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ABSTRACT

Symbolic discovery aims to discover functional relationships in scientific data gathered from a black-box
oracle. In general, the mapping between oracle inputs and its response is constructed by hierarchically
composing simple functions. In this study, we restrict ourselves to the case of selecting the most representative
model from among a predefined finite set of model classes. The user is given the ability to sequentially
generate data by picking inputs to query the oracle. The oracle call expends significant effort (e.g.,
computationally intensive simulation models), and so each input needs to be carefully chosen to maximize
the information in the response. We propose an optimal experimental design formulation to sequentially
identify the oracle query inputs and propose a simulation optimization algorithm to solve this problem.
We present preliminary results from numerical experiments for a specific symbolic discovery problem in
order to illustrate the working of the proposed algorithm.

1 INTRODUCTION

The field of symbolic discovery is concerned with finding functional relationships in scientific data that
can be expressed by composing together simple functions. The process of selecting a composite of such
functions is guided by how well it explains an available collection of data in the form of independent
variables and the observed function value. Cornelio et al. (2023) provide a technique to choose among
the models by applying background knowledge, to determine if any model can be proven to follow from
known principles, or at least be consistent with them. Motivated by that approach, a subset of the authors
studied in Clarkson et al. (2022) the model-selection problem from a Bayesian perspective in the setting
of optimal experimental design (OED).

OED is a well-established discipline that sits at the interface of statistics, simulation and optimization.
The goal is to optimize a data acquisition system so that the informational value of the response revealed by
an expensive experimental oracle to each query is maximized. OED has seen wide implementation in diverse
fields such as neuroscience (Shababo et al. 2013), psychology (Watson 2017), statistical learning (Gal et al.
2017), physics (Melendez et al. 2020), and clinical trials (Cheng and Shen 2005).

OED primarily designs experiments to identify best-fit parameter values for predetermined functional
forms. Another variant has the goal of selecting a model out of a fixed set of parameter-free candidates.
The general goal of OED for symbolic discovery combines the optimization of data acquisition with
identifying the best fit composition of simple functions, each of which has parameters whose values have
to be determined.Here we address the simpler yet analogous OED goal of optimizing data acquisition that
helps pick the best model form (along with its ideal parameters) from a finite collection of parametric
model forms that might represent the oracle. The example studied in Section 4 illustrates how such a finite
collection may be obtained from compositions of simple functional forms.
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1.1 Model Discovery

Our general objective is to find the best explanatory representation for a noisy oracle from a finite collection
of model classes, where the oracle could be a physical process or a (possibly expensive-to-run) simulation
model. Following conventions from the OED literature, we shall refer to the oracle inputs x ∈X ⊆Rp as
design points, and the output of the oracle y ∈ Y ⊆ R as its response. Each of the model classes, which
we index using i ∈I , allows for an additive noise in capturing the response:

Yi(x) = mi(x,θθθ i)+σi ε , ∀ i ∈I , (1)

where ε represents a centered unit-variance random variable (r.v.). The parameter fitting problem for a
single model of this form has been classically studied in a nonlinear least-squares formulation dating back
to Levenberg (1944).

The form mi(x,θθθ i) of the mean (or deterministic) response distinguishes the various model classes
in I . The parameters (θθθ i,σi) ∈ Rdi ×R+ and the dimension di can differ over the model classes in I .
Additional constraints, such as integrality, nonnegativity, and so on, may also be placed on the components
of θθθ i. As a simple illustration, consider the following two-model example with x ∈ R4:

m1(x,θθθ 1) = θ1,1 xθ1,2
1 (xθ1,3

2 +θ1,4 xθ1,5
3 ) sin(θ1,6 x4) and m2(x,θθθ 2) = x1xθ2,1

2 xθ2,2
3 xθ2,3

3 xθ2,4
4 .

Here, the models are composed from simple functional forms such as exponents (e.g., xθ1,3
2 , xθ1,5

3 ) and
trigonometics (e.g., sin(θ1,6x4)) composed together hierarchically using bivariate operators such as sum-
mation and multiplication.

We consider throughout the M-closed setting (Bernardo and Smith 2009), in which the response of the
oracle is matched correctly by (an unknown) i∗ ∈I along with the true parameters (θθθ ∗,σ∗). We allow for
the σ∗ to be positive; in other words, the oracle can provide noisy responses. The main goal is to select a
sequence of design points x that efficiently identifies the correct model i∗.

