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ABSTRACT

Dynamic job shop scheduling (DJSS) demands rapid, data-driven decisions to balance conflicting objec-
tives in complex, stochastic manufacturing environments. While Artificial Intelligence, particularly deep
reinforcement learning (RL), offers powerful optimization capabilities, its development and evaluation are
often limited by the lack of suitable high-speed, flexible simulation testbeds. To address this, we introduce
FabSim, a micro-discrete-event simulation (micro-DES) environment purpose-built for developing and
evaluating intelligent scheduling strategies for DJSS. FabSim models core scheduling dynamics, including
resource contention, flexible routing, batching, and stochastic events, using an efficient event-driven kernel
and indexed look-up tables that enable sub-second simulation runtimes. Compliant with the Farama Gymna-
sium API, it integrates seamlessly with standard machine learning libraries. FabSim facilitates reproducible
benchmarking and serves as a practical back-end for digital twin applications requiring near-real-time
analysis. This paper details FabSim’s design, validates its high-speed performance, and demonstrates its
utility for AI-driven scheduling research.

1 INTRODUCTION

Effective machine scheduling is a cornerstone of efficient operations in numerous complex manufacturing and
service systems, impacting throughput, resource utilization, cost-effectiveness, and responsiveness (Pinedo
2012; Rinnooy Kan 2012). Dynamic job shop scheduling (DJSS), in particular, demands rapid, data-driven
decisions to balance these objectives across ever-changing production lines (Ouelhadj and Petrovic 2009).
However, deriving optimal or near-optimal schedules is notoriously difficult. Many scheduling problems are
N P-hard, involving combinatorial complexity that grows rapidly with problem size (Garey et al. 1976;
Lenstra et al. 1977). Real-world systems often exhibit further complexities such as high job mix, flexible
routing including re-entrance, batch processing requirements, sequence-dependent setups, and significant
stochasticity from unforeseen events like machine breakdowns or processing time variations. Effectively
navigating this confluence of combinatorial complexity, intricate constraints, and dynamic uncertainty makes
DJSS an exceptionally demanding optimization challenge critical to operational performance.

These inherent characteristics pose significant challenges for traditional scheduling methodologies.
Simple priority-based dispatching rules, while computationally cheap and ubiquitous in practice, operate on
limited local information. Their myopic nature often leads to globally suboptimal performance, failing to
anticipate bottlenecks or effectively manage complex constraints, particularly in dynamic settings (Pinedo
2012). Conversely, exact optimization methods such as Mixed-Integer Linear Programming (MILP) or
Constraint Programming (CP), while capable of finding optimal solutions for smaller, deterministic problems,
struggle with the scale and stochasticity of many real-world scheduling scenarios. The computational effort
required often becomes prohibitive for operational decision-making. Simulation-based approaches, including
coupling discrete-event simulation with search heuristics, can model system dynamics and uncertainty with
higher fidelity but may require significant computation time to find high-quality solutions and still necessitate
effective control logic to guide the search or operational decisions. Thus, there remains a need for scheduling
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approaches that can effectively handle the scale, complexity, and dynamic nature of modern scheduling
environments.

Reinforcement Learning (RL) presents a compelling paradigm for tackling these challenges (Sutton
and Barto 2018). By learning through direct interaction with the system or a simulation, an RL agent can
autonomously develop sophisticated control policies. It observes the system state, selects actions (e.g.,
assigning a job to a machine), and receives feedback via a reward signal aligned with scheduling objectives
(such as minimizing cycle time or maximizing throughput). Progress in AI, particularly deep RL, has
outpaced the availability of flexible, high-speed test beds for training and comparison. RL’s potential to
learn complex, adaptive policies capable of handling stochasticity and optimizing long-term goals makes it
a highly promising avenue for complex machine scheduling, but realizing this potential hinges on suitable
development platforms.

