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ABSTRACT

We consider estimating p, = P(X > x) in a data-driven manner or through simulation, when x is large
and when independent samples of X are available. Naively, this involves generating O(1/p,) samples.
Making distributional assumptions on X reduces the sample complexity under commonly used distributional
parameter estimators. It equals O(log(1/py)) for Gaussian distribution with unknown mean and known
variance, and O(log?(1/p,)) when the variance is also unknown and when the distribution is either
exponential or Pareto. We also critically examine the more sophisticated assumption that the data belong
to the domain of attraction of the Fréchet distribution allowing estimation methods from extreme value
theory (EVT) . Our sobering and practically important conclusion based on sample complexity analysis
and numerical experiments is that under these settings errors from estimation can be significant so that for
probabilities as low as 107%, naive methods may be preferable to those based on EVT.

1 INTRODUCTION

Estimating rare event probabilities is crucial in a variety of applications, including finance, insurance,
communications networks, traffic modeling, and climate modeling; see Glasserman (2003), Rubino and
Tuffin (2009), and Asmussen and Glynn (2007) for comprehensive overviews. A fundamental problem is
to estimate the probability p, = P(X > x) for a critical random variable X that exceeds a large threshold
x. For example, X may denote daily rainfall, and the interest might be in the possibility of observing an
extreme precipitation event (de Vries et al. 2024). In finance, one may seek to estimate the probability of
a severe market downturn within a single day. Many variance reduction techniques have been developed to
address this problem, such as importance sampling, conditional Monte Carlo, splitting, and stratification;
see, for example, Glasserman et al. (2000), Juneja and Shahabuddin (2002), L’Ecuyer et al. (2006), Dean
and Dupuis (2009), Botev et al. (2016), Bai et al. (2022), Deo and Murthy (2025), and Ahn and Zheng
(2025). All of these methods typically rely on the knowledge of specific underlying distributions, which
is often not available in practice. In contrast, we focus on completely data-driven settings where such
distributional knowledge is incomplete or entirely absent.

A naive, yet distributionally robust, data-driven approach is simply to observe a large number of
independent samples of X and develop an empirical estimator of p, guaranteed to be within a small
percentage (e.g., 0) of p, with high probability (e.g., 1 — &). Such an approach requires O(1/p,) samples
of X; for instance, achieving a desired relative accuracy is 10% (i.e., § = 0.1) with a confidence level of
95% (i.e., & = 0.05) roughly necessitates 480/p, number of samples. This could be a large number when
x is large, motivating more approximate approaches to estimate p,. One pragmatic approach then is to
assume that X belongs to a parametric family of distributions and to estimate its underlying parameters
from data using commonly accepted techniques, in the hope that this parameter estimation will require
fewer samples than the naive approach in achieving the same accuracy. For example, past experience may
suggest that the data-generating distribution adheres to the Gaussian family, either with unknown mean
and known variance, or with both unknown mean and variance.
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In this paper, we analyze the number of samples required under these assumptions to estimate parameters
such that the resulting error in the estimator for p, matches that of the naive estimator. For the Gaussian
distribution, our analysis shows that O(log(1/p,)) samples are needed when the mean is known but the
variance is known, and a larger O(log?(1/p,)) samples when both are unknown. We leverage and refine
known concentration equalities for estimators of Gaussian parameters to derive lower bounds on the sample
sizes that ensure the desired accuracy. We perform a similar analysis for the exponential distribution,
which exhibits a heavier tail than the Gaussian, and again find that O(log?(1/p,)) samples assure the
desired accuracy. Since the Pareto distribution is fat-tailed, one might naively expect that estimating its
parameters from the data would require a significantly larger sample size than for Gaussian and exponential
distributions. However, we observe, somewhat surprisingly, that O(log?(1/p,)) samples are also sufficient
here. This represents a substantial reduction in sample size compared to the native estimator at least
asymptotically (as x — o). We confirm all these theoretical findings through numerical experiments.