1.2 Experimental Design

A typical OED set-up consists of the user adaptively choosing the design points x at which the oracle
is queried, thereby obtaining the dataset of design-response pairs (x,y). The dataset lets the user learn
the best-fit parameters (θθθ i,σi) for each model class, and more importantly pick the model class that best
reflects the oracle, denoted as the i∗-th model. Each query is expensive to evaluate, and therefore the
design-point decisions should help arrive at the correct model quickly by maximizing the information gained
in identifying i∗ (along with its parameters (θθθ ∗,σ∗)) from the responses to the queries. The two outlined
goals encapsulate an exploration-exploitation style of tradeoff wherein the chosen design-response pairs
should adequately explore the space to fit each model class adequately while promoting the (main) goal
of quickly distinguishing the correct model from the others. Our approach to the design selection problem
solves a one-step (greedy) objective of maximizing the expected information gained from the oracle query.
In particular, we maximize an objective (5) below that we show (via (4) below) is similar to the mutual
information gain objective widely utilized in Bayesian optimization (Shahriari et al. 2016; Frazier 2018).

1.3 Our Contribution

We present in Algorithm 1 below our approach to efficiently pick the correct model form along with its
best-fit parameters. The algorithm maintains a belief distribution on the correctness of each model as the
true representation of the oracle, along with a belief on appropriate parameter values for each model.

Each iteration consists of two key decision steps. The first determines the next design point to query
the oracle, which is obtained by solving for the design point x where the entropy of the belief distribution
of the oracle’s response is maximized. Section 3.1 provides a simulation optimization algorithm to find
good candidate solutions to this formulation. The second step updates the belief distributions based on
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the response revealed by the oracle at the selected design query. We follow a Bayesian posterior update
procedure in incorporating the new information. Section 3.2 details how the belief on the appropriate
parametrization of each model class is updated. These posterior distributions can exhibit features such as
multiple modes that preclude closed-form descriptions in most settings of interest, and thus we follow a
Markov Chain Monte Carlo (MCMC) approach to draw approximately close samples from the updated
distribution. In particular, we describe a procedure based on umbrella sampling (Matthews et al. 2018) that
orchestrates multiple MCMC processes to draw samples that adequately cover the modes of the posterior
distribution. Finally, the belief on each model’s correctness is updated using a multiplicative form.

Proposition 1 in Section 3.1 provides an unbiased estimator of the gradient of the entropy objective (5)
for the stochastic approximation (SA) steps (7) that enjoys canonical rates of convergence with respect to
(w.r.t.) the sampling effort when the density is available in closed form. However, the posterior beliefs can
only be accessed via approximate sampling via MCMC, which makes such unbiased estimation seem out
of reach for our method. Thus our Algorithm 1 utilizes a simultaneous perturbation-based finite difference
construction in Algorithm 2 to estimate the gradient, where common random numbers is utilized to improve
the variance properties of the estimator.

Section 4 presents preliminary results on an experimental set-up from our original motivation of symbolic
discovery. We compare three different models that are composed of the same building blocks of simple
functions. Algorithm 1 is run to identify the correct form,and our preliminary results show how quickly
the probability of correct selection grows with the information revealed at each optimized design query.

1.4 Relationship to Literature

The topic of experimental design, particularly in a Bayesian framework, is rich and well-studied; an
overview is provided by Ryan et al. (2016). The primary thrust of OED is in conducting experiments that
maximize the information gained in each iteration. Information-theoretic metrics that are used as objectives
to measure the information gained include mutual information (Drovandi et al. 2014), Jensen-Shannon
divergence (Vanlier et al. 2014), and response entropy going back to Borth (1975). The specific form
that the information-theoretic metric takes depends on the primary objective of the exercise. Simulation
meta-modeling techniques, such as the response surface methodology (Angün et al. 2002) and stochastic
kriging (Ankenman et al. 2010; Staum 2009), may aim to obtain a good fit everywhere in a compact subset
of the design space, or may desire the minima (or maxima) of the functional relationship that is being
modeled. A specific instance of this arises in Bayesian optimization formulations (Frazier 2018), which
propose to fit a Gaussian field process to represent a nonlinear objective in order to find its minima. The
mutual information maximization goal leads to an elegant design selection policy that selects design points
where the estimated confidence bounds on the objective function value is the lowest.

Our problem seeks good-fit values of model parameters from a given collection of models in order to
be able to better differentiate between them and identify the correct model among them. In (4) below, we
present a Jensen-Shannon divergence maximization objective. We establish in (5) that this is equivalent to
finding the design point x where the current estimated response Y (x) variable enjoys the maximum entropy.
Thus, our (greedy) policy seeks to experiment where we are the least certain about the oracle’s response.