However, applying RL effectively requires appropriate simulation environments. While general RL
frameworks (e.g., Gymnasium (Towers et al. 2024)) and some environments for Operations Research
(e.g., OR-Gym (Hubbs et al. 2020), RL4CO (Berto et al. 2023)) or generic production settings (e.g.,
FabricatioRL (Rinciog and Meyer 2021), PySCFabSim (Kovács et al. 2022)) exist, they often lack the
necessary combination of speed, detail, and flexibility for rigorous DJSS research. Many existing tools
struggle with configuration rigidity, exhibit slow run times unsuitable for the millions of samples needed
in deep RL training, oversimplify critical scheduling constraints (like detailed batching or setups), lack
mechanisms for real-time policy interaction, or offer poor integration with standard machine learning
pipelines. There is a need for lightweight, fast, standardized, and sufficiently representative simulation
environments for DJSS.

To address this gap, this paper introduces FabSim: a micro-discrete-event simulation (micro-DES)
environment purpose-built for developing and evaluating intelligent scheduling strategies, especially RL
agents, in generalized DJSS settings. FabSim serves as the primary contribution, providing a flexible, high-
speed platform that encapsulates common scheduling challenges. Key characteristics include: (i) Efficient
Micro-DES Core: An event-driven engine with indexed look-up tables eliminates idle looping, yielding
sub-second runtimes suitable for large-scale experiments and digital twin back-ends. (ii) DJSS Dynamics
Modeling: Represents jobs, operations, specialized machines (single/batch), stochastic failures, calendars,
and setup constraints. (iii) Standardized RL Interface: Full compliance with the Farama Gymnasium
API allows seamless integration with mainstream RL libraries. (iv) Configurability and Reproducibility:
Supports dynamic arrivals, priorities, user-defined stochastic models, and ensures reproducible results via
random number generator (RNG) seeding and configuration management.

This paper contributes (i) the formal design of FabSim’s abstraction and event kernel, (ii) benchmark
results showing millisecond-scale step times on large job sets, and (iii) illustrative experiments with
heuristic and RL agents. The central research question is: How can a standardized, reproducible, fast, and
sufficiently detailed micro-DES environment be designed to effectively facilitate the development, training,
and benchmarking of AI-driven optimizers for DJSS problems? By detailing FabSim’s design and validation,
and releasing it to the community, we aim to accelerate AI research for DJSS and lower the barrier to
deploying intelligent schedulers in complex, real-world operations.

The remainder of this paper is structured as follows. Section 2 provides further background on DJSS
and related work. Section 3 presents the detailed design and implementation of FabSim. Section 4 details
experimental validation. Finally, Section 5 discusses the findings, limitations, and concludes the paper.

2 BACKGROUND AND RELATED WORK

This section provides context for FabSim by first formalizing the machine scheduling problem, discussing
traditional solution approaches, reviewing the application of reinforcement learning to scheduling, and
finally surveying existing simulation environments for RL in this domain, highlighting the gap FabSim
aims to fill.

2659



Mondesire, Brown, and Soykan

2.1 The Machine Scheduling Problem

Machine scheduling problems involve the allocation of limited resources (machines) over time to perform a
set of tasks (operations belonging to jobs), subject to various constraints, with the goal of optimizing one or
more performance objectives (Pinedo 2012). A common and challenging variant is the Job Shop Scheduling
Problem (JSSP), where a set of N jobs, J = { j1, j2, ..., jN}, must be processed on a set of M machines,
M = {m1,m2, ...,mM}. Each job ji consists of a specific sequence of operations Oi = (oi1,oi2, ...,oini), where
each operation oik requires a specific machine m(oik) ∈ M for a certain processing time pik. Precedence
constraints dictate that oik must be completed before oi,k+1 can start. A machine can only process one
operation at a time, and operations are typically non-preemptive. The Flexible Job Shop Scheduling
Problem (FJSSP) extends this by allowing an operation to be processed by any machine from a set of
eligible machines, often with different processing times (Brandimarte 1993). The DJSS further incorporates
real-world complexities such as unexpected job arrivals, machine breakdowns, varying processing times,
and shifting priorities, making it highly relevant to modern manufacturing and service operations.

