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ABSTRACT

Designing high-fidelity simulation models from natural language descriptions remains a significant challenge,
particularly in complex domains like supply chains. Pretrained Large Language Models (LLMs), when
used without domain-specific adaptation, often fail to translate unstructured inputs into executable model
representations. In this work, we present a fine-tuned LLM-based pipeline specifically tailored for simulation
model generation. We construct a high-quality dataset using a novel data generation process that captures
diverse supply chain scenarios. The fine-tuned LLM first converts human-like natural language scenario
descriptions into structured representations, then translates these into executable code for a modular Python-
based simulation engine built to support a wide range of supply chain configurations. Quantitative and
qualitative evaluations show that the fine-tuned model consistently generates high-fidelity simulation models,
significantly outperforming pretrained LLMs in terms of structural accuracy, simulation behavior, and its
ability to robustly extract relevant information from linguistically variable natural language descriptions.

1 INTRODUCTION

Simulation provides a virtual representation of a system’s behavior, enabling analysis of its operational
dynamics (Banks 2000). In supply chain management, it serves as a critical tool for modeling logistical
flows, evaluating uncertainty, identifying inefficiencies, and assessing strategic decisions (Terzi and Cavalieri
2004). Discrete Event Simulation (DES), which models systems through time-ordered events, is particularly
suited to supply chains due to its ability to represent asynchronous state changes in interacting entities (Tako
and Robinson 2012).

Digital twins represent the next evolution of simulation, enabling continuously updated digital replicas
of physical systems. In supply chains, they facilitate real-time monitoring, scenario testing, and predictive
analytics by integrating live data streams from Internet of Things (IoT) sensors, (Enterprise Resource
Planning (ERP) systems, and operational logs (Agalianos et al. 2020). The emergence of digital twins
has expanded simulation’s utility by linking virtual models with real-time data from physical systems (Lu
et al. 2020). However, building such models remains labor-intensive, requiring deep domain knowledge
and significant technical effort.

Recent advances in AI, especially Large Language Models (LLMs) (Chen et al. 2021)—have introduced
new possibilities for automating simulation development through natural language understanding and code
generation. Yet, LLMs struggle with structured domain logic and deterministic output, limiting their current
use in simulation (Jackson et al. 2024).

This study introduces a novel architecture that involves fine-tuning LLMs to generate executable DES
models from natural language supply chain scenarios. Using a structured dataset aligned with simulation
goals and operational logic, our approach bridges the gap between high-level descriptions and executable
models. It reduces development effort and enables seamless integration into digital twin systems:supporting
real-time decision-making, predictive analytics, and scalable, adaptive supply chain modeling. For the source
code and data, refer to https://github.com/Suri597/SimAI.git.
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2 RELATED WORK

2.1 Discrete Event Simulation in Supply Chain

Discrete-event simulation (DES) has been widely applied across diverse supply chain contexts—ranging
from construction logistics under demand uncertainty to hybrid EV charging infrastructure and general
manufacturing logistics—demonstrating its strength in modeling variability, system performance, and
trade-offs in operational design (Vidalakis et al. 2013; Erdeş and Kesen 2025). To enhance scalability,
maintainability, and adaptability, researchers have emphasized modularization in DES, with previous
work introducing modular frameworks for smart manufacturing, collaborative architectures for distributed
execution, and methodologies that decouple model design from implementation by clearly separating the
roles of simulation experts and end-users (Longo et al. ; Terzi and Cavalieri 2004; Johansson 2006).

In response to the growing complexity and multi-scale nature of modern supply chains, there is a notable
shift toward hybrid simulation approaches. These integrate DES with System Dynamics (SD)(Ogata 2004)
and Agent-Based Modeling (ABM)(Macal and North 2005), allowing researchers to capture both granular
operational details and emergent, system-level behaviors (Ferreira et al. 2025; D’Ambrosio and Luke ). Such
hybrid and modular frameworks enable large-scale simulations for disruption analysis and sustainability-
oriented decision-making, reflecting an increasing demand for scalable, reusable, and intelligent simulation
architectures.

