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ABSTRACT

Bagging has emerged as an effective tool for reducing variance and enhancing stability in model training,
via repeated data resampling followed by a suitable aggregation. Recently, it has also been used to obtain
performance bounds for data-driven solutions in stochastic optimization. However, quantifying statistical
uncertainty for bagged estimators can be challenging, as standard bootstrap would require resampling
at both the bagging and the bootstrap stages—-leading to multiplicative computation costs that can be
prohibitively large. In this work, we propose a practical and theoretically justified approach using the cheap
bootstrap methodology, which enables valid confidence interval construction for bagged estimators under a
controllable number of model evaluation. We establish asymptotic validity of our approach and demonstrate
its empirical performance through simulation experiments. Our results show that the proposed method
achieves nominal coverages with significantly reduced computational burden than other benchmarks.

1 INTRODUCTION

Bagging, or bootstrap aggregation, is a popular approach to reduce variance and enhance stability in
estimation or prediction tasks. Its main idea is to repeatedly resample data that are used to build new
estimators, and aggregate these estimators via averaging to obtain a final estimate. This approach leads to
some widely used machine learning predictors such as random forests (Breiman 2001), where the individual
predictors built from the resampled data, often called the base learners, are decision trees. Recently, bagging
has also been used in obtaining performance bounds, namely the optimality gaps of a data-driven solution
or the optimal values, in stochastic optimization problems (Lam and Qian 2018a; Lam and Qian 2018b;
Chen and Woodruff 2023). In this paper, we focus on the latter setting as a showcase of our idea, keeping
in mind that the idea can potentially generalize broadly to many bagging-related problems.

To explain bagging more precisely, consider the problem of estimating an unknown quantity y using

iid. data &,...,&, ~ P. Let {5, denote some estimator computed from the full dataset. To obtain a
bagged estimator, we generate D resamples from the original full dataset, where each resample consists
of n observations drawn randomly with or without replacement from the dataset, say 51* (d),...,f;‘;f (d), for

d € {1,...,D}. For each resample, we compute the corresponding estimate li/,gd>

is defined as
1 D
~ bag — Z Ar(ld)'
" D=

Intuitively, this estimator is more “smooth" than using the simple estimator ¥, when it has certain “jump"
behaviors, which is precisely the case in decision trees (Bithlmann and Yu 2002) or stochastic optimization
with multiple nearly optimal solutions (Lam and Qian 2018b). This resulting smoothness consequently
propels variance reduction in the estimation.

Our main focus in this paper is the quantification of statistical uncertainty associated with li/,fag , via
the construction of statistically valid confidence intervals. To this end, a natural attempt would be to
derive a central limit theorem (CLT) and utilize a normality interval. In the case of bagged estimator, the
standard error inside such a normality interval would involve the so-called influence function (Efron 1992),

. Then, the bagged estimator
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which represents the gradient information of the estimator with respect to the data distribution, and appears
naturally in view of the nonparametric delta method. This culminates in the infinitesimal jackknife (1J)
approach (Efron 2014; Wager et al. 2014), which directly approximates the standard error of the bagged
estimator via a formula that can reuse the same resamples that construct the base estimator. While this
idea is powerful and elegant, a rigorous analysis that pins down precisely the overall computation effort
for sufficient-coverage interval construction appears to be still open.

As an alternative, we can consider using the bootstrap on bagged estimators. The bootstrap operates
by resampling data and using the resampled estimators to construct intervals. This latter construction can
be conducted by taking suitable quantiles of the resample estimators (leading to methods like the basic
bootstrap or percentile bootstrap; Efron and Tibshirani (1994), Davison and Hinkley (1997)), or taking
the variance of the resample estimators (leading to the standard error bootstrap; Efron (1981)), as well
as other variants (such as the studentized bootstrap, e.g., Davison and Hinkley (1997) §2.4). Note that
even though bagging includes a bootstrap step, it is used to construct a point estimator via averaging the
bootstrapped estimators, and bears a conceptually different goal of increasing estimation stability rather than
the quantification of uncertainty or confidence interval construction. More importantly, when implementing
the bootstrap, we would need to resample the data and refit the estimator many times. Applying to the
bagged estimator, this means that we need to first resample the data, and for each resample, we construct
a bagged estimator via another layer of resampling. In other words, applying the bootstrap on bagged
estimators typically requires a multiplicative computation effort due to nested layers of resampling, and
hence is computationally expensive.