Common objectives in machine scheduling include minimizing makespan (Cmax), mean flow time,
and tardiness, or maximizing throughput and resource utilization. Attaining these goals is significantly
complicated by factors prevalent in many complex production settings. These include managing a high
mix of jobs with diverse and potentially lengthy processing routes on shared resources. Routes may
involve revisiting machine groups (re-entrance), creating complex dependencies (Kayhan and Yildiz 2023).
Further challenges arise from batch processing requirements involving intricate formation rules (balancing
utilization and wait times) (Mönch et al. 2011), sequence-dependent setup times adding combinatorial
difficulty (Allahverdi et al. 2008), general resource constraints (machines, buffers, tools, operators) creating
bottlenecks, and pervasive stochasticity stemming from uncertain job arrivals, machine breakdowns, and
variable processing times, demanding robust and adaptive scheduling solutions (Aytug et al. 2005). The
confluence of these elements renders many machine scheduling problems N P-hard and particularly
challenging to solve optimally in dynamic, real-world environments.

Various approaches have been developed to tackle machine scheduling problems. Dispatching rules
are simple heuristics (e.g., Shortest Processing Time - SPT, First-In-First-Out - FIFO, Earliest Due Date -
EDD) used extensively in practice for making real-time decisions at individual machines (Pinedo 2012).
Their main advantages are low computational cost and ease of implementation. However, they are typically
myopic, relying on local information and often leading to globally suboptimal performance, especially in
complex systems with interacting constraints or significant stochasticity (Holthaus and Rajendran 1997).

Mathematical optimization techniques, such as MILP or CP, provide frameworks for finding provably
optimal solutions (Maravelias 2006). While powerful for modeling constraints, these exact methods often
face severe scalability limitations due to the combinatorial nature of scheduling problems. Solving industrial-
scale instances to optimality is frequently computationally intractable for operational use, restricting their
application mainly to smaller problems or offline planning with simplified models. Capturing stochastic
elements within these deterministic frameworks also poses difficulties.

Metaheuristics, including Genetic Algorithms (Lee et al. 1998), Tabu Search (Laguna et al. 1991),
and Simulated Annealing (Kim et al. 2002), represent a class of approximate optimization algorithms
that search the solution space more intelligently than simple heuristics. They can often find high-quality
solutions for complex problems where exact methods fail. However, they typically require significant
computational time, can be sensitive to parameter tuning, and may still struggle to adapt quickly to highly
dynamic changes or real-time events compared to dispatching rules.

Discrete-event simulation is a powerful tool for modeling the dynamics and stochasticity of manufacturing
systems (Kampa et al. 2017). It allows for detailed "what-if" and "what-next" analysis, evaluating the
performance of different dispatching rules or system configurations. However, simulation itself does not
optimize; it requires an external mechanism—be it a human analyst, a search heuristic, or an intelligent
agent—to propose and evaluate different control strategies to find improved schedules. This highlights the
need for integrating intelligent decision-making within simulation models.
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2.2 Reinforcement Learning for Scheduling

RL has emerged traction as a method to develop adaptive scheduling policies by learning from interaction
(Kayhan and Yildiz 2023). An RL agent learns a policy (π) mapping system states (s) to actions (a) (e.g.,
which job to dispatch) to maximize a cumulative reward (R) tied to scheduling objectives. This learning
framework is well-suited to dynamic and stochastic environments where optimal rules are not easily derived.

Early applications often used tabular methods (e.g., Q-learning) for smaller problems. The integration
with deep learning (Deep RL) has enabled scaling to more complex scenarios (Mnih et al. 2015). Value-
based methods such as Deep Q-Networks (DQN) (Luo et al. 2021) learn the expected value of actions,
while policy gradient methods such as REINFORCE or Actor-Critic (Liu et al. 2020; Waschneck et al.
2018) directly optimize the policy parameters. Various state representations (vectors, images, graphs using
GNNs (Zhang et al. 2020)) and action space formulations (selecting jobs, selecting rules) have been
explored. Much research focuses on learning effective dispatching policies for dynamic job shops or
flexible manufacturing systems, often demonstrating superior performance compared to static dispatching
rules, especially for multi-objective criteria or under uncertainty (Rinciog and Meyer 2021).

2.3 Existing Simulation Environments for RL in Scheduling

The successful application of RL to complex machine scheduling problems heavily relies on the availability of
suitable simulation environments for agent training, validation, and benchmarking. While several platforms
have been developed to facilitate research in RL for scheduling and related optimization domains, they often
exhibit limitations when considering the specific demands of dynamic, feature-rich job shop scheduling,
particularly regarding the balance between fidelity, speed, standardization, and flexibility.