Our motivation of selecting the best among a finite collection of alternatives is similar to the classical
simulation formulation of ranking and selection (R&S) (Hong et al. 2021). R&S’s goal of minimizing the
probability of incorrect selection of the best alternative bears a strong resemblance to our objective. While
R&S primarily assumes static expected reward, in our set-up the performance gap between the true model
and the alternatives depend on the design point x. The contextual bandits formulation (Bietti et al. 2021)
generalizes multi-armed bandits to allow the reward distribution to depend on a context. However, their
motivation is different in that the best alternative may itself be context dependent and the optimal policy
aims to quickly identify this relationship. In contrast, the true model in our setting is a superior fit to the
oracle at every “context” x.
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Finally, the one-step greedy design-point decision problem may be extended to a sequential decision
process with a finite or infinite horizon of queries. An optimal decision policy for this problem can be obtained
by, for instance, deducing the corresponding value function of a Markov Decision Process formulation.
Indeed, various contextual bandit formulations (Bietti et al. 2021) and Bayesian OED formulations such as
A/B testing (Rainforth et al. 2024) employ reinforcement learning to estimate such value functions. The
sample complexity to learn such an approximation is in general higher and may be prohibitively expensive
in our context of an experiment oracle, but nevertheless this is a potential area for further exploration.

1.5 Notation and Definitions

We use the boldfaced notation x for multidimensional vectors with components x j, for j = 1, . . . , p. The
notation x(k) is used to denote sequences of vectors, such as the value of the vector x in the k-th iteration.

The entropy of a density f is defined as H( f ) , E[− log f ] = −
∫

log( f (u)) f (u)du. The Kullback-
Leibler (KL) divergence between two measures with densities f and q is defined as

DKL( f ,q), E f

[
log

f
q

]
=
∫

log
f (u)
q(u)

f (u) du = −
∫

log
q(u)
f (u)

f (u) du.

When the context is clear, we will refer to the entropy of a measure or an r.v. when the term is implicitly
applied to the corresponding density, and similarly for divergence between measures and r.v.s. KL divergence
is nonnegative and zero only if f = q almost everywhere. But, since it not symmetric and does not obey
the triangle inequality, it is not a metric. The Jensen-Shannon (JS) divergence is a generalization of DKL
that addresses the symmetry issue as

DJS( f ,q) ,
1
2

DKL

(
f ,

f +q
2

)
+

1
2

DKL

(
q,

f +q
2

)
= H

(
f +q

2

)
− 1

2
[H( f )+H(q)].

More generally, it can be used to measure the divergence among any finite collection { f1, . . . , fv} of densities.
Define an r.v. V that takes values in {1, . . . ,v} with probability P(V = j) = π j and collect these in the
probability mass function (p.m.f.) πππ . Let fV represent the random mix of the f j with probability πππ . The
average density is EV fV = ∑ j π j f j(·). Then, the JS divergence of the collection (w.r.t. to πππ , also known as
the mutual information between V and fV ) is defined as

DJS({ f j, j = 1, . . . ,v}) , DJS(V, fV ) =
v

∑
j=1

π jDKL

(
f j,

v

∑
j=1

π j f j

)
= H(EV fV )−

v

∑
j=1

π jH( f j).

2 A MODEL FOR EXPERIMENTAL DESIGN

We now describe the primitives that are used to construct an algorithm to solve the sequential decision-
making problem of identifying the best-fit model to the oracle. For each model, the algorithm maintains
a joint product-form belief density fθθθ i(·) fσi(·) on the parameters (θθθ i,σi) of model i ∈I that fit the data
generated so far. Let fε represent the density of the independent noise ε in the form (1). In addition, let
the p.m.f. µµµ = (µi, i ∈I ) ∈ {µµµ ≥ 0 | ∑i µi = 1} represent our belief in the correctness of the models as
representative of the oracle.

The OED procedure iteratively updates the belief distributions to identify the correct model i∗ ∈I .
In iteration k, the algorithm chooses the best design point x(k) to query the oracle based on the beliefs µµµ(k)

and f (k)
θθθ i

and f (k)σi . This generates a response y(k) from the oracle, which in turn allows the algorithm to

update the beliefs to µµµ(k+1) and f (k+1)
θθθ i

and f (k+1)
σi . Let µµµ∗ = (0, . . . ,1, . . . ,0) be the p.m.f. with the 1 at the

index i∗. We therefore seek to ensure that the convergence µµµ(k)→ µµµ∗ happens quickly as k↗.
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For any x ∈X , the density of the response Yi(x) from the i-th model is believed to be given by:

fYi(x)(y) = fi(y) =
∫
Rdi

∫
R+

P(Yi(x) = y|θθθ i = θθθ ,σi = σ) fθθθ i(θθθ) fσi(σ) dθθθ dσ , ∀i ∈I ,

=
∫
Rdi

∫
R+

1
σ

fε

(
y−mi(x,θθθ)

