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ABSTRACT

This study explores strategies for robust optimization of queueing performance in the presence of input
model uncertainty. Ambiguity sets for Distributionally Robust Optimization (DRO) based on Wasserstein
distance is preferred for general DRO settings where the computation of performance given the distribution
form is straightforward. For complex queueing systems, distributions with large Wasserstein distance (from
the nominal distributions) do not necessarily provide extreme objective values. Thus, the calculation of
performance extremes must be done via an inner level of maximization, making DRO a compute-intensive
activity. We explore approximations for queue waiting time in a number of settings and show how they can
provide low-cost guidance on extreme objective values, allowing for more rapid DRO. Approximations are
provided for single- and multi-server queues and queueing networks, each illustrated with an example. We
also show in settings with small number of solution alternatives that these approximations lead to robust
solutions.

1 INTRODUCTION

The Wasserstein distance, sometimes referred to as transport distance, Mallow’s distance, or earthmover
distance, is a metric for the difference between two probability distributions (Panaretos and Zemel 2019).
There has been recent interest in the use of the Wasserstein distance for robust analysis and distributionally
robust optimization (DRO) of stochastic models (Kuhn et al. 2019; Blanchet et al. 2022). In many
optimization settings, computing a worst-case subproblem by maximizing the performance as a function
of the input distribution subject to a Wasserstein distance constraint is computationally feasible. This is
not generally the case for robust simulation-optimization as was shown by Eun et al. (2024). That work
demonstrated the superiority of the Kingman approximation, which can be viewed as a moment-based
distance function, for identifying worst-case performance for G/G/1 and the capacitated G/G/1/k examples.

This work expands that examination to consider G/G/m queues and networks of G/G/m queues using
Kingman, Wasserstein and other moment-based approximations. Several moment-based approximations
for the G/G/m queue have been proposed, and a number are summarized by Whitt (1993). Note that
approximations based on the first two moments can fail if the coefficient of variation for service time is very
large (Gupta et al. 2010). Even though two service time distributions share the identical first two moments,
if their higher moments are different, there is a “gap”: a range between the largest and smallest mean
waiting times. Gupta et al. (2010) show substantial over-estimation for squared coefficients of variation of
service time (c2s) values of 19 and 99.

Our goal is to assess the reliability of these approximation methods in capturing extreme performance
behaviors, thereby improving robust analytical strategies for sophisticated queueing environments.

1.1 Input Uncertainty

The motivation for this study is to develop efficient methods to support robust simulation-optimization in
the presence of input model uncertainty. Simulations of real-world systems are typically driven by input
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distribution models that are fitted to finite data. The finite data result in discrepancy between fitted and
true distributions, leading to errors in predicted system performance. The focus of input model uncertainty
research is to characterize this error and its impact on simulation-predicted system performance.

Discrete-event simulation models focus on tracking entities accessing a sequence of resources, and
queues are common in these models. For queuing models, the input uncertainty often arises from error in
the estimated distributions of interarrival and service times. Let ν be the input model (distribution), and
suppose a functional of the stochastic performance of the stochastic system is represented by f(ν), e.g.,
f can be the expectation of the stochastic simulation output, a quantile of the system performance, etc.
When ν is a member of a parametric family, estimating ν is reduced to estimating its parameters θ, i.e.,
νθ. Otherwise, its estimate is the empirical distribution (Barton et al. 2022). We denote ν0 as the true
distribution and ν̂ as the fitted input distribution model. A natural point estimate of f(ν0) is

f̄(ν̂) =
1

r

r∑
j=1

Fj(ν̂),

where Fj(ν̂) := F (ξj ∼ ν̂) is the output from the j-th identically distributed simulation replication,
with random variates ξj generated from the input model ν̂. Assuming that the simulation replications
j = 1, 2, · · · , r are independent, the decomposition shows

Fj(ν̂)− f(ν0) = [Fj(ν̂)− f(ν̂)] + [f(ν̂)− f(ν0)],

where the first term is the simulation error and the second term is the input uncertainty error. The law of
total variance gives

Var(f̄(ν̂)) =
E[Var(Fj(ν̂)|ν̂)]

r
+Var(f(ν̂)),

where the variance and expectation on the right hand side are with respect to the probability distribution
of the random ν̂ (uncertainty in the fitted input model) and the inner variance in E[Var(Fj(ν̂)|ν̂)] is with
respect to the simulation outputs’ probability distribution. Similar to the decomposition above, we see that
the estimator’s variance contains the variance due to the simulation error and variance due to uncertainty
in the fitted input model. The mean square error