Several open frameworks specifically target production or job shop scheduling for RL. FabricatioRL
(Rinciog and Meyer 2021) offers a modular, reproducible environment based on SimPy and the Gymnasium
API, suitable for general production settings including FJSSP. Similarly, PySCFabSim (Kovács et al. 2022)
adapts the Proximal Policy Optimization (PPO) algorithm for JSSP, demonstrating policy generalization
under processing constraints. These platforms provide valuable baselines and focus on RL integration.
However, their reliance on the high-level abstractions within traditional DES engines (such as SimPy’s
Process and Resource classes) can limit execution speed compared to more specialized approaches. While
powerful for general modeling, these abstractions introduce overhead not suitable for the millions of
simulation steps required in deep RL training (Soykan and Rabadi 2023; Soykan and Rabadi 2024).
This distinction motivates a micro-DES approach (Nsiye et al. 2024), which prioritizes computational
performance for this specific application domain. Also, while configurable, they might require extensions
for highly specific machine types or dynamic event handling beyond basic stochastic inputs, and their
support for live policy updates or real-time interaction may be limited compared to environments designed
with that capability in mind.

Other relevant libraries include OR-Gym (Hubbs et al. 2020) and the more recent, comprehensive
RL4CO (Berto et al. 2023). These platforms offer standardized Gymnasium environments for a wide array
of Operations Research (OR) and Combinatorial Optimization (CO) problems, making them valuable for
benchmarking RL algorithms on fundamental tasks like vehicle routing or packing. Their breadth and focus
on optimization benchmarks are strengths. However, they typically lack dedicated, high-fidelity simulation
models for complex end-to-end machine scheduling processes that incorporate detailed operational logic
like batching, sequence-dependent setups, or specific resource interactions found in factory environments.

Also, various domain-specific simulation environments have been developed within individual research
projects. Examples include tools tailored for specific industries like semiconductor manufacturing (Kuhnle
et al. 2022) or those focused on particular problems like the JSSP, such as PySCFabSim (Kovács et al.
2022), which successfully adapts PPO and demonstrates generalization. While these custom environments
can offer high realism for their target application, they often face limitations that hinder broader adoption
and comparative research. These can include a lack of adherence to standardized APIs like Gymnasium
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(making integration with RL libraries difficult), limited public code availability or ongoing maintenance,
potential reproducibility issues if not carefully designed, or a narrow focus that limits generalizability to
other scheduling contexts or variations. The underlying simulation approach (e.g., using SimPy vs. a
custom kernel) also significantly impacts performance and suitability for large-scale RL.

Consequently, while progress has been made, there remains a need for accessible, standardized,
yet sufficiently flexible and detailed simulation environments specifically designed for complex machine
scheduling. Such an environment should allow easy configuration of various JSSP/FMS characteristics
(machines, routes, batching, setups, stochasticity), adhere to standards such as Gymnasium for broad
compatibility, and facilitate reproducible research, bridging the gap between general RL platforms and the
specific needs of machine scheduling research. FabSim is developed to address this specific need.

3 FABSIM: DESIGN AND IMPLEMENTATION

FabSim is designed as a flexible and extensible discrete-event simulation environment for applying RL to
machine scheduling problems. Its development was guided by the need for a standardized tool that captures
essential scheduling complexities while ensuring ease of use and reproducibility. This section details the
core requirements, conceptual model, RL formulation, software architecture, and implementation specifics.

3.1 Core Requirements

Derived from the analysis of machine scheduling challenges and existing environment limitations (Section
2), the fundamental requirements for FabSim are:

• Modeling Core Scheduling Dynamics:
– Flexible Job Routing: Support for complex, multi-step process routes for different job types,

including the possibility of jobs revisiting machine groups (re-entrance or flexible flow paths).
– Diverse Machine Types: Ability to model both single-job processing machines and batch

processing machines with configurable rules (e.g., minimum/maximum batch size, compatibility
constraints, time limits).

– Sequence-Dependent Setups: Capability to model machine setup times where the duration
depends on the sequence of operations processed.