σ

)
fθθθ i(θθθ) fσi(σ) dθθθ dσ , ∀i ∈I , (2)

where we use the notation fi to denote fYi , and the last expression uses a change of variable y/σ = ε . Our
overall belief is that the response Y (x) satisfies:

fY (x)(y) = ∑
i∈I

fi(y) P(i = i∗) = ∑
i∈I

µi fi(y). (3)

This combines our belief fi on the individual densities with the belief µµµ on the correctness of the models.
Define an integer r.v. I that takes values in I following the belief µµµ . The overall response Y (x) is

thus also the average of the individual model responses Yi(x), i ∈I , w.r.t. I, i.e., Y (x) = EIYI(x), of the
probabilistic mixture YI(x) with mixture probabilities µµµ . Recall that, by assumption, the correct response
is Yi∗(x). We measure the gap in performance of the belief µµµ at design point x via the KL divergence
DKL(Yi∗(x) ‖ EIYI(x)). This is exactly zero everywhere in x ∈X only when the belief µµµ matches µµµ∗.

Our best guess for µµµ∗ is µµµ , and thus the empirical expected performance gap at the design point x is:

∑
i∈I

µi DKL(Yi(x)‖EIYI(x)) = EIDKL(YI(x)‖EIY (I(x))) = DJS(I,YI(x)),

where the last equality recognizes that this is the same as the JS divergence of the mixture YI(x). This
motivates the choice of the next design point x(k+1) to be the argument of the optimization problem:

x(k+1) = argmax
x

DJS(I(k),YI(k)(x)) , (4)

where I(k) is the value of the r.v. I in the k-th iteration. This chosen design point x(k+1) highlights the
divergence of µµµ(k) from µµµ∗.

The objective (4) can be simplified by applying the fact that the overall belief in the response Y (x)
can be written as the expectation EIYI(x). We note from the definition of the JS divergence that:

DJS(I,Y ) = H(EIYI)−EIH(YI) = H(Y )−∑
i

µiH(Yi)

= H(Y )−∑
i

µi
(
Eθθθ i,σi [H(ε)+ log(σi)]

)
= H(Y )−H(ε)−∑

i
µiEσi [log(σi)].

The third line follows from the second since the entropy of the conditional Yi|θθθ i,σi depends only on σiε .
From the viewpoint of optimization w.r.t. the design point x, the left hand is equivalent to the first term

on the right. Thus, we can equivalently obtain the next query design by solving the formulation:

x(k+1) = argmax
x

{
z(x) , H(Y (k)(x)) =−EY (k)(x)[log fY (k)(x)(x)]

}
. (5)

Intuitively, we want the design point x where the response Y (x) shows the highest entropy (i.e., the least
certainty), given our current inference from the information available to us.

This objective also bears a superficial resemblance to a standard log likelihood maximization problem
encountered in fitting distributions. However, note that the expectation taken in (5) is w.r.t. the density
fY (x)(x) itself while it is the underlying distribution of the observable data in the standard formulation.
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3 OPTIMIZATION ALGORITHM

The correct-model identification algorithm consists of three main steps within each iteration. First, the user
decides on the optimal design point x(k) by finding a good candidate solution to the formulation (5). Next,
the oracle is queried on this design point. Finally, the resulting oracle response y(k) is used as additional
information in updating the inference on the parameters of each model, as well as our belief on which
model is correct. Refer to Algorithm 1 below, each step of which is detailed in the subsequent subsections.

We note at the outset that the third step performs an update to the belief distributions on the parameters
of each candidate model. We follow a Bayesian posterior approach, and the updated posterior does not
necessarily have a closed-form expression. This is especially true for the parameters of the incorrect models.
We use an MCMC procedure to generate samples from the posterior distribution by constructing an MCMC
process whose stationary distribution is the desired posterior. It is in general hard to obtain unbiased
steady-state samples via simulations of MCMC processes, so we will maintain an approximation of the
posterior-inferred distribution for the parameters (θθθ i,σi) of each model that suffers from the bias induced
by the transience of MCMC sample paths. In particular, this takes the form of an empirical distribution
over a finite set of samples obtained by applying a deterministic stopping rule to the MCMC sample paths.
This is akin to a particle simulation approach to Bayesian inference (Drovandi et al. 2014).