E[(f(ν̂)− f(ν0))
2] = (E[f(ν̂)]− f(ν0))

2 +Var(f(ν̂)) = Bias(f(ν))2 +Var(f(ν̂))

shows that the error of the performance measure under the input model ν̂ includes the bias induced by input
uncertainty. Bias is harder to quantify but there are recent studies that tackle that in parametric (Morgan
et al. 2019) and nonparametric (Vahdat and Shashaani 2023) settings.

Thus input uncertainty can affect the reliability of decision-making processes through not only the
variance but also the bias of the estimated performance measures obtained from simulation (Barton et al.
2022; Lam 2016). Therefore, accurate characterization of input uncertainty in the optimization models is
essential for the validity of the simulation results.

1.2 Distributionally Robust Optimization for Queues

For discrete-event simulation-optimization, uncertainty often arises from input model specification. When
such uncertainty is substantial (i.e., sensitive system performance to the input distribution), a solution that
appears optimal under the assumed input model may be suboptimal (He and Song 2024). DRO seeks to
find optimal decisions (represented by a decision vector, x) that are insensitive to the value of uncertain
parameters in the optimization model formulation. DRO hedges against risk of selecting an inferior system
due to small or corrupted input samples or other errors in the model parameters. The main application of
DRO has been in data-driven settings to avoid overfitting and failing to generalize on out-of-sample data
(Bertsimas and Van Parys 2022) or to take an adversarial learning approach (Blanchet et al. 2022).
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Consider the stochastic system performance F (x, ξ) to be a function of x ∈ X ⊆ Rd and a random
input ξ ∈ Ξ that follows probability distribution ν. Suppose that the performance function of interest is its
expectation:

f(x, ν) := Eν [F (x, ξ)].

When addressing uncertainty in the input data, it is natural to consider a set of distributions with some
perturbation from the distribution fitted empirically to the data at hand, which we henceforth refer to as
the nominal distribution, and consider the performance of the system (decision) being evaluated under all
possible input distributions. The system under study is then better (say less costly) with alternative x1 than
x2 if f(x1, ν) < f(x2, ν) for all possible input distributions ν, which is to say under the worst possible
input distribution. This is why DRO can be viewed as a way to hedge the risks associated with input
uncertainty (Rahimian and Mehrotra 2022).

In DRO, an ambiguity set P is constructed that includes distributions within a certain discrepancy
from the nominal distribution. The implicit assumption is that the true input distribution ν0 resides within
the ambiguity set. Suppose the goal is to minimize a performance measure. Decisions are then made to
ensure robustness against the variations within this set that minimizes the maximum value of the objective
function across all the distributions in the ambiguity set (Blanchet et al. 2022):

inf
x∈X

sup
ν∈P

f(x, ν)

where f(x, ν) may be an expectation, quantile, etc. of F (x, ξ).
Since DRO finds a decision that minimizes the worst-case objective value among all probability measures

in P , the key to DRO is how to construct P . In queuing systems, one of the recent advancements by
Van Eekelen et al. (2022) introduces the use of Mean Absolute Deviation (MAD) as a measure of dispersion
instead of variance, significantly simplifying extremal queue analysis. For a vector of independent random
variables X = (X1, . . . , Xn) ∼ ν ∈ P and some convex function h(·), the optimization problem under
MAD constraints is formulated as

max
ν∈P(µ,d,a,b)

Eν [h(X)],

where the ambiguity set P(µ, d, a, b) with µ = (µ1, · · · , µn), d = (d1, · · · , dn), a = (a1, · · · , an), and
b = (b1, · · · , bn) consists of distributions defined by known mean, MAD, and bounded support such that

P(µ, d, a, b) = {ν : supp(Xi) ⊆ [ai, bi],Eν [Xi] = µi,Eν |Xi−µi| = di ∀i = 1, · · · , n,Xi ⊥ Xj , ∀i ̸= j}.

It is shown that the extremal distribution for each random variable Xi is a three-point distribution specified
by parameters ai, bi, µi, and di, greatly simplifying the identification of worst-case scenarios.