– (Extensible) Resource Constraints: Foundational support for primary machine constraints, with
extensibility for auxiliary resources (e.g., machines, operators).

• Representation of Stochasticity: Incorporate key sources of operational uncertainty, including
stochastic machine breakdowns (failures and repairs) and processing time variability.

• Standardized Reinforcement Learning Interface: Strict adherence to the Gymnasium API standard
(Towers et al. 2024), ensuring compatibility with standard RL libraries through well-defined
observation/action spaces and step/reset methods.

• Configurability for Research Flexibility: Enable users to easily define and modify system con-
figurations (machines, buffers, process plans, job characteristics), simulation parameters, stochastic
levels, and RL reward functions, preferably via external configuration files.

• Reproducibility for Scientific Rigor: Implement mechanisms for reproducible stochasticity via
robust RNG seeding for both instance generation and simulation dynamics, facilitating reliable
experiment replication and comparison.

3.2 Conceptual Model of the Manufacturing System

FabSim employs a discrete-event simulation based on a conceptual model of a general manufacturing
system, focusing on job flow and resource allocation dynamics. The model’s scope typically includes job
processing operations but abstracts details such as material handling specifics unless explicitly configured.
Key entities are: (i) Job: The unit of work flowing through the system (analogous to lots). Jobs possess
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attributes such as ID, type, current operation, location, priority, due date, and route. (ii) Operation (Process
Step): A task within a job’s route, requiring a specific machine capability (machine group) and having
associated processing time characteristics, setup needs, and batching rules. (iii) Machine (Resource): A
processing unit with states (idle, processing, setup, down, maintenance). Machines belong to Machine
Groups based on shared capabilities. (iv) Buffer: Queues preceding machine groups where jobs wait. Key
scheduling concepts are represented as follows: Job routes are defined as sequences of operations, allowing
flexible paths including revisits to machine groups. Machines are defined with their type (single/batch)
and capabilities. Batching rules (size, time constraints, compatibility) and sequence-dependent setup times
(from a matrix) are associated with machines or operations and handled by the simulation logic.

3.3 Reinforcement Learning Environment Formulation

The scheduling problem within FabSim is formulated as a Markov decision process (MDP) (S,A,R,T ) for
RL agent interaction:

State Space (S): The observation provided to the agent typically includes configurable features such
as machine status (idle, busy, down, setup configuration), buffer levels (queue lengths, waiting times), and
attributes of waiting jobs (current step, remaining steps, priority, due date, time-in-queue). Global metrics
such as WIP or time can also be included. The representation aims to be informative yet manageable.

Action Space (A): The agent makes decisions at discrete events (e.g., machine becomes idle). Actions
are typically discrete and may include selecting which job to dispatch from a buffer to an idle machine,
or deciding whether to start a batch process. Action masking ensures only valid actions (available jobs
compatible with the machine) are selectable.

Reward Function (R): Configurable reward signals guide learning towards objectives such as minimiz-
ing makespan, minimizing mean cycle time/flow time, maximizing throughput, or minimizing tardiness.
Both sparse (end-of-episode) and dense (step-based) rewards can be implemented, often incorporating
penalties for waiting time or setups and bonuses for job completions.

State Transition Logic (T ): Governed by the underlying SimPy-based discrete-event simulation
engine. The simulation clock advances based on events (job arrivals, operation completions, machine
breakdowns/repairs, setup completions). Agent actions schedule future events (e.g., operation completion
based on sampled processing time). Stochastic events are triggered based on configured distributions using
seeded RNGs, ensuring deterministic transitions for a given seed and action sequence.

3.4 Software Architecture and Implementation

FabSim is implemented in Python. For its core event-scheduling logic, it leverages the minimalist, highly-
optimized event queue from SimPy (Matloff 2008). However, it deliberately avoids SimPy’s higher-level,
slower abstractions for modeling entities. Instead, all system state (e.g., machine status, job locations)
is maintained in simple, efficient data structures like NumPy arrays and dictionaries. This micro-DES
architecture provides the speed of a custom kernel while retaining the reliability of SimPy’s battle-tested
event-sequencing logic. The environment uses Gymnasium (Towers et al. 2024) for the RL API standard, and
NumPy for numerical efficiency. It provides the standard Gymnasium API (__init__, reset, step,
observation_space, action_space), ensuring compatibility with common RL libraries (e.g.,
Stable-Baselines3, RLlib, Tianshou). System configurations (factory layout, machines, buffers, process
routes, job details, simulation parameters, stochastic models, reward functions) are defined externally,
typically via YAML or JSON files, promoting flexibility. Reproducibility is ensured through careful RNG
seeding managed via the reset method, the separation of instance generation from simulation runs, and
clear logging capabilities.

