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ABSTRACT

We study chance-constrained optimization problems (CC-OPT) with regularly varying distributions where
risk is measured through Conditional Value-at-Risk. The usual probabilistic constraints within CCOPTs
have limitations in modeling and tractability, motivating a less constrained conditional value-at-risk CC-
OPT. We design a stochastic gradient descent-type algorithm to solve this relaxation, combining techniques
and theory from the optimization and rare-event simulation literature. Rare-event simulation techniques
and a precise preconditioning motivated through an epi-convergence argument were employed to find the
optimal solution as the chance constraints become tighter. We show that our method does not depend on
the constraints’ rarity for regularly varying distributions. Theoretical and numerical results concerning two
chance-constrained problems illustrate the advantages of our new method over classical stochastic gradient
descent methods with a near-constant runtime complexity as a function of the rarity parameter.

1 INTRODUCTION

Many systems face the challenge of achieving optimal utility while also satisfying risk constraints with
high probability. Such problems can be formulated into chance-constrained optimization problems whose
objective is to satisfy and solve the following optimization problem.

minimize cccT xxx
subject to Prob{φ(xxx,ξξξ )> 0} ≤ δ

xxx ∈Rm
++,

(CCPδ )

where xxx ∈Rm is an m-dimensional decision variable, and ξξξ ∈Rd is an d-dimensional random vector. The
elements of ξξξ are often referred to as risk factors; the function φ :Rm ×Rd →R is often assumed to be
convex in xxx and models a cost constraint; the function cccT xxx represents the cost associated with the decision
xxx; the parameter δ > 0 is the risk tolerance level.

One of the main challenges of the chance-constrained optimization (CCPδ ) is in the case of extreme events
(corresponding to when δ → 0). Many real-world applications require such fine levels of precision within
the probabilistic constraint e.g., airlines requiring probabilistic constraints on the order of 10−5 ∼ 10−10.
Therefore, beyond solving general chance-constrained optimization problems, it is paramount to solve rare
event chance-constrained problems with high computational efficiency.

Significant effort has been put into methods to find the solution to these chance-constrained optimization
problems. In complete generality, these problems are provably NP-hard (Luedtke et al. 2010). The works
of Tong et al. (2022) use large deviation principles to construct convex tractable analytic approximations.
However, such approaches tend to be limited to risk factors with Gaussian or elliptical distributions. Other
major approaches include the scenario approach which approximates the chance-constrained problem with
deterministic constraints φ(xxx,ξξξ (i)

) < 0 (Calafiore and Campi 2005; Nemirovski and Shapiro 2006) and
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the sample-average approximation approach which approximates ξξξ with a sampled empirical distribution
(Luedtke and Ahmed 2008).

While chance-constrained problems such as (CCPδ ) offer terrific insights from a modeling perspective, the
non-convexity of the probabilistic constraint makes the optimization problem computationally challenging.
Blanchet et al. (2024) propose a sampling procedure for regularly varying distributions to augment and reduce
the sample complexity of the scenario approach for CCPδ as δ → 0. However, even in problem instances
where computational complexity can be decreased, the heavy restrictions from constraint compliance result
in impractical feasible sets and subsequently unreasonable optimization values as the probabilistic constraint
becomes tighter. For that reason, a conditional value-at-risk (CVaR) relaxation scheme (Rockafellar and
Uryasev 2000) is commonly used to alleviate such problems. The conditional value-at-risk (CVaR) at
level α ∈ (0,1) for a loss random variable X with density is defined as CVaRα {X}= E[X |X ≥ VaRα {X}]
where VaR1−δ {X} is the (1− δ ) quantile of X . The CVaR constraint is more conservative than the
chance constraint problem, however this optimization problem is convex and more tractable (Nemirovski
and Shapiro 2007). Lemma 1 allows for the reformulation of optimization problems involving CVaR
(Rockafellar and Uryasev 2002).
Lemma 1 For δ ∈ (0,1), define hδ :R→R as hδ (z) = z+ 1

δ
E [(X − z)+] ,where (t)+ = max(0, t). Then

we have hδ is finite and convex and

CVaRδ {X}= min
z∈R

hδ (z), VaRδ {X}= min{z ∈R : hδ (z) = CVaRδ {X}}.