Specifically, in the G/G/1 case with i.i.d. interarrival times {Ui} and i.i.d service times {Vi}, the
extremal queue problem is given as

max
ν∈P(µv ,dv ,av ,bv)×P(µu,du,au,bu)

Eν [W ],

where P(µv, dv, av, bv)×P(µu, du, au, bu) is the set containing all product measures of feasible marginal
distributions for V and U . The random variables V and U follow the extremal three-point distributions
P(µv, dv, av, bv) and P(µu, du, au, bu), respectively. Then the tight upper bounds follow from V and U .

1.3 Discrepancy measures for setting P

The discrepancy-based approach to setting P includes all possible distributions that have statistical distance
(discrepancy) from the nominal distribution ν̂ that is less than some threshold δ. The ambiguity set Pδ is
defined as

Pδ = {ν1 : d(ν̂, ν1) ≤ δ},
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where d(ν̂, ν1) represents the distance or discrepancy between two distributions ν̂ and ν1.
The Wasserstein distance is a well-established metric in DRO (Kuhn et al. 2019; Blanchet et al. 2022).

It is an effective metric for probability measures with a finite p-th moment. Unlike ϕ-divergence, it can
quantify the distance between two distributions whose supports do not overlap (Peyré and Cuturi 2019).
While Wasserstein distance is commonly used in DRO, its usefulness in queueing settings is reduced by
the poor relationship between Wasserstein distance and difference in system performance.

1.4 Bootstrap determination of P

Bertsimas and Van Parys (2022) proposed an alternative approach for construction of ambiguity sets.
The authors use bootstrap samples to characterize P for robust optimization, to estimate the fraction
of bootstrap-resample cost estimates (for a chosen decision) exceeding some threshold. In their setting,
evaluation of the cost function can be done inexpensively. In robust simulation-optimization, however,
function evaluations are costly and the existence of a proxy (or metamodel) can be helpful so that not all
bootstrap input distributions need be simulated.

1.5 Moment-based approximations for queues

Moment-based approximations for queue performance have the ability to screen for worst-case candidates
from any set of distributions within a set P (Eun et al. 2024). The discrepancy metric between two
distributions is the difference in predicted system performance. Because they are based on the first few
moments, these approximations are pseudo-metrics only: two different distributions having the same first
few moments will give identical estimated system performance. In the next sections we discuss several
moment-based discrepancy pseudo-metrics, and examine their performance in more general settings than
in (Eun et al. 2024): multiserver queues and multiserver queueing networks.

The next section presents moment-based approximations. Their performance and comparison with
Wasserstein discrepancy are examined in the sections that follow.

2 WORST-CASE APPROXIMATIONS FOR SINGLE- AND MULTI-SERVER QUEUES

2.1 Kingman (G/G/1)

Eun et al. (2024) demonstrated that the Kingman distance, a pseudo moment-based metric derived from
Kingman’s approximation, is effective in identifying worst-case input models within sets of distributions
reflecting input uncertainty. Kingman (1961) published the following approximation of waiting time
W = W (ξ) for a G/G/1 queue with a parametric input model νθ with parameters θ = (ρ, c2a, c

2
s, µ):

Eνθ [W ]G/G/1 ≈
(

ρ

1− ρ

)(
c2a + c2s

2

)(
1

µ

)
,

where ν is the joint probability distribution of the interarrival times A and service times S, i.e., ξ = (A,S),
which is the product of two marginal distributions given their independence, parameterized by the utilization
ρ, the average service rate µ, and the coefficients of variation for interarrival time and service time, ca
and cs, respectively. The approximation for G/G/1 is precise at high utilization, and becomes exact in the
M/M/1 case. For M/G/1 queue, it reduces to the exact Pollaczek-Khinchine formula.

Beyond these cases, one can consider using this approximation for G/G/m queues despite their potential
deviation from the true mean waiting time. We will explore this later and show that even in G/G/m cases,
Kingman provides a desirable monotonic property. Therefore, even if not accurate for prediction of the
true mean waiting time, it can still be useful for comparison and selection of the worst case.

