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ABSTRACT

We develop exact importance sampling schemes for (linear) Hawkes processes to efficiently compute their
tail probabilities. We show that the classical approach of exponential twisting, while conceptually simple
to apply, leads to simulation estimators that are difficult to implement. These difficulties manifest in either
a simulation bias or unreasonable computational costs. We mimic exponential twisting with an exponential
martingale approach to achieve identical variance reduction guarantees but without the aforementioned
challenges. Numerical tests compare the two, and present benchmarks against plain Monte Carlo.

1 INTRODUCTION

Hawkes (1971) introduced a highly influential point process model in which the inter-arrival intensity
is deterministic. By now, Hawkes processes have found a wide array of application in the sciences,
engineering, statistics, operations research and mathematical finance (Laub et al. 2021). There is also a
large and growing literature on the Monte Carlo simulation of these processes. However, remarkably few
techniques for rare-event simulation for Hawkes processes exist. We make some progress in filling this
gap.

For constants µ,κ,v > 0 we consider a process X = (Xt)t≥0 given by,

Xt = µ +(X0 −µ)e−κt + v
∫ t

0
e−κ(t−s)dNs (1)

where N is a univariate point process of intensity X (e.g., Brémaud (1981)).
The process N takes values in N= {0,1,2, . . .} and is called a “linear” Hawkes process as its intensity

is a linear function of the state X . Fixing T > 0, we consider estimating the probability P(E ) = P(NT ≥ n).
It is well-known that the plain Monte Carlo estimator 1E of P(E ) has a squared relative error that is
given by 1/P(E )−1, which diverges as P(E ) vanishes (e.g., Asmussen and Glynn (2007), Chapter VI).
Consequently, plain Monte Carlo simulation of tail probabilities for a Hawkes process is highly inefficient.

A classic approach to this problem is exponential twisting, an importance sampling method that dates
back to the seminal work of Siegmund (1976). This estimator is based on an exponential change of measure
(ECM), which uses

ZT (θ) =
dPθ

dP
= eθNT/E(eθNT ) (2)

as its Radon-Nikodym derivative, to induce an importance measure Pθ . The paramater θ ∈R is called the
exponential twist and the associated simulation estimator Q = 1E /ZT (θ) satisfies EPθ

(Q) = P(E ) allowing
for importance sampling under Pθ . The theoretical guarantees for the variance reduction obtained by using
Q are well understood (Asmussen and Glynn 2007, Chapter VI.2).

In this paper we point out that exponential twisting of a Hawkes process encounters significant practical
challenges. First, the transform E(eθNT ) is challenging to evaluate numerically, so that sampling via
transform inversion is not robust. Second, no black-box Pθ -simulation of NT is possible (Asmussen and
Glynn 2007, Proposition 7.1), i.e., naive acceptance/rejection is not feasible because (2) is unbounded when
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θ > 0, which corresponds to a reduction in variance. Lastly, the point process N is not in the parametric
family of Hawkes processes under the ECM. We prove N admits the Pθ -intensity eθ+vq X with X per (1)
where q is a R-valued function of time that admits no closed-form. This makes intensity-based simulation
schemes difficult to implement. In particular, most methods for simulating point processes are based either
on time-scaling or thinning; (see Shkolnik et al. (2024) for a treatment of time-scaling for processes with
jumps). The former leads to simulation bias (Giesecke and Shkolnik 2022). Thinning (e.g., Ogata (1981))
can and does, in the above setting, lead to unreasonably long simulation times.

There is by now a large and growing literature on applications of Hawkes processes (Hawkes 1973;
Chavez-Demoulin et al. 2005; Hewlett 2006; Large 2007; Bowsher 2007; Bacry et al. 2015; Mei and
Eisner 2017). In parallel, there is also significant work on their simulation Magris (2019), Kirchner (2017),
Chen (2021), Dassios and Zhao (2013), Møller and Rasmussen (2005), Møller and Rasmussen (2006).
However, these algorithms do not address the tail estimation problem P(NT ≥ n).