We study the constrained CVaR optimization problem whose epigraphical reformulation is:

f ∗(δ ) = min
xxx∈Rm

++

{
cccT xxx

∣∣ CVaR1−δ {φ(xxx,ξξξ )} ≤ 0
}
= min

xxx∈Rm
++

z∈R

{
cccT xxx

∣∣∣∣ z+
1
δ
E
[
(φ(xxx,ξξξ )− z)+

]
≤ 0

}
(HC-CVaRδ )

We present an algorithm based on importance sampling which efficiently solves (HC-CVaRδ ) to relative
accuracy for regularly varying random variables as δ → 0. Blanchet, Jorritsma, and Zwart (2024) derive
asymptotic relationships between the solutions of (CCPδ ) and the solutions of both the scenario approach
and CVaR relaxation as δ → 0. However, their paper does not address optimization procedures to solve
the problem, but only the optimality gap present from both relaxations of program (CCPδ ).

Formally, for sufficiently small δ , our algorithm outputs a solution f (n)(δ ) such that:

| f (n)(δ )− f ∗(δ )|
f ∗(δ )

< ε

with a non-asymptotic runtime independent of δ . Here, n denotes the iteration count; that is f (n)(δ )
represents the solution obtained after n steps of the iterative scheme that will be developed in the Section 4.
Section 2 introduces assumptions for our CVaR problem and two illustrative running examples. Section 3
gives a convergence argument to determine the optimal critical scaling of both the optimal decision xxx∗ and
the optimal Lagrange multiplier λ ∗ for the hard-constrained problem. Section 4 uses the scalings derived
in Section 2 to define and iteratively solve a preconditioned optimization problem which can be solved
with constant sample complexity as a function of δ . Doing so requires oracle access to a state-dependent
importance sampler to construct samples for our optimization procedure. Section 5 presents numerical
experiments for our algorithm.

1.1 Notation

We use R++ to denote the set of positive real numbers. We use 111 to denote a column vector with all ones
in the entries. For a matrix AAA, we use AAAT to denote its transpose. The identity matrix is denoted by III. We
use F̄−1

X (δ ) as shorthand for inf{x ∈R|P(X > x)≤ δ} i.e the 1−δ quantile of the random variable X . We
use I(·) to denote the indicator function of an event.
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2 ASSUMPTIONS AND RUNNING EXAMPLES

We assume that the distribution of the risk factor ξξξ is a regularly varying variable.
Definition 1 A d-dimensional random vector ξξξ ∈ Rd is regularly varying with index α if there exists a
random vector Θ ∈ Sd−1 such that for all t > 0, we have

P(|ξξξ |> tu,ξξξ/|ξξξ | ∈ ·)
P(|ξξξ |> u)

→ t−αP(Θ ∈ ·) as u → ∞. (1)

We refer readers to (Resnick 1987) for more information on multivariate regularly variation. The
intuition behind the representation above is that for sufficiently large values of ||ξξξ ||, ξξξ , the random variable
can be separated into a radial component that follows 1-dimensional Pareto distribution and a random
angular component on the unit sphere independent of the radial component.
Assumption 1 The risk factors ξξξ are drawn from a regularly varying distribution with limit measure Θ

and tail index α > 2.
Assumption 2 Suppose that φ(xxx,ξξξ ) is convex is xxx and satisfies supxxx∈R++

E[||∇xφ(xxx,ξξξ )||2]≤ L2.

While the constraint of supxxx∈R++
E[||∇xφ(xxx,ξξξ )||2] ≤ L2 may seem restrictive, we focus on 2 different

examples for our chance-constrained programs, defined by risk factors φ(xxx,ξξξ ) which satisfy this condition.
Additionally, as this assumption is used in bounding the algorithmic runtime, it can be relaxed to be
supxxx∈Oδ

E[||∇xφ(xxx,ξξξ )||2]≤ L2 where Oδ is defined in the sequel.