Our key observation, which we believe is underappreciated by both theoreticians and practitioners,
carries significant practical implications. Extreme Value Theory (EVT) establishes that when X belongs
to the domain of attraction of a Fréchet distribution (a large class of heavy-tailed random variables), the
distribution of X — u conditioned on X > u converges to the generalized Pareto distribution (GPD) as u
increases; see McNeil et al. (2015) for an overview of EVT and a detailed discussion on this convergence.
This theory has motivated a pragmatic approach: selecting a reasonably large value of # under the assumption
that the distribution of X — u conditioned on X > u is GPD, and subsequently estimating the parameters for
this GPD from generated data. We observe that when the underlying distribution is indeed GPD (thereby
precluding any EVT-based approximation), parameter estimation via a widely used method requires more
samples than a naive estimator for the same accuracy when the target probability is of order 10~ or larger.
This threshold can increase when the underlying distribution is regularly varying but not precisely a GPD.
This is a sobering observation because, in practice, extreme event probabilities of order 10~* — 1072 are
often of interest, a range where researchers commonly apply EVT approximations. Our experiments suggest
that, within this range, the naive estimator might prove to be the most reliable option. It is noteworthy
that while the existing EVT literature focuses extensively on a variety of estimators for estimating the
polynomial decay rate of the tail probability and associated concentration inequalities, the errors introduced
by these approximations in the estimated tail probabilities appear to have limited discussion.

The remainder of this paper is organized as follows. Section 2 presents the background on estimator
efficiency and discusses the naive estimator. In Section 3, we discuss the sample complexity under common
distributional assumptions on X. In Section 4, we address scenarios where the underlying distribution
family is not explicitly known, but the distribution is assumed to lie in the domain of attraction of the
Fréchet distribution. The numerical experiments are conducted in Section 5. Finally, Section 6 provides a
brief conclusion.

2 BACKGROUND

Given an estimator p, for the tail probability p, :=P(X > x) under various distributional assumptions,
our objective is to characterize the minimal sample size n so that for sufficiently large x the following is
satisfied for any &, € (0,1)

P(|ﬁn_px| > 6px) < &. (1)
To establish a benchmark, we first construct a naive estimator for the tail probability p, as pY :=

(1/n) Y1 I{X; > x}, where X; is the i-th i.i.d. sample of X, and I{A} is the indicator function of A. Using
the multiplicative Chernoff bound on the centered Binomial random variable np" —np, we get

2
P (I5%/pe—1] > 8) < 2exp (—”"f ) .
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It follows that for for any 8,8 € (0,1), if the sample size n satisfies n > p,'(3/5%)log(2/&), then
P(|pn/px— 112 8) < &.

Remark 1 (Selecting & in high-impact rare-event setting). The rare event community is often satisfied with
confidence intervals for a rare event quantity p with a small relative width &, say 10%, and a confidence
level that allows an error probability & to be, for example, around 5%, which is significantly higher than
p. This relatively high value of &y, however, may distort catastrophic risk assessment when a conservative
view is adopted. For instance, in a conservative worst-case scenario, one needs to set the estimator of p
to 1 with probability &. Then, the conservative estimate of the rare event probability is estimated to be
6+ (1 —250)(1+49)p. For small p, § dominates this assessment. One way to handle this issue is to keep
&y of a similar or lower order than p. As we observe, the sample complexity in our reaults depends on &
only through the term log(1/dy). Thus, keeping & of such an order does not lead to a dramatic increase
in sample complexity, but may be essential in conservative risk management settings.

3 PARAMETRIC ESTIMATORS

We now demonstrate the significant reduction in sample complexity achieved under the assumption that
the distribution family of X is known and is Gaussian, exponential, or Pareto, and we use data to estimate
the distributional parameters using commonly used algorithms.

3.1 Gaussian Distribution

In this section, we consider a situation where the decision-maker is aware that the underlying distribution
is Gaussian. We first consider a Gaussian distribution with unknown mean g and known variance >
and then study the unknown variance case later. In the first case, estimating the tail probability thus
reduces to estimating the mean. Accordingly, we define an estimator of py, =1—®((x—u)/o) as
Pt =1—®d((x—f1,)/0), where ®(-) is the cumulative distribution function of the standard normal
distribution and fl, = Y'!"; X;/n represents the sample mean of X when the sample size is n.

Proposition 1. Assume that X follows a Gaussian distribution with unknown mean ¢ and known variance
o?. For any 8,8 € (0,1), when the sample size satisfies

|~ 2l0g(2/&) (x—u)zxzw 4log(2/&)
“log’(14+8) \ © log?(1+6)
we have P(|pSt/p,— 1| > §) < & for all sufficiently large x.