Rare-event simulation for Hawkes processes was considered in El Maazouz and Bennouna (2018), but
without theoretical guarantees on variance reduction. Such guarantees for “generalized” Hawkes processes
are presented in Zhang et al. (2009) and Zhang et al. (2015) but for large T asymptotics. This leads
to qualitatively different applications, and requires stationarity. We consider a fixed time T and “large
intensity” and large k = γµ asymptotics where µ tends to infinity. See Giesecke and Shkolnik (2010) and
Giesecke and Shkolnik (2025) and the references therein for this rare-event regime along with importance
sampling estimators that may be applied to a Hawkes process. However, the conditions required in these
papers for optimality are not met by model (1).

We develop an importance sampling scheme that has all the variance reduction guarantees of the ECM,
but also allows for exact sampling (i.e., exact samples of the rare event and the Radon-Nikodym derivative
may be obtained). The approach is based on exponential martingales that mimic the variance reduction
properties of the ECM. See Chen et al. (2019), Chen et al. (2019) and Chen et al. (2025) for related
approaches that use changes of measure to develop unbiased estimators. The resulting algorithm can further
take advantage of the paths of of N (rather than just the terminal value NT ) to incorporate early stopping
criteria leading to significant run-time advantages. We prove logarithmic efficiency of our importance
sampling estimator to guarantee a fixed precision with a number of trials that grows subexponentially (in
| logP(E )|). We test the estimator numerically, comparing its performance to plain Monte Carlo, as well
as a biased implementation of exponential twisting.

Section 2 introduces exponential twisting and the rare-event regime. Section 3 discusses the challenges
of implementing estimators that use exponential twisting. Section 4 develops an exact estimator for the
tail probability of a Hawkes process and its theoretical guarantees. The latter results are proved in Section
A. Section 5 illustrates the properties of the estimator on numerical examples. Appendices B–C contain
auxiliary proofs and calculations.

2 RARE-EVENT SIMULATION VIA EXPONENTIAL TWISTING

A common approach to analyzing the tail behavior of NT leverages an asymptotic analysis. To this end,
let (Nµ)µ≥0 be a family of point processes, each Nµ with intensity X µ solving the stochastic differential
equation,

dX µ

t = κ (µ −X µ

t )dt + vdNµ

t X µ

0 = µ x0 ∈ R+ . (3)

Itô’s formula may be applied to show that (X µ ,Nµ) follows equation (1) so that (Nµ) forms a family
of Hawkes processes indexed by parameter µ .

For a fixed constant γ > 0, we consider the tail events

Eµ =
{

Nµ

T ≥ γµ
}

(4)

so that (Eµ)µ∈N forms a rare-event sequence if P(Eµ)→ 0 as µ → ∞. These asymptotics concern a large
intensity regime and the tail behavior of Nµ/µ .
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Exponential twisting entails an estimator of P(Eµ) given by,

Qθ ,µ =
1Eµ

Zµ

T (θ)
; Zµ

T (θ) = exp(θNµ

T −Λµ(θ)) (5)

for θ ∈ R and where Λµ( ·) is the cumulant generating function, i.e.,

Λµ(θ) = logE(eθNµ

T ) (6)

which takes values in (−∞,∞]. When Λµ(θ) is finite, E(Zµ

T (θ) = 1 which induces a probability Pθ = Zµ

T (θ)P
(i.e., Pθ (A) = E(1AZµ

T (θ)) for all measurable events A). This importance measure thus satisfies,

Eθ (Qθ ,µ) = P(Eµ) (7)

where Eθ denotes the expectation with respect to Pθ . This summarizes the application of the ECM in (2)
to derive the exponential twisting estimator Qθ ,µ .

The finiteness and some additional properties of Λµ in (6) govern the rate of decay of P(Eµ) via large
deviations theory.
Lemma 1 For all µ > 0 we have Λµ(θ) = µ Λ1(θ). The set,

DN = {θ ∈ R : Λ1(θ)< ∞} (8)

has a nonempty interior Do
N with 0 ∈ Do

N and Λ1( ·) is differentiable on Do
N . Moreover, ∇Λ1(θ) = γ has a

(unique) solution θ > 0 whenever

γ >

(
κT

κ − v

)
+

( √
v

κ − v

)2

(e−(κ−v)T −1) = γ0 . (9)

Proof. The first claim follows from a direct calculation of Λµ(θ) based on equations (14)–(15) below.
The existence of θ+ > 0 such that Λ1(θ+) < ∞ follows from Zhu (2013), Lemma 2 which along with
N1

T ≥ 0 justifies the claim regarding Do
N . The remaining claims follow from Dembo and Zeitouni (2010),