2.2 Digital Twins in Supply Chain

As supply chain systems become increasingly complex and data-driven, the integration of simulation with
real-time data and cyber-physical systems has paved the way for digital twin approaches. (Flores-García
et al. 2021) provided a foundational definition of digital twins, emphasizing their three core components:
physical entities, digital models, and data connections. Building on this, (Eckhart and Ekelhart 2019)
explored their role in cyber-physical systems, highlighting their value for resilient production planning and
risk mitigation.

Recent advancements in supply chain digital twins can also be found in (van der Valk et al. 2022;
Chen and Huang 2021). Despite their potential, a key challenge remains: the lack of automated model
generation tools that can adapt as system requirements evolve. The proposed architecture in this paper is
a foundational establishment towards ultimately addressing this gap, particularly in the design phase of
the digital twin life-cycle, which begins with a well-defined architecture for generative simulation models
which are essential for mirroring real-world supply chain policies and operational scenarios with high
fidelity.

2.3 Large Language Model for Simulation Modeling

To enable automated and adaptive simulation model generation, we leverage the capabilities of Large
Language Models (LLMs), which have shown strong performance in code synthesis, semantic understanding,
and system modeling (Achiam et al. 2023; Touvron et al. 2023).

While LLMs are effective across general tasks, domain-specific fine-tuning or pretraining significantly
improves their relevance and accuracy for specialized applications (Song et al. 2025). However, applying
LLMs to simulation modeling introduces domain-specific challenges due to the need for precise temporal
logic, inter-process communication, and domain constraints—factors that general models often struggle
to encode without targeted adaptation. Prior studies in AI-assisted supply chain modeling (Nweje and
Taiwo 2025) do not focus on automating simulation generation or domain-specific LLM training. The
most comparable work by (Jackson et al. 2024) used GPT-3 Codex to generate logistics simulations
from natural language but lacked fine-tuning and struggled with scalability in complex scenarios. In
contrast, our framework generalizes to dynamic supply chain environments involving multiple raw materials,
procurement strategies, and suppliers. The resulting modular, object-oriented Python code-base is designed
for extensibility and reuse, with independently modifiable components and encapsulated behaviors that
support scalability across multi-actor systems.
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2.4 Contributions

We introduce a complete generative simulation architecture that enables LLMs to synthesize executable
DES models from natural language descriptions of simulation scenarios. The contributions include:

• A domain-specific data generation pipeline that systematically generates aligned pairs of natural
language descriptions and structured representation of supply chain simulation scenarios, enabling
the model to learn fine-grained operational semantics and supply chain behaviors.

• We incorporate a modular simulation engine into the architecture and a domain-specific fine-tuned
large language model to translate scenario descriptions into executable DES models, ensuring
structural validity, domain alignment, and scalability across diverse supply chain configurations.

3 METHODOLOGY

3.1 Overview

The core objective of this work is to enable Large Language Models (LLMs) to autonomously generate
high-fidelity, executable Discrete-Event Simulation (DES) models from natural language descriptions of
supply chain environments. To this end, we propose an end-to-end framework that transforms user-provided
textual input into object-oriented, modular, and standalone Python code for DES modeling.

Natural language
description

of simulation scenario

Fine-tuned
LLM

Robust and Scalable
Simulation Engine

AI-assisted
structured representation

of the simulation scenario

Execution-ready standalone
simulation model

python code

Stage 1 Stage 2

Stage 2

Stage 1

Stage 2

Figure 1: Overview of the fine-tuned LLM-based simulation modeling framework.

Figure 1 outlines the flowchart of the architecture that begins with a high-level domain-specific natural
language scenario description. Stage 1 of the framework is to obtain a structured representation of the
simulation scenario. These representation encode key operational entities—including raw materials, pro-
curement scheme, suppliers, assemblers, and customers—along with their attributes and interdependencies.
The example of the input and output from stage 1 is demonstrated in the following example.