Proof. Recall that fi,, — u is Gaussian with mean 0 and variance 6% /n. Then, by the concentration inequality
for sub-Gaussian random variables (Boucheron et al. 2013), we have

log(1/py),

ne?
P(|f, — <2 —-—— 2
(| —u| >¢€) < exp< 202) Ve>0 (2)
Since fI, > u if and only if p%* > p,, we observe that P (}ﬁgl/px - 1| > 5) is bounded from above by
pAGl pAGl
P(;l>1+&ﬁwﬂmu+@>+P<” <1—&@ﬁﬂu—am>+PW%—Mze)V£>0 3)

Therefore, if € satisfies
X—U—¢& xX—U+E€
Pee=1-® (ﬁ“) <(148)pe and prei=1-@ <‘;> >(1-8)pe, @)
then the first two probabilities in (3) are zero. To achieve this, we use the following asymptotic equivalence

as X —» oo: 5 5
Pre  exp _mp—e) )ty
Dx 202 202
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Thus, the first and second inequalities in (4) are asymptotically equivalent to

1
e(2x—2u—¢) <20log(1+8) and e(2x—2u+e¢)<20’log s
Given this analysis, one possible choice of € that asymptotically satisfies the above two inequalities for
large x is € = 6%(x— ) 'log(1+ 8). Accordingly, using this value of & and the inequality in (3), we
obtain the following asymptotic relationship for large x:

~AG1 2 2
Pn _1‘ >5) < 2exp <_”010g<1+5>>

(%

x 2(x—p)?
Hence, bounding the right-hand side by & leads to the desired result. O
We now delve into the case where both u and o are unknown. In this case, we use the sample
mean and sample variance to construct an estimator for p, as p¢2 = 1—®((x— f1,)/6,), where 6, =

\/ Y (Xi— f1,)?/(n—1) represents the corrected sample standard deviation of X for the sample size of n.

Pr0p0s1tlon 2. Assume that X follows a Gaussian distribution with unknown mean p and unknown variance
o2, For any 8,8 € (0,1), if the sample size n satisfies

2
2 1 4log(1+6) log(4/&) . »
n > max 26,2<1+\/1+ foe(1/p%) ) 10g2(14_5)log (1/px), %)

then P(|p%2/p, — 1| > §) < & for all sufficiently large x.

Proof. Using the fact that (n—1)62/0% ~ x2_, and using the concentration inequality for a chi-squared
random variable with k degrees of freedom (Laurent and Massart 2000, Lemma 1), we have

2t 2t
P(|an2—az\>oz< n_1+n_1))<2e—f (©6)

For all € > 0, it is easy to see that P’ (|p

— 1| > 8) is bounded from above by

n

ﬁG2 ﬁGQ
]P’( — > 146,01, — u!§£,|6,12—62]§628>+]?< = 1—5,\ﬁn—u|§e,63—62|§628>
Px P

X

(7
+P(|f, — | > &) +P (|67 — 0% > o)

Let pt 8¢ ) g ((x—u —&)//o*(1 +£2)) for any €;,& > 0. This increases in both &

and &. Then, if p7% (178 < (14 §)p,, the first term in (7) is zero. Similarly, if pA~€°°1-€) > (1 — &)y,

the second term in (7) is zero. To satisfy these two conditions in the regime where x — oo, we use the
following asymptotic relationship that holds for any €,€ > 0:

o p);:+8,62(1+8) - 28()6—[1)—{—8()6—#)2
£ Dx 202(1+¢) '

Thus, the said two conditions can be asymptotically achieved by choosing € and &€ such that

2e(x— ) +e(x—u)* <min{26%(1+¢)log(1 + §),26%(1 —¢&)log (1/(1 —5))}.
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Lete =log(1+6)/log(1/px). Then, one can show that the above inequality is satisfied asymptotically as
x — o0, Given this value of &, we now aim to achieve P(| {1, — u| > €) < §/2 and P(|62 — 62| > 6%¢) < & /2.
For the former, it suffices to find n; such that the right-hand side of (2) is bounded from above by &y /2 for
alln > n;. A simple calculation leads to n; = (262 /&%) 1og(4/&). To ensure the latter, we set t = log(4/8)
in (6). Then, the right-hand side of (6) is equal to &/2, and therefore, it remains to find n, such that
€>/2(n—1)"Tlog(4/8) +2(n—1)""log(4/) for all n > ny. With some arithmetic manipulation, we

getny, = (2e2)7! (1+ /1 —|-48)2 log(4/dy). Hence, for any n larger than max{n;,n,}, the result follows. [J