3.5 Modeling Specific Scheduling Features

The architecture allows modeling key machine scheduling features:
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Flexible Routing (including Re-entrance): Job process plans are defined as ordered lists of operations,
each specifying the required machine group. The environment routes the job to the next required machine
group upon operation completion, naturally handling revisits if a machine group appears multiple times in
the sequence.

Batch Processing: Machines designated as batch type consult associated parameters (min_batch_size,
max_batch_size, max_wait_time, compatibility rules) stored in the configuration. The simulation
logic checks these conditions when a batch machine is idle or a lot arrives, potentially triggering an agent
decision (start batch/wait) if configured, or automatically starting batches when minimum size or maximum
wait time is reached. Batch completion schedules a single event for all jobs in the batch.

Stochasticity: Machine breakdowns are scheduled based on sampling from time-to-failure distribu-
tions (e.g., Exponential based on Mean Time Between Failures (MTBF)) and time-to-repair distributions
(e.g., Lognormal based on Mean Time to Repair (MTTR)). Processing times are sampled from specified
distributions (e.g., Normal, Uniform) associated with each operation step when the operation begins. All
stochastic sampling uses internal, seeded RNGs for reproducibility.

4 EXPERIMENTAL VALIDATION

The validation assessment for FabSim aims to demonstrate its suitability as a testbed for RL-based machine
scheduling optimization, focusing on two key aspects: (i) verifying that the environment generates logically
consistent schedules that provide a meaningful learning signal for automated agents, and (ii) confirming that
its simulation speed meets the demanding requirements for near real-time decision-making often expected
in digital twin applications.

4.1 Experimental Setup

All validation experiments utilized a default synthetic job shop configuration: 10 jobs, each comprising 100
operations requiring processing on a set of 20 machines. These machines cover 10 distinct operation types,
ensuring specialization and resource contention. Operation processing times were drawn uniformly from
discrete intervals of 1 to 4 time steps. This configuration was designed to represent a complex, medium-scale
manufacturing environment. The high number of operations per job (100) ensures that agents must learn
long-horizon policies, while the significant resource contention (10 concurrent jobs on 20 machines with 10
distinct types) creates a challenging scheduling problem where simple dispatching rules are likely to fail.
The dynamic job arrivals further ensure the environment is non-static, testing the agent’s ability to adapt
to changing conditions, which is characteristic of real-world DJSS problems. To introduce dynamism, job
arrivals were uniformly distributed between time step 0 and 100, creating a mix of jobs available at the
start and jobs released later during the simulation. To assess the environment’s response under RL training,
four configurations of the PPO algorithm from Stable-Baselines3 (Raffin et al. 2021) were trained for ten
million interaction steps each. These configurations varied primarily in the agent’s observation look-ahead
(number of future operations considered in the state): (1) one-operation look-ahead, (2) five-operation
look-ahead, (3) ten-operation look-ahead, and (4) one-operation look-ahead but with the initial one million
actions forced to be uniformly random to emphasize exploration. Standard SB3 hyperparameters were
used (two-layer 64-unit MLP policy, learning rate 3× 10−4, GAE λ = 0.95, batch size 64) to focus the
assessment on the simulator’s behavior rather than extensive algorithm tuning. Five independent trials were
run for each configuration, resulting in twenty simultaneous learners interacting with separate instances of
the FabSim environment within the same process pool.