As the below example demonstrates, this phase transforms ambiguous natural language input into
structured, machine-readable representations that form the semantic foundation for subsequent simulation
generation. The generation process for dataset used to fine-tune the LLM for generating these structured
representations is detailed in Section 3.2.

In the second stage, the fine-tuned LLM synthesizes Python-based simulation code by inserting these
representations into a predefined, modular framework referred to as the Simulation Engine. This engine is
designed to accommodate varying levels of complexity, including multiple raw materials, diverse suppliers,
and different procurement strategies. Currently, the framework supports three procurement schemes:

• Inventory Threshold: Orders are triggered when inventory falls below a minimum threshold and
are refilled to a predefined maximum level.

• Demand-driven: Orders are placed based on customer demand rather than inventory levels.
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Example: Natural language description to structured representation

Input: Generate a simulation model for a supply chain scenario that involves a single raw material,
Silicone Gel, managed under an inventory threshold procurement scheme. The procurement interval
for Silicone Gel ranges from 5 to 6 days. The inventory threshold is set at 15 units, meaning that
an order is placed to replenish the inventory as soon as it falls below this point, up to the maximum
inventory level of 17 units ......:
Output -> {"raw_materials": [{"name": "Silicone Gel", "inventory": 5,
"procurement_scheme": "INVENTORY_THRESHOLD","procurement_interval": [5, 6],
"inventory_threshold": 15, "inventory_full": 17, "periodic_supply": 400,
"check_interval_range": [1,2]......

• Periodic Supply: Materials are delivered in fixed quantities at regular time intervals.

Additionally, the simulation engine performs feasibility checks on the structured representation, with
some criteria that may vary depending on the user’s specific supply chain context. Examples of feasibility
checks include:

• For the Inventory Threshold procurement scheme, the inventory threshold must be lower than the
maximum inventory level.

• Every finished product must require at least one type of raw material for assembly.
• Every raw material must be linked to at least one supplier.

Upon completion of both stages, the architecture enables a seamless end-to-end workflow in which a
descriptive prompt is transformed by the fine-tuned LLM into a structured representation and integrated
into the simulation engine, yielding an executable model. Although injecting this structured input does not
inherently require LLM assistance, its involvement is critical for establishing a streamlined user interface for
post-generation modifications. To accurately interpret and apply natural language corrections or refinements,
the LLM must possess an internal understanding of the simulation engine’s structure and semantics.

A key challenge in this architecture is enabling the LLM to reliably convert unstructured natural language
into structured representations. This requires a carefully curated dataset of aligned input–output pairs, where
textual scenarios are mapped to machine-readable representations that encode inventory logic, lead times,
supplier roles, assembly rules, etc. Ensuring syntactic validity and semantic coherence is essential for
training a model that generalizes across diverse supply chain scenarios and generates structurally sound,
high-fidelity simulation models

3.2 Dataset Generation Process

The development of a robust fine-tuning dataset is critical for enabling LLMs to autonomously generate
executable simulation models from natural language inputs. The dataset was carefully constructed to ensure
semantic coherence, structural validity, and alignment with DES logic in supply chain environments.

Figure 2 illustrates the data generation process designed to produce a high-quality, large-scale dataset
for fine-tuning the LLM to translate natural language scenario descriptions into structured representations.
The process began with defining a schema that captures key components of a DES-based supply chain
simulation, including raw materials, suppliers, procurement strategies, finished products, customer demand
profiles, and simulation control parameters.

To populate the schema, logically constrained randomized sampling was used to ensure operational
validity. A subset of these structured representations was then manually annotated with natural language
descriptions that conveyed both high-level intent and detailed operational logic. These examples were used
to prompt the LLM to generate descriptions for the remaining entries, enabling the model to learn human-
like language patterns with variability, contextual richness, and fluency. To generate simulation scenario
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descriptions spanning a spectrum of linguistic complexity, from accessible, non-technical summaries to
highly detailed, expert-level narratives, we also specified expertise levels to the LLM alongside the structured
representations.