3.2 Exponential Distribution

Assume that the data-generating distribution is an exponential distribution with rate parameter A > 0, i.e.,
px = exp(—Ax) for all x > 0 and P(X > x) = 1 for all x < 0. We use the estimator p,* = exp(—A,x) where
A :=n/Y;X; is the maximum likelihood estimator of A.

Proposition 3. Assume that X follows an exponential distribution with unknown rate parameter A. For
any 0,0 € (0,1), when the sample size n satisfies

1l <1+ V1+2log(1+8)/log(1/(p.(1 +5)))>210g <2> xovee 210g%(1/(pa(1+6))) log ( 2 ) |

=3 log(1+8)/log(1/(px(1+9)) & log?(1+ ) )

8o
we have P(|py® /p. — 1| > §) < & for all sufficiently large x.

Proof. By the monotonicity of p, in A, it can be easily shown that 1/A, > (1+¢)/A if and only if

PEP = A s o Ax/(e) = pLUIHE) Biy o —10g(1+8)/log(1/(px(1+8))). Then, pi/ ") = p.(1+6),

and thus, 1/, > (1+€)/A is equivalent to p"*/p, > 1+ 8. Similarly, we have 1/4, < (1 —¢€)/A if and
only if ﬁEXP < p)lc/ (178), and moreover, it is easy to check that p}c/ (1-¢) > px(1 —0). Thus, we obtain that
1/A, < (1—€)/A if py®/p, < 1 — 8. Therefore, P(|pn®/px— 1| > 8) <P(|1/Ay—1/A| > €/A).

Next, it is well known that 1/ in follows a gamma distribution with the shape parameter n and the rate
parameter nA. Thus, by applying Theorem 2.3 in Boucheron et al. (2013), we get

P(\l/in—l/l|>(m+t)/(nl))326_’ for any ¢ > 0. 8)

Hence, by substituting 7 = log(2/&) in (8) and using the above argument, we have P(|pp®/px— 1| >
0) < & if \/2nlog(2/8y) +1og(2/8) < ne. This condition can be satisfied when n satisfies

1 /14+vV1+2e\° 2
n>— — log| = |,

25 5

substituting the value of € completes the proof. O

3.3 Pareto Distribution

Suppose now that samples are generated from a Pareto distribution with parameters &,u > 0 such that
pr = (u/x)"/% for all x > u and p, = 1 for all x < u. We first consider the case where u is known. Then, we
construct an estimator for p, as p&! == (u/x)/>, where &, :=n~' ¥, log(X;/u) is the maximum likelihood
estimator for the parameter .

Proposition 4. Assume that X follows a Pareto distribution with unknown & and known u. For any
0,60 € (0,1), when the sample size n satisfies

. <1+ V1+2log(1+38)/log(1/(p.(1 +5)))>210g <2> xovee 210g?(1/(px(1+8))) log ( 2 ) |

N |

log(1+0)/log(1/(pe(1+9)) & log?(1+8) )
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then P(|pFt/p.— 1| > 8) < & for all sufficiently large x.

Proof. Since p, increases in &, it can be easily shown that &, > &(1 +¢€) if and only if p&* > p}c/ (1+€)

Fix € = log(1+8)/log(1/(px(1+8))). Then, pi/1® = p.(1+ ), and thus, &, > E(1 +¢) is equivalent
to p°/py > 1+ 8. Similarly, we have A < E(1 —g) if and only if pP* < p}c/(lfg), and moreover, it is
easy to check that p,lc/(l_g)? px(1—8). Thus, we obtain that &, < &(1—¢) if PP /py < 1— 8. Therefore,
P(|pnt/px—1] > 8) < P(|G —&] > Ee).