The existing literature also entails other metrics, bounds or approximations that can be suitable for
more complex queuing systems. We will review Goldberg bounds and Whitt approximations for G/G/m
application in this section, and later in Section 3 for queuing networks.
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2.2 Goldberg (G/G/m)

Li and Goldberg (2025) develop the general tail bounds for the steady-state queue length in G/G/m with
1

1−ρ scaling such that P
(
L ≥ x

1−ρ

)
can be bounded only using finite moments of interarrival and service

times. In a special case of tail bounds using the second moment of interarrival times and a slightly larger
moment of service times, i.e., 2 + ϵ for some ϵ > 0, the expected queue length is obtained as

Eνθ [L]G/G/m ≤
(

1

1− ρ

)(
2.1× 1021ϵ−4E[(Sµ)2]

(
E[(Sµ)2]1+ϵ + E[(Sµ)2+ϵ] + 49E[(Aλ)2]

))
,

where λ = E[A]−1 and µ = E[S]−1 are the rate of interarrival and service, respectively. Using Little’s law
Eνθ [W ]G/G/m = λEνθ [L]G/G/m, these queue-length bounds yield bounds on the expected waiting time.

2.3 Whitt (G/G/m)

Whitt (1993) proposed that in G/G/m queues, the expected waiting time can be approximated by

Eνθ [W ]G/G/m ≈ c2a + c2s
2

Eνθ [W ]M/M/m. (1)

The exact waiting time for M/M/m system Eνθ [W ]M/M/m is computed as (Banks et al. 2004)

Eνθ [W ]M/M/m =

(
1

1− ρ

)(
(mρ)mP0

m!(1− ρ)

)(
1

µ

)
,

where ρ = λ
mµ is the utilization and P0 is the probability of the system is empty and computed by

P0 =

{[
m−1∑
n=0

(mρ)n

n!

]
+

[
(mρ)m

(
1

m!

)(
1

1− ρ

)]}−1

.

This approximation performs well when c2a ≥ 1, c2s ≥ 1. However, it may overestimate the waiting time
when they are relatively small. To address this, Whitt (1993) also proposes a more general approximation
for the G/G/m model that account for a broader range of variability conditions as follows:

Eνθ [W ]G/G/m ≈ ϕ(ρ, c2a, c
2
s,m)

(
c2a + c2s

2

)
Eνθ [W ]M/M/m, (2)

where ϕ(ρ, c2a, c
2
s,m) is an interpolating approximation function we do not list here due to space limit.

2.4 Simulated v. Approximated Waiting Times in G/G/m Queues

We run an experiment to validate whether each approximation method can estimate the mean waiting time.
Since the purpose of using these approximation methods is optimization, even if the approximated mean
waiting time value is not accurate, as long as it preserves a monotonic mapping, it can be used to identify
the worst-case distribution. Figures 1 and 2 illustrate this property for each method in two case of G/G/1
and G/G/3. The details of the experiments, including the input parameters are listed in each figure. We
use c2s = 1 is all cases, gamma distributed interarrivals and lognormal service times. The analysis used a
warm-up period of 500K and run-length of 1M.

These results particularly highlight that

• The Whitt and heavy-traffic Whitt provide fairly accurate approximations of the mean waiting time.
Here we note, as long as the simulation in run to steady-state, the monotonic mapping appears near
exact with only small deviations under larger c2a in G/G/m.
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Figure 1: Comparison of simulated and analytical waiting times for a G/G/1 queue.

Figure 2: Comparison of simulated and analytical waiting times for a G/G/3 queue.

• Kingman loses accuracy in the G/G/m, yet maintains the monotonic property fairly well.
• Goldberg exhibits a relatively monotonic mapping albeit with significantly different scaling (still

after the x-axis of Goldberg approximations is scaled down 1000 to 1) in both cases.
• Wasserstein provides neither a good approximation nor a monotonic mapping in either case.

The conclusion from these experiments is that the worst-case approximation methods can be well-poised
for use in DRO by deterministically identifying the worst-case performance. One can use these methods
to identify, from the set of distributions in the uncertainty set, which moment values would correspond to
such worst-case performance.

3 WORST-CASE APPROXIMATIONS FOR MULTI-SERVER QUEUEING NETWORKS

We extend our analysis to the more complex setting of multi-class, multi-server open queueing networks,
with a particular focus on job-shop systems. To model these systems, we employ the Queueing Network
Analyzer (QNA) proposed by Whitt (1983), which models each node independently using two parameters:
the mean rate and the squared coefficient of variation. QNA approximates internal flows by applying
transformations—merging, splitting, and departure—to propagate these parameters throughout the network
(Figure 3). While it assumes approximate independence between nodes, it incorporates flow variability to
capture internal dependencies. In our experiment, each node is modeled as a G/G/m queue.
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Figure 3: The three flow transformations used in QNA to propagate rate and variability parameters: (a)
merging (superposition) combines parameters from multiple input streams; (b) splitting (thinning) modifies
parameters as a stream is divided; and (c) departure (flow through a queue) approximates the output stream’s
parameters based on arrivals, service, and queueing effects. This figure is adapted from (Whitt 1993).