The generated dataset consist of input-output pairs where:

• Input: Natural language description of a supply chain simulation scenario.
• Output: Structured representation in the form of a Python dictionary.

This dataset was used to fine-tune the model to accurately translate unstructured scenario descriptions
into structured simulation inputs. The LLM used for fine-tuning and the fine-tuning process is discussed
in the next section.

Predefined Representation Schema

Random and Constrained Representation Generation

Manually annotated Natural Language Descriptions

LLM-Augmented natural Language Descriptions

Dataset: Natural Language Description → Structured Representation

Figure 2: Overview of the dataset generation process.

The primary advantage of this dataset generation architecture lies in its ability to produce an arbitrarily
large number of samples, effectively addressing a key challenge in domain-specific fine-tuning of large
language models—namely, the scarcity of extensive, high-quality training data (Chan et al. 2024). Following
the availability of a large, high-quality dataset, the next critical consideration is the selection of an appropriate
Large Language Model (LLM) that aligns with the specific requirements and characteristics of the target
task.

3.3 Large Language Model Selection for Fine-Tuning

The selection of a suitable base LLM is a critical design decision in the fine-tuning pipeline, particularly when
working with tasks involving long-form structured inputs (e.g., Python dictionaries) and large, executable
code blocks as outputs. The task at hand poses unique constraints on both input and output lengths, as
well as the model’s capacity for syntactic precision and structural consistency. The selection of the Large
Language Model (LLM) was based on the following three key criteria:

• Context Window: The context window refers to the maximum number of tokens (input and output
combined) the model can handle in a single inference. A larger context window supports longer
prompts and more complex tasks, such as multi-step reasoning and code generation. Since the
proposed work involves generating simulation code as an executable Python script, a minimum
context window of 32,000 (32K) tokens is essential.

• Fine-tuning via API: Fine-tuning the model via an API allows for efficient customization using task-
specific or domain-specific data, without the need for managing the underlying model infrastructure.
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This approach is especially beneficial for aligning the model’s behavior with specialized goals.
Given that the proposed architecture serves as a foundational framework, our priority is to validate
its effectiveness before committing resources to building a local fine-tuning setup. Therefore, LLMs
that support fine-tuning through an API are more suitable for our current needs.

• Fine-tuning Cost: The fine-tuning cost typically include a one-time training fee based on the
number of tokens used during fine-tuning, and ongoing usage fees for inference with the fine-tuned
model. These costs vary by provider but are generally proportional to the size of the model and
the volume of fine-tuning data.

Table 1 lists LLMs considered for selection process. The bold entries highlights the reason why the
particular model does not comply with the framework requirement.

Table 1: Comparison of Candidate Models for Fine-Tuning.

Model Context
Window

Fine-Tuning
Available

Fine-Tuning
Cost Selected?

Phi-2 (Abdin et al. 2024) 4K Yes (Offline) - ✗

CodeLLaMA-Python (Touvron et al. 2023) 16K Yes (Offline) - ✗

Mistral-7B (Albert et al. 2023) 32K No - ✗

Mixtral-8x7B (Jiang et al. 2024) 32K No - ✗

GPT-3.5-Turbo (Brown et al. 2020) 16K Yes (API) High ✗

GPT-4 (Achiam et al. 2023) 128K Yes (API) High ✗

GPT-4.1 mini (OpenAI 2025) 128K Yes (API) Low ✓

Given these constraints, we selected the OpenAI’s one of the latest releases GPT-4.1 mini model
for fine-tuning. GPT-4.1 mini supports fine-tuning through OpenAI’s API infrastructure and offers a
sufficiently large context window of up to 128K tokens (OpenAI 2025) with relatively minimal cost per
million tokens, making it well-suited for our task.