Our main contribution in this paper is to address the above computation challenge faced by the bootstrap
when applying to bagged estimators, by utilizing a recent bootstrap variant called the cheap bootstrap (Lam
2022b; Lam 2022a; Lam and Liu 2023; Huang et al. 2023; Ohlendorff et al. 2025). The cheap bootstrap,
when applying to standard estimation problems (without bagging), allows the construction of asymptotically
exact confidence intervals with a fixed, small number of bootstrap resamples. When applying to bagged
estimators, the cheap bootstrap would construct valid intervals with again a fixed, small number of bootstrap
resamples in the outer layer of the nested procedure, thus leading to an overall computation effort within
a constant order of the number of resamples in the bagging. Compared to the standard application of
the bootstrap, this therefore alleviates the multiplicative computation effort from both the outer and inner
resampling steps. Compared to 1J, our approach appears to be roughly on par in terms of computation,
though we should note that both the analyses on our approach and the 1J appear not fully reflective in some
aspects as we will explain in the sequel. In particular, in this work we justify our advantage by analyzing
the asymptotic coverage of our approach for a simplified setup of letting the resample size in the bagging
procedure to be fixed instead of growing in data size. We nonetheless test and show promising numerical
performances when we use a large bagging resample size. Moreover, as discussed earlier, we will focus
our discussion on the estimation of the optimality gap in stochastic optimization as an example of bagging
estimators in this paper.

2 STOCHASTIC OPTIMIZATION AND BAGGING
2.1 Problem Formulation

Consider the following generic stochastic optimization problem:

Z" = min {Z(x) = Er[h(x,&)]}, e))

xeZ
where 2" denotes the decision space, and the random variable £ € Z is drawn from a distribution F. The
operator Ep[-] represents the expectation under F. We focus on the setting in which the true distribution F
is not explicitly known, but instead, we observe a finite sample of independent realizations of &, denoted

by &1 = (&15---,8n)-
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Our goal is to construct confidence intervals for the optimality gap of a data-driven solution of (1). Here,
optimality gap of a solution, say £, refers to Z(£) — Z*. It is quite straightforward to see that this problem
can be largely reduced to finding an interval for the optimal value Z*, since Z(%) can be readily estimated as
a sample mean once £ is obtained. To construct intervals for Z* and explain how this is related to bagging,
we first note that a widely used technique for solving data-driven stochastic optimization problems like the
above is sample average approximation (SAA) (Shapiro et al. 2009; Kleywegt et al. 2002; Higle and Sen
1991). Given i.i.d. samples &, ...,&, ~ F, when running the SAA, the estimated objective takes the form:

A 1
Z, = ;1611;51 ;i:1h(x, &). 2)

A direct application of Jensen’s inequality reveals that the SAA objective Z, is optimistically biased, in
the sense
W, = E[Zn] < Z*7 (3)

where the expectation is taken over the data used to compute Z, defined in (2). This inequality holds under
very general conditions, without requiring any regularity assumptions on the loss function A(-,-), and is
thus widely used to obtain lower bounds on the true optimal value Z* (see, e.g., Mak et al. 1999; Shapiro
2003; Glasserman 2004). Since it is also known that under some regularity conditions, lim,_,.. W, =Z*, a
consistent lower bound on W, will also be tight for Z*. Ideally, this would require letting n — oo, but to
simplify analysis we instead fix a sufficiently large k. Note that the optimistic bias in (3) holds for any &
and so by constructing a valid lower confidence bound for W;, we would still inherit a lower confidence
bound for Z*. Moreover, we should also keep in mind that k£ could be chosen large enough so that Wy, ~ Z*,
which is how we set up our test cases in the later numerical experiments.