Suppose our queuing network consists of n nodes and k classes, λk, k = 1, · · · , r is the external
arrival rate of class k, and nkj is the j-th node visited by job class k. In QNA, if τkl is the mean service
time of class k at the l-th node of its route and λk is the external arrivate rate of class k, the mean service
time at node j is

τj =

∑r
k=1

∑nk
l=1 λkτkl1{nkl = j}∑r

k=1

∑nk
l=1 λk1{nkl = j}

.

Then if mj is the number of servers at node j, the node traffic intensity is computed as ρj = λ.jτj/mj .
Here λ.j is the total arrival rate to node j and computed by λ.j = λ0j +

∑n
i=1 λiqij where λij and qij

denote the flow rate between nodes and the proportion of the jobs completing service at node i that go next
to node j, respectively. Furthermore, λ0j =

∑r
k=1 λk1{nk1 = j} is the external arrival rate to node j.

The coefficient of variation for service time at node j is

c2sj =

(∑r
k=1

∑nk
l=1 λkτ

2
kl(c

2
skl + 1)1{nkl = j}∑r

k=1

∑nk
l=1 λk1{nkl = j}

)
1

τ2j
− 1,

where c2skl is the variability parameter of the service-time distribution of class k at the l-th node of its route.
The coefficient of variation for arrivals at node j is

c2aj = 1− wj + wj

[
p0jc

2
0j +

n∑
i=1

pijqij

[
1 + (1− ρ2i )(c

2
ai − 1) + ρ2im

−0.5
i (max{c2si, 0.2} − 1) + 1− qij

]]
,

where c0j is the variability parameter of the external arrival to node j, wj are appropriate weights (details
skipped due to space limit), and pij are proportion of entering jobs into node j that come from node i.

From here, one can approximate the mean waiting time in the queue of each node j, denoted
Eνθj

[Wj ]G/G/m, with θj = (ρj , c
2
aj , c

2
sj ,mj , µj) following the heavy-traffic Whitt approximation in (1) or

the general case of (2). The last step is to compute the waiting time of the queuing network following
the open Jackson networks computation, i.e., E[W ] = λ−1

∑n
j=1 λ.jEνθj

[Wj ]G/G/m, with λ denoting the
total external arrival rate to the network.

3.1 Job-Shop Example

We use a multi-class job-shop example from Law (2015) with adjustments detailed below. There are n = 5
stations and r = 3 routes (for three classes of jobs), with (n1, n2, n3) = (4, 3, 5) number of nodes on each
route with each route specified as

nkj =

3 1 2 5
4 1 3
2 5 1 4 3

 .
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The external arrival rates for each class is (λ1, λ2, λ3) = (1.2, 2, 0.8). The mean service time of class k
at the j-th node of its route is

τkj =

0.50 0.60 0.85 0.50
0.80 0.50 0.75
0.70 0.25 0.50 0.70 1.00

 .

In this system, the number of servers as each station is (m1,m2,m3,m4,m5) = (3, 2, 4, 3, 1). These
values lead to station utilizations (ρ1, ρ2, ρ3, ρ4, ρ5) = (0.707, 0.79, 0.725, 0.72, 0.8).

3.2 Simulated v. Approximated Waiting Times in a Job-Shop Example

Similar to Section 2.4, here we compare how each approximation method can estimate the mean waiting
time or at least provide a monotonic mapping for use during optimization. In Figures 4 and 5, we maintain
the set-up of the job-shop and use and uncertainty set for external interarrival times with mean values
λ−1
. ∈ {0.25, 0.26, . . . , 0.4}. In Figure 4 the mean waiting times per station are shown. The most accurate

method is the heavy-traffic Whitt approximation. The general Whitt approximation underestimates the
mean waiting time in station 5. Kingman and Goldberg preserve monotonicity for each station but lose
accuracy. And the Wasserstein does not exhibit promising approximation. Looking at the overall network’s
mean waiting time in Figure 5, we see similar patterns.