Lemma 2.2.5 recognizing that ∇Λµ(0) = E(Nµ

T ) = µγ0 (see Dembo and Zeitouni (2010), Exercise 2.3.25).
The latter is obtained by computing E(XT ) via (1) and using that (Nt −

∫ t
0 Xs ds)t≥0 forms a martingale to

calculate µγ0 =
∫ T

0 E(Xs)ds.

Equipped with Lemma 1 we have that the Legendre-Fenchel transform

Λ
∗
1(y) = sup

θ∈R
{θy−Λ1(θ)} (10)

has a maximizer that is attained at θ ∈DN that solves ∇Λ1(θ) = y. As a consequence of Cramér’s theorem
in R (Dembo and Zeitouni 2010, Chapter 2),

lim
µ→∞

1
µ

logP(Eµ) =− inf
y>γ

Λ
∗
1(y) =−Λ

∗
1(γ)< 0 (11)

under condition (9) (note that Λ∗
1(γ) = θγ −Λ1(θ)≥ θ(γ − γ0)> 0 for θ > 0 as in Lemma 1 and where

we applied Jensen’s inequality for the bound).
In particular, we have P(Eµ)→ 0 exponentially in µ → ∞. Moreover, to analyze the performance of

the estimator Qθ ,µ in (5), consider

liminf
µ→∞

logEθ (Q2
θ ,µ)

log P(Eµ)
= f . (12)

Jensen’s inequality reveals that f ≤ 2 and an estimator that achieves f = 2 is called logarithmically
efficient (Asmussen and Glynn 2007). This guarantees a fixed degree of precision with a number of
importance sampling trials that is subexponential in µ . Plain Monte Carlo (i.e., Q0,m = 1Eµ

) has f = 1.
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Theorem 1 (Logarithmic efficiency of ECM) Qθ ,µ achieves f = 2 for θ ∈Do
N the solution of ∇Λ1(θ) = γ

and under condition (9).

Proof. By definition (5), for any θ > 0, the numerator in (12) is bounded as,

logEθ (Q2
θ ,µ)≤ logEθ (exp(−2θγ +2Λµ(θ))) =−2(θγµ −Λµ(θ)) . (13)

Consequently, using (10)–(11) and the relation Λµ(θ) = µΛ1(θ) from Lemma 1, the theorem holds for
θ > 0 solving ∇Λ1(θ) = γ .

3 SIMULATION BIAS OF EXPONENTIAL TWISTING

Below, we omit the superscript µ in (3) and refer to the solution (X ,N) per (1) for any µ . To implement the
exponential twisting of NT we rely on the computation of the conditional transform of a Hawkes process.
For t ≤ T and (F )t≥0 the filtration generated by N,

E
(
eθ(NT−Nt) |Ft

)
= exp(p(t)+q(t)Xt) (14)

where p and q solve the ODE system (Keller-Ressel and Mayerhofer 2015),

ṗ =−κµq p(T ) = 0 ,

q̇ = κq− (eθ+vq −1) q(T ) = 0 .
(15)

These (Ricatti) equations do not admit a closed-form solution. As a consequence, we show that the
estimator Qθ ,µ in (5) is difficult to implement.

The following result, which should be standard, does not appear in the simulation literature on Hawkes
processes to our knowledge. Its proof is deferred to Appendix B and leverages Girsanov-Meyer theory.
Proposition 1 Under probability Pθ with θ ∈ Do

N , the process X solves (1) with a point process N that
admits a Pθ -intensity eθ+vqX .

Notably, N is not a Hawkes process under Pθ . Denoting by Tk the kth jump time of N and letting
h(x, t) = µ +(x−µ)e−κt , we have that

Hθ ,k(x, t) =
∫ t

0
eθ+vq(Tk+s)h(x,s)ds (16)

defines the Pθ -cumulative hazard function for Tk+1 given XTk = x.
In particular, Pθ (Tk+1 −Tk > t |XTk ,Tk) = e−Hθ ,k(XTk , t). This leads to a sequential simulation algorithm

for the Pθ -jump times (Tk)k≥1 via a sequence of i.i.d. standard exponentials (ξk)k≥1. The times (Tk)
generate the path of the point process N under Pθ , but require using (16) to solve Hθ ,k(XTk , ·) = ξk+1 in
terms of q solving the ODE in (15). The latter admits no closed-form solution. We can only compute q(t j)
at a discretization point t j by using a numerical ODE solver. We describe this approach, which generates
simulation bias, and then explain why exact samples via thinning are not practically useful.