Denote by Θ̂ΘΘ
(k)
i = {(θθθ (k)

i,n ,σ
(k)
i,n ) , n = 1, . . . ,N} a sample set of size N obtained from the MCMC-based

Bayesian posterior sampling at iteration k. (While our approach can accommodate differing sample set
sizes Ni, i ∈I , we focus on the case of the same sample size N for all i ∈I , to elucidate the exposition.)
Then, the joint density fθθθ i(·) fσi(·) is approximated by (1/N) ∑n I(θθθ i = θθθ

(k)
i,n , σi = σ

(k)
i,n ), where I is the

indicator function. Consequently, we obtain an approximation for the response from the i-th model as

f̂ (k)Yi(x)(y) = f̂ (k)i (y) =
1
N

N

∑
n=1

1

σ
(k)
i,n

fε

(
y−mi(x,θθθ

(k)
i,n )

σ
(k)
i,n

)
, (6)

with change of variable ε = y/σ . The approximation to the density of the overall response variable Y is
a mixture of the individual densities with our inferred probabilities µ̂µµ

(k), given by f̂ (k)Y (y) = ∑i µ̂i f̂ (k)i (y).
We therefore have a form for f̂Y which is similar to a kernelized approximation, with fε as the kernel.

3.1 Design Point Selection

We obtain a good candidate solution to (5) using the SA iterations given in (7), where G(·) assembles an
SA of the gradient of the entropy term H(Y (x)), and γt is the standard gain, step-length, or learning rate
sequence. The following result establishes an unbiased estimator for the gradient of the entropy of an r.v.
Proposition 1 Let S , S(x) ∈ Y ⊆ R be a one-dimensional r.v. with density px(y) that is parametrized
by x ∈X ⊆ Rd . Define Lx(y),− log px(y) as the negative log density of S(x). Assume that the density
satisfies two conditions almost everywhere in x ∈X :

A. the gradient ∇xLx(y) exists and is well defined; and
B. the product px(y) Lx(y) is Lipschitz continuous, with a finite mean (stochastic) Lipschitz bound.

Let z(x) = ES(x)[H(S(x))] be the entropy of S(x). Then, the gradient of z(x) at any x0 ∈X is given by

∇xz(x0) = ES(x0) [(1−Lx0(y)) ∇xLx0(y)] . (8)

Proof of Proposition 1 We employ the likelihood method (Section VII.3 in Asmussen and Glynn 2007)
to compute the gradient of z(x) at x0. We start by expressing the objective function as

z(x) = ES(x) [H(S(x))] = −
∫

y
log px(y) px(y)dy = ES(x0) [Lx(y) Rx,x0(y)] ,
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Algorithm 1: OPTIMAL-EXPERIMENTAL-DESIGN(K)
For iterations k = 1,2, . . . ,K do

1. Design Point x(k) Selection: Find an approximate maximizer to the objective H(Y (x)) in (5).
Start with initial iterate x(0), gain sequence {γt}, and finite-difference sequence {ht}.
For t = 1,2, . . . do
(a) Obtain gradient estimate G(x(t+1))←ENTROPYGRADIENT

(
x(t+1),{Θ̂ΘΘ(k)

i , i ∈I }, µµµ(k), ht , L
)

.
(b) If stopping criterion satisfied, then Set T ← t and break.
(c) Set

x(t+1) = x(t) + γt G(x(t)). (7)

end for
Set next query design as x(k)← x(T ).

2. Oracle Query: Obtain the (noisy) true response y(k) from the oracle at design point x(k).
3. Posterior Updates:

(a) Update empirical approximations f̂ (k+1)
θθθ i

and f̂ (k+1)
σi of belief distributions f (k+1)

θθθ i
and f (k+1)

σi of

parameters via particle sets {Θ̂ΘΘ(k+1)
i , i ∈I } for each model i ∈I using the MCMC procedure

outlined in Section 3.2 to implement approximate Bayesian inference.
(b) Update belief µµµ(k+1) of i ∈I as the (unknown) true model i∗ via multiplicative update (10).

end for
return i∗← argmaxi µ

(K)
i .

end algorithm
Algorithm 1: Sketch of the OED iterative procedure with input K specifying the total budget of queries.

where Rx,x0 , px/px0 is called the likelihood ratio of px w.r.t. px0 , and the expectation in the last term is
also w.r.t. px0 . The gradient of the objective z(x) at x = x0 can be obtained via interchange of the integral
from the expectation with the differential operator, which is allowed under Assumption B. Thus, the u-th
component of the gradient of the entropy z(x) of S(x) is given by[

∇xz(x)|x=x0

]
u
=

d
dxu

ES(x0)[Lx(y) Rx,x0(y)]
∣∣∣∣
x=x0

= −
∫

Y

d
dxu

(
log px(y)

px(y)
px0(y)

)∣∣∣∣
x=x0

px0(y)dy

=−
∫

Y

(
1

px(y)
d px(y)

dxu

px(y)
px0(y)

+ log px(y)
1

px0(y)
d px(y)

dxu

)∣∣∣∣
x=x0

px0(y)dy

=−
∫

Y
(1+ log px0(y))

d px0(y)
dxu

1
px0(y)

px0(y)dy = −ES(x0)

[
(1+ log px0(y))

d (log px0(y))
dxu

]
.