With its form shown in the left-hand side of (3), the natural empirical estimate of W; is to repeatedly
resample the SAA objective value and take their average. This is precisely bagging (Lam and Qian 2018b).
In particular, D subsamples of size k are drawn (with or without replacement) from the dataset (where k < n
and hence subsamples). For each subsample d € {1,...,D}, the corresponding SAA value is computed,
and their average defines the bagged estimator:

o] izw ! i
k=7 k T p
! Dd:l Dd:l

minlzk:h(x é.(d)) :
€2 k 7

X

where (él(d),..., ék(d)) denote a single resample of size k from the data. This provides a point estimator for
W, = E[Z], which as discussed is a lower bound on Z* by (3).

2.2 Uncertainty Quantification and Related Existing Approaches

Our goal is to construct a statistically valid lower confidence bound for Wy based on the above bagged
estimator. Specifically, we are interested in obtaining a lower confidence bound so that it also serves the
same for the true optimal value Z*. This also serves as an example on studying uncertainty quantification
for bagged predictors more generally.

Before we detail our approach, we note that a natural first approach to consider is the classical bootstrap,
which uses proper statistics (e.g., quantiles, variances) on the resample counterparts of the original estimator
to construct intervals. Note that implementing the resampling in the classical bootstrap typically requires
repeatedly running many model evaluations, say B, as a Monte Carlo approximation. In our setting, since
the considered estimator is a bagged estimator which itself involves resampling the data, applying the
classical bootstrap directly would require an additional layer of resampling on top of the existing one,
effectively necessitating a D x B amount of model evaluations. This nested resampling imposes a significant
computational burden, making the classical bootstrap potentially impractical for our purpose.
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An elegant tractable alternative proposed in Efron (2014) is the 1J estimator. This method estimates
variance by approximating the influence function directly via the nonparametric delta method. It does
so by reusing the same bootstrap resamples used in constructing the bagged predictor, thereby avoiding
an additional layer of resampling. In particular, they first consider the idealized 1J estimator of variance,
denoted V|7, when B = o, and a practical de-biased estimator, denoted VIIJ;’U, that achieves a mean squared
error of order O(1/n) in estimating ‘7{}" with only B = @(n) bagging resamples. This linear dependence on
n represents a significant computational advantage over the naive bootstrap procedure, which requires two
nested layers of resampling. However, the translation from the estimation error of V|7 into the coverage
of the confidence intervals appears open. In the special setting of stochastic optimization performance
bounds, Lam and Qian (2018b) construct a lower confidence bound that they show is valid for covering
Wy as long as B/n — .

In our work, we propose a new approach using the cheap bootstrap to address this issue. Rather
than reusing the bagging resamples and approximating the influence function as in the 1J framework, we
perform resampling directly on the bagged estimator. While this appears to revert back to the idea and
hence limitations of the classical bootstrap, the cheap bootstrap distinctly requires only a small number of
bootstrap replications. This idea follows from Lam (2022b), which demonstrates that a number of resamples
as small as one suffices to construct valid confidence intervals under suitable regularity conditions. In
our current context, we accordingly fix the number of outer resamples at a small value B, and based on
each outer resample we compute the bagged predictor using D inner resamples. The resulting interval is
constructed using the original bagged estimate and the bootstrapped estimates, as outlined in Algorithm 1.
As we will elaborate further in the next section, our approach offers coverage-valid confidence intervals
with computational complexity @(n'*€) for any € > 0. Roughly speaking, this order is mostly due to
the requirement that the number of bagging resamples D must satisfy D/n — oo, while keeping B fixed
at a small number. We note that this is at least on par with the asymptotic computation effort of the
IJ-based approach in Lam and Qian (2018b) in the case of stochastic optimization performance bounds.
Our numerical results, which we detail in Section 4, further suggest that our method is both practical and
effective in capturing uncertainty with controllable computation overhead.