Consider times 0 = t0 < t1 < t2 < · · ·< tJ = T for some integer J ≥ 1 and spacings δ j = t j+1 − t j. Let
q† be a right-continuous step-function approximation of q which is constant on each [t j, t j+1). Analogously
to (16) define,

H†
θ ,k(x, t) =

∫ t

0
eθ+vq†(Tk+s)h(x,s)ds (18)

so that H†
θ ,k(x, t) approximates Hθ ,k(x, t) but is easily evaluated. In particular,

H†
θ ,k(x, t j+1)−H†

θ ,k(x, t j) = eθ+vq†(t j)H(x,δ j) (19)
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Algorithm 1 (Discretization + Thinning). Generates a (biased) sample Tk+1 of the (k+1)st jump time of
N under Pθ given XTk = x, Tk = s and exponential ξk+1 with discretization times (t j). Step 3 ensures Tk+1
is exact.

1. Find index ℓ such that H†
θ ,k(x, tℓ)≤ ξk+1 and H†

θ ,k(x, tℓ+1)> ξk+1.
2. Solve H†

θ ,k(x, tℓ)+ eθ+vq(tℓ)H(xℓ, t) = ξk+1 where xℓ = h(x, tℓ− s) via,

t = Tk+1 = s+
a+W0(be−a)

κ

b =
x−µ

µ

a =
ξk+1 −H†

θ ,k(x, tℓ)

eθ+vq†(tℓ)µ/κ
−b

where W0 is the principal branch of the Lambert W function.
3. (Thinning∗) Accept Tk+1 as the exact jump time with probability,

eθ+vq(Tk+1−)/eθ+vq†(Tk+1−) . (17)

and reject otherwise, restarting from scratch at step 1.

∗Valid if q ≤ q† and note, q(Tk+1) = q(Tk+1−) and q†(Tk+1) = q†(Tk+1−) almost surely.

where H(x, t) =
∫ t

0 h(x,s)ds = µt −
(

µ−x
κ

)
(1− e−κt) and a telescoping sum can be used to compute (18).

H is the P-cumulative hazard function of Tk+1.
Algorithm 1 samples the jump times (Tk) sequentially by solving the approximation equation H†

θ ,k(XTk , t)=
ξk+1. These samples (Tk) yield a biased path of N on [0,T ] under Pθ . This allows us to assemble a biased
estimator (5) and the cumulant generating function Λµ(θ) may be precomputed by solving (15). Appendix
C details Step 2 that involves the Lambert W function.

The clear problem with Steps 1–2 of Algorithm 1 is that the (Tk) are biased samples. These are jump
times of a point process N with intensity eθ+vq†X (not eθ+vqX) which may be “thinned” to obtain an
exact samples, but at computational cost. Thinning is a form of acceptance rejection in which we accept
the sample Tk+1 with probability (17). This is accomplished by Step 3 (Thinning), but requires a call to
the ODE solver of (15), and since the Tk are random, the values q(Tk) cannot be precomputed, leading to
impractically long algorithm run times.

4 EXACT AND OPTIMAL IMPORTANCE SAMPLING

We develop an importance sampling scheme that approximates exponential twisting, is computationally less
costly than a thinning approach for the latter, and produces exact samples under the importance measure.
The basic idea is to sample a point process with intensity eθ+vq†X for a step-function q† approximating q
in (15) (per Algorithm 1), and then to correct for the resulting bias by a set of weights that are obtained
from a change of measure.

To this end, the process that performs the bias correction is given by

Wt(θ) = exp
(∫ t

0

(
eθ+vq(s)− eθ+vq†(s)

)
Xs ds

) Nt

∏
k=1

evq†(Tk)

evq(Tk)
(20)
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where we recall that the (Tk) denote the jump times of N, and we define

Z†
T (θ) = ZT (θ)WT (θ) (θ ∈ Do

N) (21)

where ZT (θ) = eθNT−Λµ (θ) is the Radon-Nikodym for exponential twisting.