Here, the interchange in the first line is justified by the Lipshitz continuity of px Lx, and the last expression
follows from applying the differential to Lx0(y). This leads to the expression in (8).

Proposition 1 estimates the required gradient of the objective in (5) as an expectation of a function of
the pdf px0 w.r.t. to the same density. This also implies that the estimator will enjoy the canonical fastest
(square-root) rate of convergence w.r.t. the sample size when the density px0 is available in closed form.

In our setting, we do not have such an explicit form available for the density fY (x) of Y (x). Indeed, it is
defined only implicitly as the weighted sum of the marginals emerging from (2) (via (3)) by integrating out
the belief distributions of the parameters θθθ i and σi. The kernel density like estimator f̂Y (x) is constructed
from samples of θθθ i and σi with fε serving as the kernel function. Nonparametric estimation of functionals
of densities has been of deep interest to the simulation and statistics community; see Beirlant et al. (1997).
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The main nonparametric estimation methods use a similar kernel density estimation along with some form
of resubstitution estimation (Laurent and Massart 2000; Jones 1992). Their best rate of convergence
are strictly slower than the canonical rate. Additionally, we can only sample from an approximately
close distribution to the Bayesian posterior by using MCMC (see Section 3.2), potentially degrading the
convergence rate. Teasing out this interplay between MCMC convergence and kernel density estimation
convergence remains of high interest.

For the purpose of this article, we sidestep this issue for the moment by using a simultaneous perturbation
finite difference (Spall 2001) gradient estimator. Algorithm 2 outlines our estimator. Step 1 samples a unit
vector uniformly from the surface of a unit ball in Rp, and Step 2 defines the design points where the entropy
objective z(·) is estimated in Step 4, leading to the simultaneous perturbation stochastic approximation
(SPSA) gradient approximation in Step 5. In Step 3(d), we exploit the form (1) to construct the estimator
using common random numbers to reduce its variance. The sampling effort in constructing G(x) is thus
the same as it would be if we were able to directly implement (8) using a closed-form expression for fY (x).

Algorithm 2: ENTROPYGRADIENT(x, {Θ̂ΘΘi, i ∈I }, µµµ, h, L)

1. Sample a standard Gaussian ∆∼N (0, I) in Rp and normalize to unit direction ∆← ∆

‖∆‖2
.

2. Set x← x−h∆ and x̄← x+h∆.
3. Generate a set of sample pairs {(y

`
, ȳ` ), `= 1, . . . ,L} from Y ∼ f̂Y .

For `= 1, . . . ,L:
(a) Sample a model index i from the discrete I ∼ µµµ .
(b) Sample a parameter sample index n∼U {1, . . . ,N}.
(c) Sample ε ∼ fε .
(d) Set y

`
← mi(x,θi,n) + σi,nε and ȳ` ← mi(x̄,θi,n) + σi,nε .

end for
4. Estimate z(x) =− 1

L ∑
L
`=1 log f̂Y (y`) and z(x̄) =− 1

L ∑
L
`=1 log f̂Y (ȳ`).

5. Estimate Gradient G(x) with u-th component Gu(x)← z(x̄)−z(x)
2h∆u

for u = 1, . . . ,d.

return G(x)
end algorithm
Algorithm 2: Procedure to estimate gradient of entropy z(x) objective in (5), with input x specifying the
design point where the gradient is desired, particle sets {Θ̂ΘΘi, i ∈I } representing an approximate sample
from Bayesian posteriors of parameters, p.m.f. µµµ is the current belief in the correctness of each model i as
i∗, the h as the finite difference width, and L defining the number of samples to use in the SPSA estimation.

We expect that the convergence of the SA iterations (7) to a first-order optimal solution should be
near the best rate of t−1/3 achieved by centered-difference Keifer Wolfowitz algorithms (Asmussen and
Glynn 2007, Ch VIII.3). We provide a brief informal sketch of the arguments. This rate result needs
the entropy estimators in Algorithm 2 to converge at the canonical rate L−1/2, which can be achieved for
the resubstitution-based entropy estimator that uses kernel density estimators if the density f (k)i satisfies
the Holder’s inequality with a sufficiently strong coefficient (Hall and Morton 1993). The convergence of
the distribution of the MCMC iterates to the parameter posterior too can be exponentially fast (in a total
variation sense) with sufficient continuity conditions (such as the Holder’s inequality) on the likelihood
probability model fε . Thus, estimation of entropy can attain near canonical rates, with a small bias from
the finite-iterations termination of the MCMC posterior sampler.
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3.2 Post-Query Belief Updates