3 THEORETICAL GUARANTEES

To justify the validity of Algorithm 1, we begin by reviewing the cheap bootstrap, but with slight modifications
tailored to our setting. We then expand this framework to the bagged SAA estimator described in Section
2.

3.1 The Cheap Bootstrap Confidence Interval

We discuss the cheap bootstrap in the general setting of estimating an unknown quantity y that depends
on data distribution P. Let

qA/n: Wn(glyugn) 4
be an estimator based on i.i.d. data &;,...,&, ~ P. Denote by P, the empirical distribution of the observed

data, and let él*h b .,c‘,‘,’:b ~ P, for b=1,...,B, drawn conditionally i.i.d., be the resamples. For each of
the B resamples, we compute the corresponding bootstrap estimator:

vl = (&, 8, (5)

and define the empirical variance:

18 .,
SiB =5 Z(Wnb_ ‘/’n)z'

B
b=1
Using this variance estimate, the cheap bootstrap confidence interval is given by:
In,B = [IA//n itB,l—a/Z 'Sn,B] s (6)
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Algorithm 1: Cheap Bootstrap Confidence Interval for W

Input: Data &;.,;

Subsample size k;

Number of bagging resamples D;

Number of bootstrap replicates B;

Confidence level 1 —

Output: Confidence interval 1, p p for Wy
1 Compute the bagged estimator Zfi s

2 for b=1 to B do

3 L Draw a bootstrap resample él*:gzb) of size n from {&,...,&,} (with replacement);

(b)

Compute Zr? k* for the resampled data & 1*:511))3

5 Compute empirical variance:

1 & 2
§2:= B Z (Zf}j(b) —Z,?k> , where $? = $%(n,k,D,B) depends on n,k,D,B.
b=1

6 Construct confidence interval:
D
b= [ZoE151-ay - S]

where 751 g/ 18 the | —a /2 quantile of the Student-¢ distribution with B degrees of freedom;
7 return I, ; g p;
8 Note: The output interval is denoted by IX k.B.D when bagging with replacement, and by Iff kB.D
when bagging without replacement is used. The bootstrap resamples are always drawn with
replacement.

where g 14/ denotes the 1 — o /2 quantile of the Student-¢ distribution with B degrees of freedom.

While (6) may resemble the so-called standard error bootstrap in the classical literature, the main insight
is that B does not need to be large, and in fact to attain valid coverage B can be taken to be merely one.
To justify such a claim, we begin with an assumption that resembles the one used to justify the classical
bootstrap, which is a relaxed version of the formulation in Lam (2022b):

Assumption 1 As n — oo, assume there exists a normalizing sequence o, such that the plug-in estimator
W, from (4) satisfies a central limit theorem (CLT):
LAl SUNATRNY %
On
Additionally, any bootstrap estimator Y, from (5) for any arbitrary b satisfies a conditional CLT given the
data: . s
Yo~ ¥ d, 470,1) in probability, ®)

*
Gn

where the scaling sequences satisfy o, /0, 2.
Note that the convergence in (8) is understood in terms of the conditional distribution:
N
P (ll/n wﬂ S X
6*

n

ﬁn> 2, d(x) forall xeR.

where @ denotes the standard normal distribution function. Assumption 1 mirrors the usual requirements
for bootstrap validity, wherein both the estimator and its bootstrap version satisfy asymptotic normality
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with a common variance. Here, we allow for distinct normalizing sequences o, and o, , provided their
ratio converges to one in probability. Note that 6, and o, both can be random and data-dependent, though
in our application o, would be deterministic. For notational clarity, the usual y/n scaling is absorbed into
these sequences.

With the above assumption, we have the following guarantee:

Theorem 1 (Asymptotic Validity of Cheap Bootstrap Confidence Intervals) Under Assumption 1, as n — oo
and for any fixed B> 1,

Sn,B
where 75 denotes the Student-¢ distribution with B degree of freedom. Consequently, the cheap bootstrap
confidence interval satisfies:

limP(yel,p)=1—q.

n—oeo ’

In summary, the interval I, 5 achieves asymptotically exact (1 — «)-level coverage even when the
number of resamples B is kept fixed at a small number. This contrasts with standard bootstrap procedures,
which require B — oo for validity.