Provided Z†
T (θ) is a Radon-Nikodym derivative, we remark that it has the decomposition dPθ

dP × dP†
θ

dPθ
where

P†
θ
= Z†

T (θ)P (c.f. above (7)). This decomposition highlights that the weight WT =
dP†

θ

dPθ
is a Radon-Nikodym

derivative.
The following theorem is an analog of Proposition 1 that performs the extra work to ensure P†

θ
is a

probability (this was readily granted for Pθ ).

Theorem 2 Let θ ∈ Do
N . Then, for supt≤T |q†(t)−q(t)| sufficiently small, P†

θ
= Z†

T (θ)P is an equivalent
probability under which X solves (1) with a point process N that admits the P†

θ
-intensity eθ+vq†X . Moreover,

Z†
T (θ) = exp

(∫ T

0

(
1− eθ+vq†(s)

)
Xs ds

) NT

∏
k=1

eθ+vq†(Tk) . (22)

Remark 1 δ = supt≤T |q†(t)−q(t)| sufficiently small is judged relative to the distance θ+−θ where θ+ is
the largest value for which Λ1(θ+) is finite. Our proofs guarantee that taking vδ (1+2eθ+supt≤T q(t))< θ+−θ

suffices.
The proof is based on the theory of stochastic exponentials and is deferred to Appendix A. Using (22),

we define the importance sampling estimator,

Q†
θ ,µ = 1Eµ

exp
(∫ T

0

(
eθ+vqµ

† (s)−1
)
X µ

s ds
) Nµ

T

∏
k=1

e−(θ+vqµ

† (T
µ

k )) (23)

where W µ

T denotes WT in (20) with X replaced by the X µ (solving (3)) with jump times (T µ

k ) and q†

replaced by qµ

† , a step-function approximation over a discretization 0 = tµ

0 < tµ

1 < · · · < tµ

Jµ
= T for an

integer sequence Jµ → ∞ and with max j(t
µ

j+1 − tµ

j )→ 0 as µ → ∞. A standard choice is tµ

j = jT/⌈µ⌉.
We remark that Z†

T (θ) in (22) (but not (21)) is essential for exact sampling. In particular, (22) may
be exactly evaluated (see below), and the values of the function q† may be precomputed with by solving
(15) at finitely many points.

We note that Q†
θ ,µ = Qθ ,µ/W µ

T (θ) for Qθ ,µ in (5) which highlights the connection to exponential
twisting. By the equivalence of the measure change,

E†
θ
(Q†

θ ,µ) = P(Eµ)

where E†
θ

denotes an expectation with respect to P†
θ

. This estimator further matches the variance reduction
properties of ECM (c.f., Theorem 1).

Theorem 3 (Logarithmic efficiency) Q†
θ ,µ achieves f = 2 in (12), i.e.,

liminf
µ→∞

logE†
θ

(
(Q†

θ ,µ)
2
)

log P(Eµ)
= 2

provided supt≤T |q
µ

† (t)−q(t)| → 0 and θ ∈ Do
N solves ∇Λ1(θ) = γ in (9).
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We explain why estimator in (23) may be evaluated exactly (in the form stated). Taking q† to be step
functions with q†(t) = q(t j) for t j ≤ t < t j+1, their values may be precomputed by solving the ODEs (15)
prior to the simulation. In this way, the random q†(Tk) do not inflict the computational costs that the q(Tk)
in (17) have. Letting (τ j) be the sorted times (t j)∪ (Tk), we have∫

τ j+1

τ j

(
eθ+vq†(s)−1

)
Xs ds =

(
eθ+vq†(τ j)−1

)
H(Xτ j ,τ j+1 − τ j)

with H(x, t) given below (19). Therefore, the integral in (23) may also be evaluated exactly. Indeed Steps
1–2 of Algorithm 1 may still be used to generate the jump times (Tk). These are exact under P†

θ
(but not

under P†
θ

without thinning Step 3). The correction stems from the Radon-Nikodym that P†
θ

uses.
Lastly, conditional Monte Carlo may be applied for faster algorithm run times. Since Eµ is FT∧T[γµ]

-
measurable (for (Ft)t≥0 the natural filtration of Nµ ),

E†
θ
(Z†

T (θ) |FT∧T[γµ]
) = Z†

T∧T[γµ]
(θ) (24)

which means that the algorithm may be terminated when we reach γµ events (i.e., (4)). This only requires
we replace T in (23) by T ∧T µ

⌈γµ⌉, i.e, not all of the jumps simulated by exponential twisting are necessary.
And since conditional Monte Carlo always reduces variance, simulating them is counterproductive.
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Figure 1: Log-log plot of the probability P(NT ≥ n) versus n for ECM+ and plain Monte Carlo with 99%
confidence intervals. Lower confidence limits below zero are omitted. Model parameters are in Table 2.