Figure 4: Simulated v. approximated mean waiting times at each station in the job-shop example.

4 COMPARING SYSTEMS UNDER INPUT UNCERTAINTY USING WORST-CASE APPROXIMATION

In this section, we experiment with the worse-case approximations and the Wasserstein distance metric to
identify a robust system when comparing a small number of systems. The results here suggest that in larger
scale comparisons that occur over the course of DRO, for example, these worse-case approximations will
be effective in reducing computation without jeopardizing solution accuracy.

In each case of G/G/m and a job-shop example, our set up will be as follows. We assume that we have
a data set of 1000 arrival times coming from a nominal distribution ν0 unknown to us. DRO can be used
here to find an optimal solution that is robust to this input uncertainty. Suppose our goal is to find

min
x∈X

max
ν∈P

f(x, ν) := Eν [W (x)] + cx,

where ν is the interarrival distribution, x is the number of servers (m in the G/G/m case and a vector for
each station in the job-shop case). We denote W (x) as the waiting time random variable for a system with
configuration x and Eν [W (x)] denotes its expected value when arrivals follows ν. Finally, we assume there
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Figure 5: Simulated v. approximated mean system waiting times in the job-shop example.

is a cost of c associated with each server. We therefore seek a system that reduces this objective function
when we have uncertainty about ν0. The complete procedure is listed in Algorithm 1.

Algorithm 1: Finding a robust system in a finite set with worst-case approximation

1 Input: Dataset D, set of systems to compare X
2 Construct b bootstrapped datasets Di, i = 1, 2, · · · , b and fit to each bootstrap an input model

denoted νi, i = 1, 2, · · · , b. Moreover, fit the nominal distribution ν̂ to the original dataset D.
3 for System j ∈ {1, 2, · · · , |X |} do
4 Compute dK(xj , νi), dG(xj , νi), dH(x, νi), dWh(xj , νi), and dW(xj , νi) denoting Kingman

approximation, Goldberg bound, heavy traffic and generalized Whitt approximations, and the
Wasserstein distance for system xj under input model νj , i = 1, 2, · · · , b.

5 Identify the worst-case distribution for each method as ν̂∗method
j = argmaxi dmethod(xj , νi) for

method ∈ {K, G, H, Wh, W} —assuming all Di lead to stable systems.
6 Simulate system xj to estimate the mean waiting times under each method’s worst-case

distribution Eν̂∗K
j
[W (xj)],Eν̂∗G

j
[W (xj)],Eν̂∗H

j
[W (xj)],Eν̂∗Wh

j
[W (xj)], and Eν̂∗W

j
[W (xj)].

7 Output: j∗method = argminj Eν̂∗method
j

[W (xj)], method ∈ {K, G, H, Wh, W, N} where N stands

for the nominal distribution ν̂∗N
j = ν̂, ∀j.

To generate an uncertainty set P , we use bootstrapping of the dataset. We fit parameters for each
bootstrap using maximum likelihood estimation assuming that we know the interarrival distribution is
Gamma, call the fitted distributions ν̂i, i = 1, 2, · · · , b for b bootstraps. Here it is worthy of note that for
heavy-traffic systems or when data size is too small relative to the variability of the interarrival times, it
is possible that the bootstrapped dataset leads to an unstable system with ρ ≥ 1. In this paper, we remove
those bootstraps. But to apply such a method in uncapacitated queues, one has to have a way to deal with
these cases. For example, with objective the fraction of bootstrap evaluations exceeding some threshold
as in Bertsimas and Van Parys (2022), unstable systems would be included in the fraction. In capacitated
queues, the method needs no modification, as demonstrated in (Eun et al. 2024).

Once we remove the unstable bootstrapped data for each system, we use the corresponding moments
of each bootstrap to deterministically compute its Kingman, Goldberg, heavy-traffic Whitt, generalized
Whitt, and the Wasserstein approximations. Based on these approximations, we identify for each method
the worst-case distribution. That is, we identify the bootstrap that leads to the largest approximation
and use its fitted distribution—denote that ν̂∗K, ν̂∗G, ν̂∗H, ν̂∗Wh, and ν̂∗W for each method—to a run a
steady-state simulation and estimate the objective function under that input distribution. We also compare
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the performance of the nominal distribution ν̂ for arrivals that fits a parameter to the empirical data. The
latter case will demonstrate the impact of input uncertainty on misguided selection.