4 RESULTS

4.1 Quantitative Analysis

We quantitatively compare simulation models generated by our proposed architecture (fine-tuned GPT-4.1
mini) with those produced by the general-purpose GPT-4. For fine-tuning the GPT-4.1 mini, a dataset
of 900 samples were utilized for training and 100 samples for validation. The model was trained over 2
epochs with a learning rate set to 0.1 and no batching. Although GPT-4 exhibits superior general reasoning
capabilities (OpenAI 2025), we hypothesize that fine-tuning imparts domain-specific knowledge to the
smaller model, allowing it to outperform GPT-4 in structured simulation tasks. Both models are evaluated
against a manually validated benchmark implemented in SimPy and Arena, ensuring high fidelity. Two
simulation scenarios of varying complexity—spanning both simulation logic and linguistic variability—are
used to assess the generalization capacity of our architecture. Note that the test scenarios are synthetically
constructed for quantitative analysis and may not reflect fully realistic or logically complete supply chain
scenarios.

4.1.1 Test Scenario 1

Test Scenario 1 is designed with comprehensive and unambiguous information necessary for model simu-
lation, including explicit specifications for all parameters required for simulating the corresponding supply
chain scenario. The prompt provides all required details in a clear and direct manner, resulting in low
complexity from both a simulation and natural language interpretation perspective.
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Scenario 1 Prompt

Generate a simulation model using SimPy library for following simulation scenario. Following
is the simulation scenario. We have two raw materials: Microprocessors and Memory Chips.
Microprocessors are supplied every day in batch of 60 thousand units. Memory Chips are ordered
based on its demand. We start with no inventory for raw materials. Microprocessors are supplied
by Fabrication Co. with delivery delay of 6 to 8 days and costs 200 dollars for each microchip.
Memory chips are supplied by Supply Memory Co. based on customer orders with delivery lead
time of 10 to 18 days . All the supplier payments are paid in 25 to 30 days of order delivery. The
memory chip suppliers charges 100 dollars per unit of memory chip. We use 2 memory chips
and 1 microprocessor to assemble one unit of Thermo Cell. We start with initial inventory of 3
millions units of Thermo Cell and assemble the finished products daily and assembly takes 1 day.
The customers arrive every month with demand of 1.8 to 2.2 million units of Thermo Cell and pays
500 dollars per unit of Thermo Cell. The customer order is completed in two weeks and the payment
is completed by the customers in 7 days. Simulate the scenario for 1 year with no warm-up and
replicate the simulation 10 times to account for any variability and report 99% confidence interval
for daily cash balance, daily raw material inventory levels and daily finished product inventory levels.

(a) 99% confidence interval for daily raw material
inventory levels across 10 macro-replications.

(b) 99% confidence interval for daily fin-
ished goods inventory levels across 10 macro-
replications.

(continued)
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(c) 99% confidence interval for daily cash balance
across 10 macro-replications.

Figure 3: Quantitative analysis for Test Scenario 1.

Figure 3 shows 99% confidence intervals for key inventory metrics, comparing outputs from fine-tuned
GPT-4.1 mini, iterative GPT-4, and a benchmark. Each GPT-4 iteration reflects corrective feedback,
though some adjustments worsened performance due to unintended side effects—illustrating the fragility
of unstructured refinement. Only iterations with notable behavioral shifts are shown. Despite multiple
attempts, GPT-4 diverges from the benchmark, whereas GPT-4.1 mini aligns in one pass—highlighting
the value of domain-specific fine-tuning.