It can be easily shown that log(X /u) follows an exponential distribution with rate 1/&, implying that
én follows a gamma distribution with the shape parameter n and the rate parameter n/&. Thus, by replacing

1/ A, and 1 /A with E,, and &, respectively, we have
P (yé > é(\/2nt—|—t)/n) < 2¢~" for any > 0.
Hence, using the same arguments as in the proof of Proposition 3, we obtain the desired result. O
When both u and § are unknown, their maximum likelihood estimators are given by @, = min;—;__,X;
and & =n~! " log(X;/i,), respectively. Accordingly, we define an estimator for p, as p&2 == (i1, /x)"/%.

Proposition 5. Assume that X follows a Pareto distribution with unknown & and a. We define &, 5 =
log(1+46)/(log(1/px) +1—1log(1+8)). Then, for any 6,8 € (0, 1), when the sample size n satisfies

2og(3/)  Elog(3/d) | voe  [210g(1/py) Elog(l/pe)), (3
”Zma"{sia/(l+ex75>’log<1+ex,5>} - ma"{ log?(1+3) " log(1+3) }1°g<6o>’

then P(|pF2/p, — 1| > 8) < & for all sufficiently large x.

Proof.

According to Malik (1970), we know that (i) é,’, and i, are independent; (ii) é,; follows a gamma
distribution with the shape parameter n — 1 and the rate parameter n/&; and (iii) i, has a Pareto distribution
such that P(ii, > x) = (u/x)"/%. Thus, by applying Theorem 2.3 in Boucheron et al. (2013), we get

P (16—l > E(V20n— )i +1)/n) <2¢7. ©)
Also, we obtain that for any € > 0,
P(|d, — u| > ue) =P(a, > u(1+€)) = (1+¢€)7"/°. (10)

Then, this proof basically follows the proof of Proposition 2. Specifically, for all € > 0, the probability
P(|pE?/py — 1| > &) is bounded from above by

~P2

~P2
P(”" > 1+8,|8 —&| < Ee, i, —ul gw)ﬂp(”n < 1-5,|§,§-§ygge,ﬁn—u\gue>
p. p

X X

. (11)
+P (1€~ &l > &e) +P (| — u] > ue)

We define pf(He‘)’"(H&) = p,l/(“rsl)(l +&)'/0+2) for any & > 0 and for any & > 0 such that
px(14+&) < 1. This value increases in both € and &,. Then, the first and second terms in (11) are zero if
p§(1+£)’u(l+£) <(1+98)p,and pé(lfe)’”(lfg) > (1 —98)py. Let € = € 5 defined in the theorem. Then, all the
above conditions are satisfied for large x since log(1+€) < &, log(1 —¢&) > —¢, and log(1+ ) < —log(1—§).

Finally, it remains to achieve P(|€/ — &| > Eg) < 28y/3 and P(|d, —u| > ue) < & /3. For the former,
by plugging r = log(3/8) in (9), it suffices to find n; such that \/2(n— 1)log(3/8) +log(3/8) < en for
all n > n;. One can easily check that it is satisfied by the following choice of n; = 2(1+¢€)log(3/8)/€>.
For the latter, by (10), we need n > n, := £log(3/8)/log(1+ €). Therefore, the result follows for any n
larger than max{n,n,}. O
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3.4 Generalized Pareto Distribution

We now assume that a random variable X follows a Generalized Pareto distribution (GPD) with parameters
xo € R and &, B > 0, whose tail distribution is defined as

x—x0)\ V¢
GxOé,ﬁ(x) =PX >x) = <1 —i—é(ﬁ())) , (12)

where the support of X is x > xg and x( is assumed to be known throughout this subsection. The Hill
estimator is one of the widely studied estimators for the parameter &, which uses the top k order statistics
X.. It is formally given by &(k) == 1 YX_, log (%) . As noted in Boucheron and Thomas (2015), the
variance of the Hill estimator scales as &2 /k, while its bias is upper bounded by a von Mises function that
increases with k. Consequently, a larger k reduces variance but simultaneously increases bias, leading to
a bias-variance tradeoff. To strike the balance between them, the adaptive Hill estimator is proposed in
Boucheron and Thomas (2015), which selects k = &, given by:

A

l%n:max{ke {ln,...,n} Vi€ {ly,...,n}, E(i)—E(k)| < é(l)r"(&))}, (13)

where ¢, < [2logn] and r,(8) < /log((2/8&)logn). Then, the adaptive Hill estimator, defined as E (ky),
is shown to achieve the minimax lower bound across distributions satisfying the von Mises condition, which
is formalized in the following result. Interested readers are also referred to Boucheron and Thomas (2015)
for its superior performance over existing tail index estimators.