5 NUMERICAL EXAMPLES

We present two examples. The first compares the exponential twisting estimator Qθ ,µ in (5) (referred to
as ECM) and our exact estimator Q†

θ ,n in (23) (referred to as ECM+). The second illustrates the variance
reduction of Q†

θ ,µ relative to the plain Monte Carlo estimator 1{NT≥n} of z = P(NT ≥ n).
Our implementation of ECM follows Algorithm 1 with a uniform discretization (i.e., t j − t j−1 = δ )

without thinning (Step 3). Both ECM and ECM+ compute the twist θ via Λµ(θ) = n. For each probability
estimate ẑm, we compute (upper and lower) %99 confidence intervals via ±2.58 σ̂m/

√
m where m is the

number of trials and σ̂m is the sample variance of the estimator. The latter is used to compute the variance
reduction ratio (VRR) for any two methods. The relative error (RE) is estimated via σ̂m/ ẑm. The relative
bias is computed as |ẑm − z|/z where z is computed to a high precision with M ≫ m trials.

253



Feng, and Shkolnik

Table 1 reports on the simulation bias of the ECM. The estimated probabilities of ECM are not contained
by the confidence intervals produced by ECM+ until δ becomes small. The run times of ECM in the last
row of the table is almost three times slower than for ECM+. For the earlier rows, we see that the ECM
estimator generates significant simulation bias. The corresponding variance reduction ratios are deceptive.
While ECM appears to have lower variance, this is due to the large downward bias of the its probability
estimate. The apparent differences in variance reduction vanish for smaller δ values.

Table 2 reports on the variance reduction obtained by ECM+ relative to plain Monte Carlo. ECM+ results
in a dramatic variance reduction. Figure 1 augments Table 2 with probability estimates and confidence
intervals.

Table 1: Bias of the ECM probability P(NT ≥ 8) estimate for model parameters µ = 0.3,κ = 0.3,v = 1.0
and X0 = 0.15. The number of trials for ECM and ECM+ is set to 106 per row. The lower (LCI) and upper
(UCI) limits of the 99% confidence intervals for ECM+ are in columns 3–4.

δ ECM Prob. ECM+ LCI ECM+ UCI VR REL. BIAS (%)

2−2 5.678e–04 8.787e–04 1.198e–03 0.003 45.33
2−3 9.029e–04 1.097e–03 1.150e–03 0.192 19.63
2−4 1.064e–03 1.101e–03 1.130e–03 0.793 4.58
2−5 1.105e–03 1.098e–03 1.125e–03 0.959 0.57
2−6 1.117e–03 1.102e–03 1.128e–03 0.993 0.15

Table 2: Variance reduction ratio (VRR) and relative error (RE) estimates obtained by ECM+ relative to
plain Monte Carlo for model parameters µ = 0.5,κ = 0.25,v = 0.5 and X0 = 0.75. The reported probability
and confidence intervals (C.I.) is computed by ECM+ with δ = 1/n. Plain Monte Carlo is run for 100,000
trials to obtain results for all rows simultaneously and ECM+ takes 1/8th the time budget to complete each
row.

n P(NT ≥ n) 99% C.I. RE VRR # trials

6 6.77e–03 8.24e–04 1.15e+01 4.28e+01 1,700
7 2.84e–03 4.03e–04 1.86e+01 8.42e+01 1,400
8 1.07e–03 1.86e–04 3.11e+01 1.65e+02 1,200
9 4.40e–04 8.00e–05 4.77e+01 4.16e+02 1,100

10 1.45e–04 3.25e–05 9.13e+01 7.55e+02 1,000
11 7.48e–05 1.65e–05 1.29e+02 1.62e+03 900
12 2.47e–05 6.33e–06 1.83e+02 6.22e+03 800
13 1.12e–05 3.16e–06 2.24e+02 2.23e+04 600
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A PROOF OF THEOREMS 2 & 3

The next two lemmas are needed for the proof of both theorems. Their proofs are omitted for brevity, but
these bounds follow from first principles.
Lemma 2 supt≤T Xt ≤ max(µ,X0)+ vNT .
Lemma 3 Suppose supt≤T |q†(t)−q(t)| ≤ δ for δ > 0. Then for any α ∈R, there exist constants cα ,Cα > 0
with supt≤T W α

t ≤ exp(cα µδ +CαδNT ).
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Remark 2 The constants cα ,Cα of Lemma 3 depend on α,T and the parameters κ and v in (1) (but not
µ or δ ).