Sketch of Proof. We use the conditional Slutsky theorem (see Section A) to conclude that Assumption 1
also implies:
@ < #(0,1) in probability, as n — oo,

n

We then establish the joint weak convergence:

(%—w 7 BN Vit

)

d
— (Z(),Zl,...,ZB) as n — oo,
On On On

where Zy,Z,,...,Zp are i.i.d. .4#°(0, 1) random variables. Applying the continuous mapping theorem yields:
l/,\/n*l//

o,
Tn,B = =

d Zy
> — ~1g.
xb __ ) 1vB 2
\/é g:] (Vlnc Wn> \/B szlzb

[ as n — oo and for any fixed B > 1]

3.2 Expanding Cheap Bootstrap to Bagged SAA Estimator

We begin by analyzing the setting where the number of bagging resamples D — o<. In this case, the bagged
estimator converges to a fully aggregated form that averages over all possible subsamples of size k. Since the
dataset is finite, there are finitely many such subsamples, either with or without replacement. Specifically,
there are n* ordered tuples when sampling with replacement, and (Z) unordered subsets when sampling
without replacement. These give rise to the well-known V- and U -statistic estimators, respectively. Let us

introduce the notation:
k

Hu(&1,--,80) = min ;1 &)

We denote the limiting forms of the bagged SAA estimator Z,?k as follows:

*  With replacement (V-statistic):

1
Vik = ¢ Y Hi(p,,---.88),
Be%

where % is the set of all ordered k-tuples (with replacement) from {1,...,n}.
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*  Without replacement (U-statistic):

Upg = (l) Y Hi(Epo- o Ep,),

k) Bec;

where % is the set of all unordered k-subsets (without replacement) from {1,...,n}.

The fully bagged estimators U, ; and V, ; serve as idealized targets for estimating the quantity W;.
We now define cheap bootstrap confidence intervals using these estimators. For each of the B bootstrap

resamples (with B fixed, possibly as small as 1), we compute the fully bagged statistics U SC) and an(c ) by
averaging over all subsets of size k, drawn without and with replacement, respectively, from the resampled
data. Let the empirical variances of the resample estimates be:

1 B . ) 1 B . 2

The corresponding cheap bootstrap confidence intervals for W, are:

InkBoo i= [Unx£tg1-a/2-Sul Ir‘,/,k,g,oo = [Vak £51-ap-Sv], (10)

where 731 ¢/ is the 1 —a /2 quantile of the Student-¢ distribution with B degrees of freedom.
To establish the asymptotic validity of these intervals, we next introduce some regularity assumptions:

Assumption 2 We assume a uniform moment bound:
B | sup s £)F| <=
er

This uniform bound plays a key role in controlling higher-order terms in the central limit approximation.
Assumption 3 Define the function

ge(&) = E[H(&1,..., &) | &1 =&,

i.e., the conditional expectation of the SAA value when the first sample is fixed at . We assume:

0 < Var(gi(§)) < oo.

This assumption ensures a non-degenerate real-valued limiting distribution in our limit analysis.

Our next goal is to verify Assumption 1 for the estimators U, ; and V,, ;. In particular, the CLT required
in (7) has already been established in prior work. We restate the result below, adapted from Theorem 2 of
Lam and Qian (2018b):

Theorem 2 Suppose k > 1 is fixed, and Assumptions 2 and 3 hold. Then, as n — oo,

V(Ui —Wi) & (0, K2 Var(gi(€))) (11)
ViV = W) L 2 (0, kK Var(gi (£))) (12)
where Wy = Ep[Hi (&1, ..., &), and gu (&) =E[Hi(&1,..., &) | & =&

Note that M serves our purpose of 6. The original result in Lam and Qian (2018b) assumes
a slightly weaker moment condition, namely E[sup,c 4 [2(x, &)|?] < oo, to establish the CLT. However, for
verifying the full bootstrap validity in Assumption 1, we require a uniform third-moment bound. Therefore,
we adopt the stronger condition in Assumption 2 for our analysis.