For the steady-state analysis, we use a warm-up value of 500K and run-length of 1M. This process is
repeated for each x ∈ X , which in this case consists four distinct values. We then compare the estimated
worst-case objectives with the one under the true parameters to assess whether each method can correctly
find the true best system.

Figure 6: Total cost includes the mean waiting time and fixed cost of $c per server. The approximation
methods identify the true best system, yet the nominal and worst Wasserstein distributions are prone to
failing in doing so.

Figure 6 presents results for a G/G/m system in which interarrival times follow a gamma distribution
and service times follow a lognormal distribution. The distributions are parameterized to yield a mean
interarrival time of λ−1 = 1.3 with c2a = 1, and a mean service time of µ−1 = 1 with c2s = 1. The server
costs are set to c ∈ {2, 2.5, 3} (in dollars). The results are based on b = 100 bootstrap datasets, each of
size 1000. If the true input distribution was known, system 2 with m = 2 would be the best system with
the lowest objective value. And important observation here is the risk of using the nominal distribution
(and ignoring the input uncertainty). It is evident that at least in two of the three cost scenarios (when the
server cost is $2.5 or $3), the nominal distribution can lead to sub-optimal selection of system 1. Note
the significant underestimation of cost for system 1 using the nominal distribution is all c scenarios. This
shows the seriousness of input uncertainty and its ability to misguide the comparison and search (in an
optimization setting).

To hedge against the risk of input uncertainty, we can look for the worst-case performance using the
approximation methods in a bootstrap-based uncertainty set (as detailed in Algorithm 1). Remarkably, all
approximation methods except the Wasserstein correctly select the true best system. For the inferior system
1, all worst-case approximation methods except Wasserstein overestimate the total cost by less than 1 unit.
In contrast, Wasserstein approximation hugely underestimates the total cost of system 1 and incorrectly
identifies it as the best system.

Figure 7 presents a similar experiment for the job-shop example described in Section 3.1 with server
unit cost of c ∈ {0.2, 0.3, 0.4} (in dollars) and evaluating four systems with varying number of servers
per station (as shown on the x-axis). Under the true distribution, the fourth system yields the minimum
objective value. We observe that the nominal distribution notably underestimates the performance of each
system in all cost scenarios. Importantly this effect of input uncertainty puts the correct selection of the
best system at peril when the server cost is $0.3 or $0.4, highlighting a critical risk it poses in decision-
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Figure 7: Total cost in the job-shop network for different number of servers per each of the 5 stations.
Under each system, the utilization of the bottleneck station is printed. In all cost scenarios, system 4
appears optimal under the true interarrival distribution. Yet, the failure of nominal distribution (in the latter
two scenarios) and the worst Wasserstein approximation in identifying this system is evident.

making and optimization. As in the previous case, the worst Wasserstein approximation fails in identifying
the best system, whereas the other methods succeed. We also note that across the three scenarios, the
worst Wasserstein approximation does lead to the same worst-case input distribution as other methods for
systems 3 and 4 (in which the bottleneck station’s utilization is less then 80%—suggesting that Wasserstein
approximation may work well in steadier and light-traffic systems). This observation is consistent with
the G/G/m experiment in Figure 6 as well. Not surprisingly, in all non-Wasserstein approximations, the
corresponding worst-case distributions are identical. We expect this due to the monotonic property of these
methods.

5 CONCLUSION

In this paper, we propose use of moment-based approximation methods, including the Kingman approx-
imation, Goldberg bound, heavy-traffic Whitt approximation and the generalized Whitt approximation to
identify the worst-case distribution of a G/G/m queueing system as well as a multi-server multi-class open
queuing network. Our experiments reveal a desirable property, i.e., monotonicity, in these approximation
methods. In other words, these approximation methods can be maximized deterministically to suggest input
distribution parameters that result in worst-case mean waiting time in these systems. A direct impact of the
proposed method is in handling of input uncertainty via DRO, where we seek to compare queuing systems
and optimization of queuing systems to make robust decisions. We show the widely-used Wasserstein
metric does not provide such properties and cannot be used as effectively for solving the inner maximization
of the DRO. Future work will be dedicated to establishing convergent optimization algorithms that use
these approximations to solve the underlying robust optimization with minimal simulation run.
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