider two ways of regression for Y. One is standard linear regression using either X or (X ,C) as

302



Lam, and Wang

predictors. The other is our CV approach, where we regress Y on X but reweight observations based on C.
The two approaches are good under different scenarios. Regressing Y against (X ,C) requires X and C to
be as orthogonal as possible, while the CV approach requires C to be aligned with the influence function
of mean squared loss evaluated at β ∗.

Suppose we observe i.i.d. samples {Xi,Yi,Ci}. Let X ∈ Rn×p and C ∈ Rn×q be matrices with rows Xi
and Ci respectively. And let Y ∈Rn be the vector consisting of Yi. In this case, the CV solves the following
reweighted SAA:

min
θ

n

∑
i=1

Wi(X⊤
i θ −Yi)

2, (17)

where
Wi =

1
n
+(C̄−Ci)

⊤(∑
j
(C j −C̄)(C j −C̄)⊤)−1(C̄−µC) ∈ R.

As a result, if Wi’s are positive, Eq. (17) has a unique minimizer

θ̂
cv
n = (X⊤

ΛwX)−1X⊤
ΛwY, Λw = diag([W1, . . . ,Wn]).

In contrast, regressing Y against generic data matrix D gives

θ̂n = (D⊤D)−1D⊤Y,

where this D can be X or [X⊤,C⊤]⊤. Later, we will see our CV approach outperform standard linear
regression under certain situations.

7 EXPERIMENTS

7.1 Newsvendor Problem

We consider the classical one-dimensional newsvendor setting, where the decision variable θ ∈R+ represents
the order quantity and Y is a random demand. The cost function is given by

h(Y,θ) = p1θ + p2(Y −θ)+,

where (a)+ = max(a,0) and p1 < p2. The first term models the linear ordering cost, while the second term
penalizes unmet demand at a higher unit penalty p2. The goal is to minimize the expected cost E[h(Y,θ)]
over θ . This optimization problem is equivalent to a quantile estimation task, where the optimal solution
corresponds to the p2−p1

p2
quantile of the distribution of Y . The distribution of demand Y often depends on

observable covariates X , such as weather, time, or external signals (e.g., news). This dependence turns the
newsvendor problem into a contextual optimization problem, where the optimal order quantity θ varies
with the covariates.

Specifically, in this experiment, we set the unit ordering cost p1 = 2 and unit shortage penalty p2 = 3. We
generate n = 100 data points, where each sample consists of a covariate X ∼ Poisson(λx) with known mean
λx = 1, and a demand variable Y ∼ Poisson(λy) with (unknown) mean λy = 2. The CV X is constructed to
be correlated with Y using a Gaussian Copula (Durante and Sempi 2010) with correlations chosen from the
set {0.5, 0.65, 0.8, 0.9, 0.99}. For each correlation level, we repeat the estimation procedure Nrepeat = 500
times to evaluate the bias and variance of the estimators.

Figure 1 compares the performance of CV estimators in both non-contextual and contextual stochastic
optimization settings. In the left panel, we compare the standard SAA estimator with our CV estimator
under varying levels of correlation between the target variable and the CV. The right panel shows a similar
comparison under a nonparametric regression (NW) framework. In both cases, the CV estimators achieve
lower bias and variance compared to their baselines, with the improvement becoming more pronounced as
the correlation increases.
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Figure 1: Newsvendor Problem. Comparison of estimation results with and without CVs under varying
correlations. The left panel corresponds to the non-contextual setting, and the right panel shows the
contextual stochastic optimization settings. Red dots denote the CV-based estimates; red bars show ±1
standard deviation computed over 500 independent trials. Blue dashed lines show baseline mean estimates,
and green dotted lines show ±1 standard deviation. The ground truth is shown in yellow.

7.2 Linear Regression

We construct a synthetic latent factor model that simulates structured dependence between the primary
features, auxiliary covariates, and the target variables. Each sample is associated with a latent vector
Z ∼ N (0, Id), which controls both the primary features X ∈ Rp and a set of auxiliary features C̃ ∈ Rq

through linear projections. The projection matrices AX ∈ Rp×d and AC ∈ Rq×d are constructed as a
combination of shared identity components and independent Gaussian noise. Relationship between X and
C̃ is controlled by γ ∈ [0,1].

AX = γ × Ip×d +(1− γ)×N (0,1)p×d , AC = γ × Iq×d +(1− γ)×N (0,1)q×d .

Here Ip×d denotes the first p rows of the d×d identity matrix. The primary and auxiliary features are then
generated as:

X = ZA⊤
X +σX ×N (0,1)p, C̃ = ZA⊤

C +σY ×N (0,1)q.

An independent noise term εy ∼ N (0,σ2) is sampled for each sample. The response variable is given by:

Y = Xθ
∗
X +C̃θ

∗
C + εy,

where θ ∗
X ∈ Rp and θ ∗

C ∈ Rq are the true underlying coefficients.
We do not observe C̃ directly. Instead, we observe a noisy proxy C, constructed as:

C = C̃+ εyX .

This formulation introduces a structured correlation between the auxiliary features, the primary features,
and the label noise. It mimics real-world situations where auxiliary information (e.g., diagnostic tests,
sensor data, etc.) may be influenced by both latent factors and components of the primary feature due
to shared measurement pipelines or feedback loops. While synthetic, this construction enables control
over the signal-to-noise ratio and feature correlation structure, allowing us to evaluate the algorithm in the
presence of structured noise and information leakage.

Unless otherwise specified, we set p = q = 5, d = 10, γ = 0.95, and σx = σY = 0.5, with σ = 10 for
label noise. The true parameters are θ ∗

X = [5,6,7,8,9]⊤, and θ ∗
C = [1,2,3,4,5]⊤.. We use ntrain = 50 and

ntest = 100, and average results over 500 independent trials.
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In Figure 2, we compare three regression methods: (i) a baseline using both X and C, (ii) a model
using X alone, and (iii) our proposed CV estimator. The left panel shows that the CV method consistently
achieves lower test mean squared error (MSE), especially as the output noise σ increases. These indicate
the robust outperformance of our CV method in low signal-to-noise regimes. The right panel shows the
variance of estimated coefficient for X across trials, where CV method again outperforms both baselines.

To further explore the effect of dependence between C and X , we vary the projection alignment
parameter γ . As shown in Figure 3, increasing γ improves all methods, as it reduces conditional variance
in Y . Nevertheless, the CV method consistently yields superior performance across the full range of γ ,
indicating its effectiveness under strong feature correlation.

Figure 2: Linear Regression. Test MSE and variance of θX -estimation v.s. standard deviation of εy ranging
from 2 to 20.

Figure 3: Linear Regression. Test MSE and variance of θX -estimation under different level of dependence.
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