We next move on to establish the second part of Assumption 1, namely the conditional bootstrap CLT
in (8):
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Theorem 3 (Bootstrap Normality of Bagged Estimators) Under Assumptions 2 and 3, as n — o and for
any fixed k, there exists a normalizing sequence G;;k such that

U —Vak
]P) I’l,k - n, Sx
c;n.,k

20,

Pn> —®d(x)

and the scaling satisfies
nO':i
k2 Var(g(&))

Proof.  (Sketch of proof) Suppose &, ...,&, comprise a sample obtained from P, and let P, denote the
corresponding empirical distribution function. Let & be i.i.d resamples from the measure P, and E* denotes
the expectation with respect to this measure. To prove the result, we use the flow of Theorem 12.3 from
van der Vaart (1998) using the Hajek Projection of U, , denoted by

Loy,

% ko % g%
Ui :=Var+ Y 81 (&) — Vil
i=1

where g; (&) :=E*[Hi(E],....§)|& = &]. o, is chosen to be the variance of lolr’l"k conditioned on the
data. Observe that E* [U:k] =V, (and not U, k). This is because the bootstrap resampling is done with
replacement. By using property of Hajek projection that E*[(U,;, — U,’l‘ k)(U,’[k =V, )] =0, it can be shown

that as n — oo: .
us —U*
P<"’k"’k>6\P,,>£>0 (13)

*
Gn,k

Finally, we use the Berry-Esseen Theorem to conclude:

Us, —v,
P(’”k*””‘gxm)—@(x)

C
= < —f(Pok) 50 as n— oo (14)
n.k

Jn

where f(P,,k) is the ratio of the second and third moments of g; (&), which is essentially a V-statistic
of the original sample, and can be shown to be bounded in probability under Assumptions 3 and 2. The
conclusion follows by again using the conditional Slutsky on (13) and (14). O

Under mild conditions on the objective function, such as those in Assumptions 2 and 3, it can be shown

that as n — oo, both \/n(Uyx — Vux) 2 0 and VU = Vi) 2, 0. Thus, as a consequence of Theorem 3,
we obtain the following:

Corollary 4 (Bootstrap Normality Around Population and Empirical Means) Under the conditions of
Theorem 3, as n — oo, we also have:
v =V,
P ("’k . mk <x
n,

P U;,k_Umka P
Ok

. 2,0, and 0.
Gn,k

P,l> —P(x)

P,,) —d(x)

Thus, along with Theorem 2, for any fixed k£ > 1, the confidence intervals defined in (10) satisfy:
P(Wi € 1) po) > 1—0, and P(Wi €1, 5.) = 1—0a, asn— oo

We now turn to the practical case where bagging is performed with a finite number of resamples D.
Under certain regularity conditions, the following result has been established in Lam and Qian (2018b):
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Lemma 1 (Consistency of Finite-D Bagged Estimators) Let Zf ,’(U and ZnD }(V denote the finite-D bagged

estimators using sampling without replacement and with replacement, respectively. Suppose lim,,_,.. D), /n =
oo, Then, as n — o we have:

1 1
D, ,U _ Dy,V —
Zn,k —Unk=0p (\/ﬁ) ) Zn,k —Vak=0p (\/ﬁ> :

The following result establishes that the confidence intervals I,[lj wp.p and I,Y rp.p» computed using
Algorithm 1, achieve asymptotically valid coverage for W;. o

Theorem 5 (Asymptotic Validity of Finite-D Cheap Bootstrap Intervals) Let If «p.p and IX «.5.p denote the

confidence intervals constructed via Algorithm 1, using D, bagging resamples with % — oo and B outer
bootstrap resamples kept fixed. Under Assumptions 2 and 3, and for any fixed k£ > 1, we have:

PWi €l pp,) = 1—a, and PWi€l),pzp)—1—0a, asn— oo

As a consequence of the inequality Z* > W, the lower endpoints of the confidence intervals constructed
for W, also serve as valid lower bounds for the true optimal Z*. Specifically, we have:

P((lsn,), SWe<Z) > 1-0, and P((Iipp), SW<Z)>1-a, asn—ro,

where (1), denotes the lower endpoint of the interval I.