Proof of Theorem 2. By Brémaud (1981), Chapter VI, T2 the process W (θ) defined in (20) is a local
Pθ -martingale. Here, we remark that q is continuous and q†(Tk−) = q†(Tk) almost surely. Below, we show
W (θ) is further a Pθ -martingale for θ ∈ DN , so that Eθ (WT (θ)) = 1 and it then follows that the point
process N has P†

θ
-intensity eθ+vq†X (Brémaud 1981, Chapter VI, T3).

By Protter (2005), Chapter 1, Theorem 51 the local Pθ -martingale W (θ) is a Pθ -martingale provide
that Eθ (supt≤T Wt(θ))< ∞.

Applying Lemma 3 with α = 1 and δ > 0, we obtain

Eθ

(
sup
t≤T

Wt(θ)
)
= E

(
ZT sup

t≤T
Wt(θ)

)
= E

(
sup
t≤T

Wt(θ)exp(θNT −Λµ(θ))
)

≤ E
(

exp(c1δ max(µ,X0)−Λµ(θ)+(θ +C1δ )NT )
)

= exp
(
c1δ max(µ,X0)−Λµ(θ)+Λµ(θ +C1δ )

)
Choosing δ > 0 sufficiently small so that θ +C1δ ∈ DN yields the desired martingale property for

W (θ). Now, P†
θ
=WT (θ)Pθ defines a change of measure which may be written as P†

θ
= ZT (θ)WT (θ)P by

definition of P†
θ

.
We turn to establishing that Z†

T (θ) = ZT (θ)WT (θ) equals the right side of (22). Since X and q† that
determine (22) are almost surely finite on [0,T ], we have P(Z†

T (θ)> 0) = 1 so that P†
θ

and P are equivalent
measures as claimed.

We consider the Doob martingale Z = Z(θ) in (27), the density of the Radon-Nikodym derivative
ZT (θ) =

dPθ

dP of the ECM. We have,

Zt(θ) = exp
(

θNt +
∫ t

0
q̇(s)Xs ds+

∫ t

0
q(s)dXs + p(t)− p(0)

)
using that Λµ(θ) = p(0)+q(0)X0 and the integration by parts formula,

q(t)Xt = q(0)X0 +
∫ t

0
q(s)dXs +

∫ t

0
Xs q̇(s)ds (25)

Continuing by substituting the expression for p and q̇ from (15),

Zt(θ) = exp
(

θNt +
∫ t

0
(κq(s)− eθ+vq(s)−1)Xsds+

∫ t

0
q(s)dXs −

∫ t

0
κµq(s)ds

)
= exp

(
θNT +

∫ t

0
(1− eθ+vq(s))Xs ds+

∫ t

0
q(s)dXs −

∫ t

0
q(s)κ(µ −Xs)ds

)
and using that dXt = κ (µ −Xt)dt + vdNt (see (3)) yields,

Zt(θ) = exp
(

θNT −
∫ t

0
(eθ+vq(s)−1)Xsds+ v

∫ t

0
q(s)dNs

)
= exp

(∫ t

0
(Xs − eθ+vq(s)Xs)ds

) Nt

∏
k=1

eθ+vq(Tk) .

Considering WT (θ) per (20), it follows by direct calculation that ZT (θ)WT (θ) equals the right side of (22)
as required.
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Proof of Theorem 3. By definition, Q†
θ ,µ =W µ

T 1Eµ
/Zµ

T = dP
dP†

θ

1Eµ
as guaranteed by Theorem 2. Let θ > 0

be such that ΛNT (θ) = γ (per Lemma 1).
Passing from P†

θ
to P we obtain,

1
µ

logE†
θ
((Q†

θ ,µ)
2) =

1
µ

logE
(W µ

T

Zµ

T
1Eµ

)
=

1
µ

logE
(

e
−θNµ

T +Λ
Nµ

T
(θ)

W µ

T 1Eµ

)
≤− 1

µ
(θγµ −Λµ(θ))+

1
µ

logE(W µ

T 1Eµ
)

≤−Λ
∗
1(γ)+

1
µ

logE(W µ

T 1Eµ
) (26)

where Λ∗
1 is defined in (10) and the last step uses Lemma 1.