4.2 Simulation Validation Assessment and Results

Correctness and Logical Consistency: Schedule validity was checked automatically by the environment
during every step of the 200-million-step training corpus. Checks included ensuring assignments respected
machine-operation compatibility (only assigning jobs to machines capable of the required operation type),
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job release dates (not scheduling jobs before they arrive), and machine availability (not scheduling on a busy
or downed machine). Across all experiments, no invalid assignments were permitted by the simulator’s
internal validation layer, confirming the robustness of the lookup-table indexing and action-masking logic in
preventing infeasible agent actions by design. Furthermore, key performance metrics (makespan, cumulative
idle time, cumulative wait time) were recalculated from the raw event logs generated by the simulator
and found to match the environment-reported metrics to machine precision, validating the integrity of the
performance tracking. Qualitative inspection of generated Gantt charts (Figure 1 and Figure 2) revealed
logically consistent schedules respecting precedence constraints and machine availability.

Learning Signal Validation: While the primary goal was not policy optimization, the results demon-
strated that the environment provides a learnable gradient. The four PPO treatments converged to statistically
similar makespans, as shown in Table 1. The one-step look-ahead agent achieved an average makespan
of 849.2 (std dev 23.15), while the five-step, ten-step, and exploration-heavy one-step variants stabilized
around 787.0 (± 67.68), 878.8 (± 68.07), and 845.0 (± 41.03), respectively. A one-way ANOVA indicated
no statistically significant difference at the 0.5% level, aligning with the validation focus. However, the
significant variance between runs and the distinct (though not statistically significant) average makespans
achieved by agents with different look-aheads illustrate that the environment’s state and reward signals
effectively differentiate policy qualities, providing the necessary feedback for RL optimization. Further
inspection of Gantt charts showed qualitative differences, with longer look-aheads leading to policies that
deferred early jobs more often to potentially optimize downstream machine alignment, demonstrating that
the environment’s state representation is rich enough to support strategic variations learned by the RL agent.
Post-mortem analysis confirmed that machines handling the scarcest operation types became bottlenecks,
aligning with expected JSSP dynamics and reinforcing FabSim’s face validity.

Table 1: Average makespan per treatment from validation runs.

Treatment Description Average Standard Deviation
1 One Look-ahead 849.2 23.15
2 Five Look-ahead 787.0 67.68
3 Ten Look-ahead 878.8 68.07
4 One Look-ahead Uniform Start 845.0 41.03

Speed and Scalability: Simulation speed was profiled on a Windows 11 workstation (AMD Threadripper
Pro 5975WX 32-cores, 256 GB RAM, NVIDIA RTX 6000). Average step throughput during the 20-agent
training run varied slightly across treatments but consistently remained high: 97.2 ± 3.49 steps/s (one-step),
108.8 ± 1.47 steps/s (five-step), 105.0 ± 3.03 steps/s (ten-step), and 94.8 ± 1.32 steps/s (one-step uniform
start). In inference mode (no gradient calculations), mean throughput increased to 102.45 steps/s. Given
that a full schedule in this benchmark takes roughly 1000 environment steps, these results indicate that
complete episode rollouts finish in well under ten seconds.

To assess scaling, the one-operation configuration was run with varying numbers of simultaneous PPO
agents (actors) in the same process pool. As shown in Figure 3 and Table 2, a single actor achieved
3266.2 steps/s. Performance scaled sub-linearly with additional actors: 2474.4 steps/s for two, 2129.2
steps/s for three, and 2126.0 steps/s for four. This degradation beyond two actors likely reflects contention
related to Python’s Global Interpreter Lock (GIL) within a single process pool on this specific multi-core
setup, rather than an inherent limitation of the simulator logic itself. Vectorized Gymnasium wrappers or
distributed architectures (e.g., Ray RLlib) can mitigate this on appropriate hardware. Crucially, even the
slowest observed rate (approx. 2100 steps/s with four actors) implies that a 1000-step schedule can be
simulated in under half a second per actor, comfortably meeting the near real-time requirements (< 1-2
seconds) of many industrial digital twin applications.

The validation study confirms FabSim’s correctness in enforcing scheduling constraints and its high
computational speed. It provides reliable performance metrics and exposes a sufficiently rich state repre-
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Figure 1: Example Gantt chart generated by FabSim visualizing a job-shop schedule. The y-axis represents
machines (M1-M20), and the x-axis represents time. Each colored bar indicates the processing of an
operation from a specific job on a particular machine. The dashed red line marks the final makespan for
this schedule at 500 time units.