The proof of Theorem 3 relies on the fact that the conditional moments of the Héijek projection
are essentially V-statistics of the original sample, thereby utilizing their convergence to their respective
expectations. However, evaluating the full V -statistic is not strictly necessary for such results. For example,
DiCiccio and Romano (2022) establishes a bootstrap CLT for incomplete U-statistics under the condition
that D, /n — oo. This insight can be leveraged in our setting, where bagging is performed only over D,
resamples, to argue the validity of Theorem 5 without evaluating the fully bagged estimators.

4 NUMERICAL EXPERIMENTS

In this section, we illustrate the validity of our proposed procedure by constructing confidence intervals
on a simple stochastic linear program:

min E[—0.05x+ (3 —2x)&]
* (15)
st. —1<x<1

where & ~ #7(0,1) and x € R. The objective is to minimize the expected value of a linear function
involving &, subject to simple box constraints. It is easy to verify that the optimal solution is x* = 1, since
the expectation reduces to minimizing a linear function in x. This problem highlights the case where the
solution sharply depends on the data. Small fluctuations in the data can lead to abrupt jumps in the estimated
optimizer inflating variance, motivating the utility of a bagging approach to stabilize the objective.

As discussed earlier, a key limitation of fixing k is that the target quantity W, may not perfectly represent
the true optimal value Z*, particularly when k is small. This is illustrated in Figure 1, which displays the
behavior of W; as a function of k. Nonetheless, our simulation results indicate that for any fixed k, the
proposed confidence interval achieves approximately 95% coverage for Wy, provided the sample size n is
sufficiently large.

For all experiments, we use D = |n!'!| as the number of bagging resamples and evaluate performance
across different values of the bootstrap size B. We evaluate both the I,Y_ xp.p and Ifl{ r.p,p ntervals multiple
times and report their empirical coverage of W, and their average length as a function of n. We present
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Figure 1: W, vs. k for the problem (15)
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Figure 2: Coverage and average length of I,‘l/ «p.p as a function of sample size (n), with k = 500.

results for two representative values of k: namely, k = 500, for which W5gy =~ —0.082, and k& = 5000, for
which W59 = 0.0509, in contrast to the true optimal value Z* = —0.05.
Figures 2 and 3 show the behaviors of the interval In «p.p- We see thatall values of B, including as low as
= 1, achieve empirical coverage rates close to the nominal 95% level. However, the corresponding interval
length is large for B = 1, reflecting the increased variability in variance estimation under extremely limited
resampling. In contrast, even moderately larger values of B maintain nominal coverage while producing
significantly tighter confidence intervals, underscoring the practical effectiveness of our approach. Figures
4 and 5 show similar performances for /,’ k p.p- These results confirm that the desired coverage can be
achieved without requiring B — oo, validating the efficiency of the cheap bootstrap procedure in producing
valid confidence intervals for bagged estimators.
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Figure 3: Coverage and average length of Ir‘l/ «.p.p as a function of sample size (n), with k = 5000.
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A APPENDIX

Theorem 6 (Conditional Slutsky) Let X,,,Y, be real-valued random variables, and let Z, be an auxiliary
sequence of random variables. Suppose P(X, < x| Z,) 2 F(x) for all continuity points x of the c.d.f. F,
and for any & > 0, P(|Y,| > & | Z,) & 0. Then, P(X, +Y, < x| Z,) & F(x) for all continuity points x of F
and for any & > 0, P(|X,Y,| > & | Z,) & 0.
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