Let ρ > 1. Applying Hölder’s inequality and Lemma 3 with α = ρ

ρ−1 ,

1
µ

logE(W µ

T 1Eµ
)≤ 1

µ
log

((
E(1ρ

Eµ
)
) 1

ρ (
E((W µ

T )α)
) 1

α

)
=

1
ρµ

logP(Eµ)+
1

αµ
logE((W µ

T )α)

≤ 1
ρµ

logP(Eµ)+ cαδµ +
1

µα
logE(eαCα δµ Nµ

T )

≤ 1
ρµ

logP(Eµ)+ cαδµ +
1

µα
Λµ(αCαδµ)

=
1

ρµ
logP(Eµ)+ cαδµ +

1
α

Λ1(αCδµ)

where δµ = max j(t
µ

j+1 − tµ

j ) and we applied Lemma 1 in the last step.
As µ → ∞ we have δµ → 0, and by continuity of Λ1, we further obtain that Λ1(αCαδµ)→ 0. With ρ

(and hence α) fixed, taking µ → ∞,

limsup
µ→∞

1
µ

logE(W µ

T 1Eµ
)≤ 1

ρ
limsup

µ→∞

1
µ

logP(Eµ) =− 1
ρ

Λ
∗
1(γ)

As this inequality holds for all ρ > 1, taking ρ ↓ 1 and using (26), we obtain

limsup
µ→∞

1
µ

logE†
θ
((Q†

θ ,µ)
2)≤−2Λ

∗
1(γ) .

The same argument as in the proof of Theorem 1 completes the proof.

B AUXILIARY PROOFS

Proof of Proposition 1. We use Girsanov-Meyer theory (Protter 2005, Chapter III.8). Consider the Doob
martingale Z defined via Zt = E(ZT (θ) |Ft),

Zt = exp
(
θNt + p(t)+q(t)Xt −Λµ(θ)

)
(27)

where we applied (14). Here, (F )t≥0 is the filtration generated by N.
Let At =

∫ t
0 Xs ds, the compensator of the point process N. We find the adjustment of the local

P-martingale M = N −A upon passing to Pθ .
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Computing the quadratic variation [M,Z] of M and Z yields,

[M,Z]t = ∑
s<t

∆Ns∆Zs −
∫ t

0
Zs dAs =

∫ t

0
Zs−eθ+vq(s)dNs −

∫ t

0
ZsXs ds ,

which has the predictable P-compensator, ⟨M,Z⟩t =
∫ t

0 Zs(eθ+vq(s) − 1)Xs ds. Applying the predictable
version of the Girsanov-Meyer theorem (Protter 2005, Chapter III, Theorem 40) yields that G is a local
Pθ -martingale where

Gt = Mt −
∫ t

0

1
Zs−

d⟨M,Z⟩s = Nt −
∫ t

0
eθ+vq(s)Xs ds

This implies that the Pθ -intensity of N is given by eθ+vqX as claimed.

C INVERSE OF THE CUMULATIVE HAZARD FUNCTION

We compute the inverse of the cumulative hazard function H appearing in (19) to justify Algorithm 1, i.e.,
for ξ > 0 we solve

H(x, t) = µt −
(

µ − x
κ

)
(1− e−κt) = ξ .

We have t = ξ

µ
+ µ−x

κµ
+ x−µ

κµ
e−κt . Letting a = κξ

µ
−b where b = x−µ

µ
, equivalently

t =
a
κ
+

b
κ

e−κt . (28)

The solution for t is well known in terms of the Lambert W function, i.e.,

t =
a+W (be−a)

κ

with W computed in terms of two possible branches W0 (called the principal branch) or W−1. We show
that (28) corresponds to the principal branch.

Since t 7→ H(x, t) increases from zero to infinity continuously and ξ > 0, there is only one solution
of (28) which is positive. The principle branch W0 always takes larger values than W−1 and hence must
correspond to this positive solution. In summary, we must have t = a/κ +W0(be−a)/κ .
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