Lemma 6 (Corollary 3.12 of Boucheron and Thomas (2015)). Consider the adaptive Hill Estimator
é(l%,,) with n independent and identically distributed (i.i.d.) samples from a certain distribution. Let
n(t) = sup,~, |n(s)|, where n(-) is the von Mises function of the distribution. Assume that there exist
C,& >0 and 1y > 1 satisfying 7(r) < Ct~% Vit > ty. Then, the following holds for sufficiently large » and
& € (0,2):

< =
n -2

.. N E/1428)
P(\é(kn)/é—ll > O 0o ) ) >

where kg, is a constant dependent on &y and the distribution parameters.

We note that if the underlying distribution is a GPD with the tail distribution in (12), then we have
) = E(1—x0&/B) /(15 +x0E /B —1) < C(to)t=% Yt > 1 for some constants C > 0 and 7o > 1. Hence,
the result in the above lemma holds in this case.

We now focus on the estimation of the parameter 3 in (12). We particularly use the Method of Moments

estimator (MME) 3,, = (S‘n —x0)(1— é” ), where S, is the median-of-means (MoM) estimator defined as

n

Sy =med(|B1| ' Lica, X - - o Y.ic, Xi), where m is the number of sample blocks with with each
block containing at least |n/m| samples, med(ay,...,a,) denotes the median of ay,...,a,, and we write

é,’,’ = é(lAcn) for brevity. The next lemma presents a concentration inequality for the MoM estimator S,,,
which, in conjunction with Lemma 6, will be utilized to construct our main result for the GPD case.
Lemma 7 (Lemma 2 of Bubeck et al. (2013)). LetS, denote the MOM estimator with ni.i.d. samples withn >
2+416log(1/8) andm < 8log(1/8). Then, we have P (|E[X] — S,,| > €) <exp (—(n/8)e1+9)/e/(12M)1/e) ,
where M := E[|X — E[X]|'T4] < o for a € (0,1].

Based on the estimators discussed above, we define an estimator for py as p° := (1+ E/(x—x0)/ ﬁn) Ve
This construction leads to our main result as follows:
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Proposition 8. Assume that X follows a Generalized Pareto distribution (GPD) with a known parameter

xo € R and unknown parameters £, 8 > 0 and that E[|X —E[X]|?] < e, or equivalently, & < 1/2. Then, for
any 8,68 € (0,1), P(|pS/p, — 1] > 8) < & for all sufficiently large x if the sample size n satisfies
log(1 (1+28)/¢ log(1 2 9
n> max{lq <0g(6/px)> , K (()g(é/pﬁ) log <50> , (14)

where k; and k» are positive constants dependent on xo, &, B, and &.

Proof Sketch. Let pif == (1-+ E(v—10)/B) "/ for £B > 0. Note that p, = pif and 5> = pii.
Then, by the first-order Taylor approximation, we get

pm/px—u(log(l/px)—l(&)) (grg1)+ =2 ().

The rest of this proof sketch is built upon the assumption that the above approximation is exact.
Let & = 8/log(1/py). Then, using the same argument as in the proofs of Propositions 2 and 5, it is
easy to see that

PP /=11 > 8,18/~ 1] < e B/B 1] < &) =0.

Hence, it remains to achieve P(|E" /& — 1| > &,) < 88)/9 and P(|E" /& —1| < e, |B,/B — 1] > &) < &)/9.
By Lemma 6, the former is straightforward if

(1+28)/¢
n K'50 9
> = — —-— /.
logn = ni < e, ) log (50> (15)

For the latter, recall that [3,, = (8, —x0)(1— é,’,’ ) and S, > xo almost surely. Also, since X has finite variance,
we have § < 1/2, and thus, 0 < (1 —¢g,), £(1+¢&,) < 1 for all sufficiently large x. Then, we observe

P&/ /E—1 <& |Bu/B—1]> &)

=P(&"/E -1 <&, Bu/B>1+&)+P(E"/E—1]<e,(Sn—x0)(1—-E)/B < 1—g)
<P((Si—x0)(1 =& +8&)/B > 1+&)+P((Sy—x0)(1-§ —&&) /B < 1—&)