4.1.2 Test Scenario 2

Scenario 2 Prompt

Generate a simulation model using SimPy library for following simulation scenario. Following is
the simulation scenario: There are three raw materials, namely OLED display, sensor, and battery.
The initial inventory of display, sensors, and battery is 100, 500, and 100 units respectively. The
displays are supplied by High Def Manufacturers when the inventory drops below 50 units and
is restocked to 90 units, and costs 40 dollars per unit of display screen. The delivery period for
displays is 2 to 4 days, and the payment is cleared after 7 days of order delivery. Sensors and
Batteries are supplied by the Gada Electronics. The sensors are procured every 15 to 17 days in
a batch of 100 units, and delivery takes 3 to 4 days with payment terms of 30 dollars per sensor
and payment after 10 days of order received. Lastly, the batteries are also supplied every 30 days
with a lot of 600 units. All the delivery and payment terms are similar to sensors. A smart watch is
manufactured using 1 display, 4 sensors, and 2 batteries. The assembly for smart watch batches
begins every 3 to 4 days, and it takes 1 day to assemble a batch. The customer, Smart Gadgets
orders 200 to 300 units of smart watches every 30 to 35 days and expects the delivery within 5 to 7
days of order placement, and pays 500 dollars per watch within 2 days of order delivery. Simulate
for 2 years with 10-day of warm-up period and replicate the scenario 10 times and report 99%
confidence interval for daily cash balance, daily raw material inventory levels and daily finished
product inventory levels.
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(a) 99% CI for daily raw material inventory
levels across 10 macro-replications.

(b) 99% CI for daily raw material inventory
levels across 10 macro-replications.

(c) 99% CI for daily finished goods inventory
levels across 10 macro-replications.

(d) 99% CI for daily cash balance across 10
macro-replications.

Figure 4: Quantitative analysis for Test Scenario 2.

As shown in Figure 4, the fine-tuned GPT-4.1 mini maintains robust performance in complex
scenarios. While Figures 4a and 4b show that GPT-4 occasionally matches the benchmark at specific
inventory levels, it lacks the consistency across key metrics needed for accurate real-world modeling, even
after multiple refinements.

The quantitative analysis underscores the superior quality of fine-tuned GPT-4.1 mini’s simulation
output and shows that fine-tuning, coupled with a robust simulation engine, effectively handles both
simulation complexity and natural language variability.

4.2 Qualitative Analysis

To evaluate the effectiveness of the fine-tuned model beyond quantitative metrics, a qualitative analysis
was conducted by comparing outputs generated from identical prompts. This assessment focused on the
structural quality, modeling capabilities, and completeness of the simulation code produced. Table 2 presents
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a side-by-side comparison across key simulation components, highlighting the enhanced modeling fidelity,
modularity, and scalability achieved through fine-tuning.

Table 2: Qualitative comparison: GPT-4 vs. fine-tuned GPT-4.1 mini.

Category GPT-4 Fine-tuned GPT-4.1 mini
Simulation Modeling
Logic

Limited to basic inventory thresh-
old. Improperly handled: lead time,
data logging, inventory update and
warm-up period

Fully supports advanced procure-
ment logic with accurate handling
of lead time, inventory updates, data
logging, and warm-up initialization.

Modularity Low cohesion, high interdepen-
dency.

Modular, object-oriented design.

Scalability Not extensible. Easily adaptable to large-scale com-
plex systems.

Information Extraction Misses explicit details. Extracts both explicit and implicit
parameters.

Code Generation Prone to hallucinations, incomplete
outputs.

Generates accurate, executable
code.

5 CONCLUSION AND FUTURE DIRECTIONS

This study showcases the effectiveness of fine-tuned LLMs in automating discrete-event simulation (DES)
model generation from natural language descriptions in supply chain settings. The fine-tuned GPT-4.1
mini outperforms base models in fidelity, structure, and robustness. By structuring the pipeline into
description-to-representation and representation-to-code stages, we propose a scalable, extensible archi-
tecture that links high-level input to executable simulations. The framework not only reduces manual
effort but also lays the groundwork for LLM-driven digital twins, with modularity supporting adaptation
via fine-tuning or in-context prompting. In terms of simulation model limitation, the current version of
generated simulation models does not support multi-level bill-of-materials, policy optimization and strategy
recommendation

Future work includes expanding training data to enhance generalization across broader supply chain
scenarios and linguistic variability, extending model capabilities and developing a privacy-preserving local
fine-tuning architecture tailored to enterprise data. We also aim to evolve the framework toward fully
autonomous, real-time digital twins with continuous learning and predictive analytics.
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