Table 2: Steps per second for simultaneous training models.

Number of Models Average Steps/Sec Standard Deviation
1 3266.2 19.50
2 2474.4 32.09
3 2129.2 203.37
4 2126.0 307.80

sentation for RL agents to learn diverse strategies. The environment sustains throughput well within near
real-time requirements, even under multi-agent training loads, making it suitable for prototyping intelligent
dispatchers and for integration into digital twin or smart manufacturing control loops.

5 DISCUSSION AND CONCLUSION

This paper introduced FabSim, a micro-discrete-event simulation environment purpose-built to address key
gaps in DJSS research tools, particularly for applications involving machine learning and digital twins. Ex-
isting simulators often lack the combination of speed, flexibility, reproducibility, and integration capabilities
needed for modern AI-driven scheduling development. FabSim tackles these deficits through an efficient
event-driven kernel, optimized data structures, and adherence to established standards. Our validation
experiments confirmed FabSim’s core value proposition: it reliably enforces fundamental scheduling con-
straints (machine compatibility, job releases, resource availability) while generating accurate performance
metrics, as demonstrated across 200 million interaction steps with PPO agents without logical errors.

A key limitation of the current study is the absence of direct performance benchmarks against other
established environments like FabricatioRL, OR-Gym, or RL4CO. While our results demonstrate high
absolute speed, a comparative analysis is essential to rigorously quantify the performance benefits of our
micro-DES architecture. Such a benchmark is complex, as environments often differ in their feature sets,
abstraction levels, and intended use cases. For instance, platforms like RL4CO are optimized for routing
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Figure 2: A second Gantt chart example from FabSim, illustrating a different scheduling outcome, potentially
from an alternative policy or simulation run on the same or a similar job-shop instance. The allocation
pattern and the resulting makespan (marked at 916 time units by the dashed red line) differ significantly
compared to Figure 1, demonstrating the impact of scheduling decisions on overall completion time.

Figure 3: Average steps per second processed by FabSim when training multiple PPO models simultaneously
within the same process pool.

problems and may not model detailed shop-floor dynamics like batching or setups. Nevertheless, conducting
a fair and detailed comparison on a set of common benchmark problems (e.g., from the FJSSP library)
is a critical next step. This future work will provide the community with a clearer understanding of the
trade-offs between different platforms and further validate the need for specialized, high-speed simulators
for DJSS research.

FabSim delivers the high performance necessary for both large-scale RL training and near real-time
deployment. Training throughput rates exceeding 90 steps per second per agent, even under multi-agent
loads, and single-actor inference rates surpassing 3000 steps/second were observed on standard hardware.
This confirms that complete schedule rollouts for typical benchmark problems can be achieved in well
under ten seconds, meeting the latency requirements for integration into digital-twin pipelines where
continuous rescheduling and dispatch feedback loops are essential. The environment’s compliance with
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the Farama Gymnasium standard further enhances its utility, allowing researchers and practitioners to
seamlessly integrate FabSim with mainstream RL libraries (like Stable-Baselines3, RLlib) and benchmark
diverse approaches—heuristics, metaheuristics, supervised learners, and RL agents—through a unified,
reproducible API. The design of its observation and action spaces provides rich contextual information
suitable for deep learning models while remaining compact and efficiently manageable.

FabSim provides a robust, validated, and high-speed micro-DES environment specifically tailored for
DJSS. Its combination of correctness, performance, standardization, and reproducibility positions it as an
ideal platform for advancing the state-of-the-art in machine learning-based scheduling. It serves both as an
effective training ground for developing novel AI schedulers and as a potential decision engine for integration
into digital twin systems. We acknowledge that a complete digital twin requires robust data pipelines for
real-time state synchronization, which is a separate engineering challenge. FabSim’s contribution is to
provide the high-speed simulation core necessary for the ’what-if’ analysis and policy optimization loop
within such a system. Ongoing and future work focuses on extending the platform’s capabilities. Ongoing
and future work focuses on extending the platform’s capabilities further by incorporating transport resource
modeling, sequence-dependent changeover penalties, and potentially GPU-accelerated kernels, solidifying
FabSim as a foundational tool for the next generation of automated scheduling research and deployment
in complex, dynamic environments.
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