_p (5 _E[X]> (E[X]l_xg)&;é)g’“> +P <s _gjx] < — (B l_xg)fg;é)g’C)
<P (|, —E[X]| > (E[X] —x0)(1 —28)e.) ,

where the second equality holds since B = (E[X] —x0)(1 — &). Finally, by applying Lemma 7, the above
probability is bounded by &/9 if

n > my = {96Mlog(9/8)}/{(E[X] —x0)(1 - 26 €2},

Thus, the result follows for any n larger than max{n,n,}, ignoring the logarithmic term logn in (15). [J

4 FRECHET MAXIMUM DOMAIN OF ATTRACTION

In this section, we consider a situation where the parametric representation of the data-generating distribution
F is unknown but it is known to be in the maximum domain of attraction (MDA) of the Fréchet distribution.
To be more specific, there exist sequences of constants {d,} and {c,} such that ¢, > 0 for all n and
limy, oo F"(cpx +dy) = He (x) = exp(—(1 +Ex)71/%) for all x € R for & > 0. In this case, we say that
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F € MDA(H¢ ) with & > 0. To tackle the issue of distributional uncertainty, we use the peak-over-threshold
(POT) approach in extreme value theory (McNeil et al. 2015, Chapter 5). This approach is also introduced
in Bai et al. (2022). In their work, the authors conduct several numerical experiments to validate this
approach. In contrast, we aim to theoretically analyze the sample complexity based on the POT approach.

In what follows, we assume that there exist v, &, B (+) satisfying F, (x) :=P(X > x—v[X >v) = G, ¢ () (*)
for all x € R. This assumption asymptotically holds for all F € MDA(H) with & > 0. Then, it follows

that p, = F(u)G, ¢ g (x) for any u >v and x € R. This allows us to construct an estimator for p, as

Rt = (ny/n)py . where

(x _ u) _l/éﬂu
152,, = <1 + &, ﬁ > y En= ZIOg <

ny, ”u i=

) =G0 (1-8.).

n, is the number of samples exceeding u, k,, is defined as in (13) with n replaced by n,, and S, is the
MoM estimator based on the samples exceeding u. Let p := G, ¢ p(u)(x) = px/F (u) for all x € R.
Proposition 9. Assume that X follows a distribution F € MDA(Hg) with & > 0, which satisfies the
von Mises condition (GPD) with a known parameter ¢t € R and unknown parameters &, > 0 and that
E[|X —E[X]|?|X > v] < . Then, for any §,8 € (0,1), P(|pE° /p, — 1| > 8) < & for all sufficiently large
x if the sample size n satisfies

(1+28)/8 2
e I (e T

knqul n

where K and K, are positive constants dependent on u,&, 8, and &.
Proof sketch. We first observe that

|<nu/n)pAgu —F(u)pf\ nu/n I’lu/l’l
F(u)p§ F(u) F(u)

Hence, for any € > 0, if |n,/n— F(u)| < €F(u), then the right-hand side is bounded from above by
(1+¢)|ps /p%—1|+ €. Accordingly, we have

|ﬁEDT/px_1|: S’ n,,/px_1|+ /px_1’+

1)

APOT . nu/n_ B d—¢
P(1pn"/px 1|>5)§P<‘F(u) 1‘>s>+IP’<|an,/px 1>1+8>. (17)

We aim to bound the first term on the right-hand side by 28y/11 and the second term by 96y/11. Let
€ =38/log(1/p$). Then, by Section 2, P(|(n,/n)/F(u) — 1| > &) <28/11 if

e g () ()

Furthermore, by Proposition 8, the last term in (17) is bounded by 98 /11 if for all sufficiently large x,

(1428) /¢ 2
n, ~nk(u) > max{x{ (W) . K (W) }log <15(1)> ’

where k| and K} are positive constants dependent on i, &, 3, and &. Setting & = k|, &» = max{x»,3}
and using log(F (u))/log(1/pyx) ~ 0 leads to the desired result. O
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S NUMERICAL RESULTS

We analyze the behavior of the lower bound on sample complexity that we derived in earlier sections, as
px decreases, and compare it to the lower bound that follows from simulation experiments. Theoretical
lower bounds are based on concentration inequalities and may be higher than the sample size required in
the experiments if these inequalities are not tight.