We follow a Bayesian inference viewpoint in updating our belief distributions on model parameters θθθ i and
σi for each model i, as well as the belief µµµ on the correctness of the models. We maintain a product-form
joint density fθθθ i,σi(·, ·) = fθθθ i(·) fσi(·) on Rdi×R+ of the likely values of θθθ i and σi given the observational
data. The Bayes’ update rule for the belief on latent variables such as θθθ i and σi posits, upon observing the
k-th data pair (x(k),y(k)), that:

f (k)
θθθ i

(θθθ) f (k)σi (σ) ∝ P(Yi(x(k)) = y(k) |θθθ ,σ) f (k−1)
θθθ i

(θθθ) f (k−1)
σi (σ), (9)

where the first term represents the likelihood of y(k) under the i-th model given parameters θθθ and σ , and
it is derived via (1) as fε((y(k)−mi(x(k),θθθ))/σ). As is usual for Bayesian update rules, the normalizing
constant for the posterior is hard to compute in closed form in general, and so generating an i.i.d. sample
set ΘΘΘi is not straightforward. We follow the MCMC literature in sampling the posterior.

A key difficulty in using MCMC procedures lies with the pathologies of the posterior distribution, for
example a multi-modal form where the MCMC struggles to jump between modes. Shalizi (2009) study
the properties of the Bayesian update rule as the number of samples grow. They show that the posterior
distribution concentrates around the solution to the maximum (negative) log likelihood estimator (MLLE):

max
θθθ ,σ

1
K

K

∑
k=1

[
− logP(Yi(x(k)) = y(k) |θθθ ,σ)

]
a.s.−−−→

K→∞
max
θθθ ,σ

EYi∗ [− logP(Yi(x) = y |θθθ ,σ)] .

When the model is correctly specified and that the optimal parameters θθθ
∗ and σ∗ are unique, they further

show that this convergence holds almost surely (a.s.) to atoms centered on these values. When the model
class is misspecified, the posterior converges to measures that live on the local optima of the MLLE problem.

We recognize the possibility of scenarios with multi-modal posterior distributions for θθθ i and σi where
regular sampling approaches might encounter difficulties. In such cases, we propose to adapt umbrella
sampling (Matthews et al. 2018). For clarity, we define θ̄θθ , (θθθ ,σ) and drop the superscripts (k). The θ̄θθ is
to be drawn from a multi-modal posterior f (θ̄θθ) = P(θ̄θθ |Y ) ∝ P(Y (x) = y | θ̄θθ)P(θ̄θθ) defined via Bayes rule.
Suppose {Ξo}M

o=1 is a partition of the support set of θ̄θθ into (possibly overlapping) sub-regions such that⋃
o Ξo spans the support space. We can then define umbrella functions {ψo(θ̄θθ)}M

o=1, which are nonnegative
biasing functions that are usually normalized or have known integrals, such that ψo(θ̄θθ)> 0 when θ̄θθ ∈ Ξo. If
modes of the posterior are clearly identifiable from exploratory sampling runs, e.g., by solving the sample
version of the MLLE formulations given above, then umbrella functions can be placed at or near the modes.

Each subregion Ξo defines a biased distribution fo(θ̄θθ) ∝ f (θ̄θθ)ψo(θ̄θθ). The umbrella functions ψo flatten
the posterior within their respective regions and allow sampling from underrepresented areas, like less
probable modes. For each umbrella function ψo, o ∈ {1, . . . ,M}, we sample θ̄θθ o,q1 , . . . , θ̄θθ o,qm ∼ fo(θ̄θθ). Note:

f (θ̄θθ) ∝
fo(θ̄θθ)

ψo(θ̄θθ)
=

P(θ̄θθ | Y )ψo(θ̄θθ)

ψo(θ̄θθ)
= P(θ̄θθ | Y ).

Thus, the samples from the individual umbrella densities fo can be combined together to reconstruct
samples from the original posterior by reweighting the samples appropriately. We next introduce variables
go, o ∈ {1, . . . ,M}, as an offset (normalization constant in the log domain) for each umbrella function ψo

and define the weight of each sample by wo,q =
[
∑

M
r=1 nr exp(gr)ψr(θ̄θθ o,q)

]−1
.

These weights can be used in approximating quantities that are functions of the posterior f . For instance,
we approximate the expectation of a function v(θ̄) as E f [v(θ̄θθ)]≈ ∑

M
o=1 ∑

qo
q=1 wo,qv(θ̄θθ o,q). The values of gr

are determined according to the weighted histogram analysis method (WHAM) (Kumar et al. 1992) or the
multistate Bennett acceptance ratio estimator (MBAR) (Shirts and Chodera 2008).
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The Bayesian update formula also provides us with a method to update our belief in the likelihood
that model i is the correct model for the oracle after observing y(k) at x(k):

µ
(k)
i ∝ P(Yi(x(k)) = y(k)) µ

(k−1)
i . (10)

Here, the model-based likelihood P(Yi(x(k)) = y(k)) is given by fi from (2). In practice, we substitute in f̂ (k)i

from (6) once the new sample set ΘΘΘ
(k)
i has been generated. Note that (10) takes the form of a multiplicative

update of µ(k). We remark here that multiplicative update algorithms are a mature field of research that
includes methods such as (Ada-)Boosting weak learners, and so on.

4 NUMERICAL EXPERIMENTS

This section presents preliminary results on our implementation of Algorithm 1 on an example with x∈R4.
We pick an equation from Feynman’s lecture notes on damped oscillations of the form E = cme1(ωe2 +ω

e3
0 )ze4 .

This model has four inputs x , (m,ω,ω0,z) and five parameters θθθ , (c,e1,e2,e3,e4), and the true model
i∗ has parameters θθθ

∗ = (c = 1/4, e1 = 1, e2 = 2, e3 = 2, e4 = 2). The noise parameter is set to σ∗ = 7.5.
The above equation can be composed from four simple functions, namely me1 , ωe2 , ω

e3
0 , and ze4 along

with the multiplicative parameter c in front. Since each of the four models are exponential functions,
we impose nonnegativity constraints on both x and θθθ to avoid numerical instability. The compositional
symbolic discovery algorithm described in (Cornelio et al. 2023) hierarchically constructs and evaluates
expressions generated by applying pairwise operators to this set of four simple functions. We pick two:
E = cme1ωe2ω

e3
0 ze4 , and E = cme1(ωe2 + ze4)ωe3

0 . We use these three as the set of model alternatives, with
i∗ = 1.

Algorithm Settings. A particle count of N = 3000 is chosen to represent the empirical approximation
of the posteriors f̂θθθ i(·) f̂σi(·) at every iteration. The initial prior is sampled uniformly from the hypercube
[0,5.0]5 and a Hamiltonian Monte Carlo (Ghosh et al. 2023) implementation is used to sample from the
updated posteriors of the parameters. The SA gain sequence γt and the SPSA finite-difference variable ht

are set using typical forms: γt = 0.5/d t
5e and ht = 0.05/d t

5e
(1/3). We take L = 1000 samples in constructing

the gradient estimates for the response entropy in the SPSA algorithm. SA is limited to T = 20 iterations.

Figure 1: Comparison of Algorithm 1 implementing our OED approach with an approach that generates
design points uniformly at random. The three figures respectively plot the belief µ

(k)
i , i = 1,2,3 that model

i is the true model as k grows. The lines in bold plot the average belief over 30 replications.

Figure 1 presents the results obtained from Algorithm 1 for the problem setting outlined above. Plots
of the evolving belief that each of the three models represent the oracle are respectively presented in the
three panels. The lines in bold plot the average belief over 30 replications. The OED algorithm is compared
to a scheme RANDOM, which replaces Step 1 of Algorithm 1 with sampling to pick the design queries,
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generating each design point uniformly from the hypercube x(k) ∼U [0,6.75]4. For a fair comparison, the
SA algorithms are also restricted to the same hypercube. The probability of correct selection grows for
both approaches, and the optimization approach reaches a higher value distinctly and quickly.

5 CONCLUSIONS AND FUTURE WORK

In this work, we studied an interesting OED formulation that arises from an exercise in symbolic discovery
of functional relationships in scientific data. The algorithm presented here combined an SA algorithm with
an SPSA-based gradient derived from steady-state samples of an MCMC procedure. Many avenues of
fruitful pursuit emerge for future work. The combination of MCMC sampling of a steady-state distribution
and estimation of the gradient of a function defined over them poses a challenging convergence analysis
question. Another promising direction is in studying the convergence of the correct model identification
problem formally using a metric such as minimizing the probability of incorrect model selection like in
the ranking and selection literature (Hong et al. 2021). We have limited our MCMC implementation to
plain Hamiltonian Monte Carlo in the experiments presented in Section 4 as an expedient. In follow-up
work, we will implement the full umbrella sampling technique outlined in Section 3.2 to further improver
convergence in the numerical results. Finally, the interaction of this OED algorithm with the programmatic
symbolic discovery problem (e.g., Cornelio et al. 2023) remains high in our list of future prerogatives.
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