Simulation experiments are conducted as follows. We generate n samples from a given distribution
and estimate the underlying parameters. The tail probability p, is estimated by plugging in the estimated
parameters in the tail CDF. This is compared with the true probability p,, and we estimate the fraction of
times the relative error in the probability estimate is within 0, by repeating this experiment 10,000 times;
exceptionally for the Generalized Pareto Distribution (GPD), we repeat it 1,000 times due to a significant
computational burden. We vary the number of samples n from the given distribution until the acceptable
relative error fraction is equal to 1 — &y. The results are shown in Figure 1a as dashed lines. Here, we have used
Gaussian(u = 0,0 = 0.5),Exponential(A = 0.5),Pareto(§ =0.5,u =1),GPD({ = 0.5, = 1,x0 =0)
distributions. For the Type 1 Pareto distribution, the lower bounds in the cases where u is known and
unknown tend to match almost exactly. This is because the threshold u can be estimated with relative
ease—most of the probability mass is concentrated near u, making its estimation stable. For the GPD,
significantly more samples are required to accurately estimate the probabilities of the low tail (10~! to
10~%). This is primarily due to the need for sufficient samples to obtain a stable estimate of the tail
index (via the Hill estimator). In Figure la, the theoretical lower bounds are plotted as solid lines for
the parametric estimators defined in Section 3 for the same distributions. To obtain precise lower bounds,
we numerically solve some steps in the derivation instead of relying on approximations. We observe that
for higher values of p, (of order 107%), the naive estimator outperforms the estimators for GPD. Observe
that the theoretical values are always above the experimental values; this is due to loose concentration
inequalities and non-sharp analysis.

Next, in Figure 1b, we analyze the effectiveness of the approach in Section 4. We assume that the
underlying distribution is GPD(§ = 0.5, = 1,x9 = 3). The red curve with square markers represents the
lower bound in (14), whereas the other plots exhibit the lower bound in (16) under varying thresholds
u=x% with o € {0.1,0.3,0.5,0.7}. Figure 1b suggests that when the underlying distribution is GPD,
the lower the threshold, the lower the sample complexity. To see if this observation is consistent across
different underlying distributions, we separately conducted a similar experiment where the underlying data
density is proportional to (log(1+x)/(1+x))3?, x >0, and we fit a GPD distribution to the data above
varying thresholds of u. While the corresponding numerical results are not presented in this paper due to
space constraints, we find that for a probability of about 107, even after generating over 10° samples, our
estimator based on fitting the GPD above the threshold does not lie within 10% of the true probability for
a comprehensive set of thresholds. Both simulations and our theoretical analysis suggest that EVT-based
estimators could show performance degradation compared to the naive estimator, depending on problem
instances and the choice of thresholds u. A detailed theoretical investigation into this issue is left for
future research. Further numerical experiments and their corresponding results are provided in an online
appendix, available on the authors’ websites.

6 CONCLUSION

In this paper, we studied the classical problem of estimating a rare event probability of a single random
variable exceeding a large threshold in a data-driven manner. Naive empirical estimators are distributionally
robust; however, they can have high sample complexity, which motivates faster approximate methods. We
observed that under the assumption that the underlying random variable belongs to a known family, for
many commonly occurring distribution families, lower bounds on sample complexity can be developed
based on standard parameter estimators. While these approaches can lead to lower sample complexity
compared to the naive estimator, the corresponding results are very sensitive to the underlying distribution.
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(a) Sample complexities from theoretical analyses (solid) and simulation (dashed).
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(b) Sample complexities based on different values of the threshold u in the POT
approach.
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Figure 1: Sample complexity is plotted as a function of 1/p, in a log-log scale.

For instance, for a given dataset with sample mean 10 and variance 2, when we fit a Gaussian distribution
to the data, the tail probability of exceeding a threshold of 16.3 is roughly 4.2 x 107, while fitting a GPD
to the same data gives a probability of exceeding that threshold about 1,000 times higher, underscoring the
need to be extremely careful in selecting the underlying distribution family for tail probability estimation.
Extreme value theory offers a principled way to arrive at tail probability estimates. We, however, observe
that it may be substantially less effective compared to a naive estimator for probabilities even as low in
order as one in a million. This observation may have sobering implications on the use of probabilistic
methods in the estimation of rare events.
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