2.1 Portfolio Optimization

Suppose that there are m different assets to invest in. Let xxx = (xxx1, ...,xxxm) denote the amount of dollars
invested in different assets. The investments have mean return µi and a random loss ξξξ i. The portfolio
optimizer’s goal is the maximize the mean returns µµµT xxx with a portfolio risk constraint CVaR1−δ

{
xxxT ξξξ

}
≤ η

for a constant η > 0. We have the equivalent problem of

min
xxx∈Rd

++

−µµµT xxx

subject to CVaR1−δ {φ(xxx,ξξξ )} ≤ 0,
(2)

where φ(xxx,ξξξ ) = xxxT ξξξ −η . Without loss of generality, we assume that η = 1 for this problem.

2.2 Salvage Fund

Suppose that there are m firms in a financial system. Let ξξξ = (ξξξ 1,ξξξ 2, ...,ξξξ m) be the losses that each firm
incurs and is responsible to pay. Let Q = (Qi, j : i, j ∈ {1, ...,m}) be a deterministic matrix where QQQi, j
denotes the amount of money received by firm j when firm i pays one dollar. We assume that Qi, j ≥ 0
and ∑ j Qi, j < 1. Let xxx be the vector that a separate entity, the salvage fund, allocates to each firm. Let
yyy denote the final settlement amounts that each firm holds after all interactions between firm payments
have happened. This settlement should satisfy that yyy ≤ ξξξ (no firm has more than what they owe) and
(I−QT )yyy ≤ xxx (no firm pays more than what they were given by the salvage fund). Let y∗(xxx,ξξξ ) be the
maximal value of 111T yyy such that both conditions are satisfied. So,

y∗(xxx,ξξξ ) =
argmax

yyy
111T yyy

subject to (III −QQQT )yyy ≤ xxx,yyy ≥ 0,yyy ≤ ξξξ .

We say firm i bankrupts if ξξξ i−y∗i ≥ mi where mmm ∈Rd
+ is a given vector. We wish to ensure that bankruptcy

does not happen with probability 1−δ while minimizing the costs of the salvage fund. This reduces to

3228



Senapati, Blanchet, Zhang, and Zwart

the chance-constrained problem of

min
xxx

111T xxx

subject to P(ξξξ − y∗(xxx,ξξξ )≤ mmm)≥ 1−δ .
(3)

Now, consider the following function:

φ(xxx,ξξξ ) =
min
b,yyy

b

subject to (ξξξ − yyy−mmm)≤ b111,(III −QQQT )yyy ≤ xxx,yyy ≥ 0.
(4)

Notice that φ(xxx,ξξξ )≤ 0 iff ξξξ − y∗(xxx,ξξξ )≤ mmm. Then, the problem of

min
xxx∈Rd

++

111T xxx

subject to CVaR1−δ {φ(xxx,ξξξ )} ≤ 0
(5)

is the CVaR relaxation of finding the minimum amount the salvage fund must pay.

3 SCALING LAWS AND ASSOCIATED PRECONDITIONING

The goal of this section is to construct a reformulation of (HC-CVaRδ ) whose solution is independent of
δ when δ is sufficiently small. We first aim to construct a set Oδ that satisfies three key properties:

1. It contains the feasible set, specifically Fδ := {xxx | CVaR1−δ {φ(xxx,ξξξ )} ≤ 0} ⊆ Oδ .
2. It is a compact subset of [0,∞)m.
3. It admits a scaling structure Oδ = βδ Ō, where βδ is a tight scaling parameter and Ō ⊂ Rm is a

fixed, compact set with non-empty interior that is independent of δ .

In the context of the portfolio optimization problem, we observe that for each i, the inequality η ≥
CVaR1−δ

{
xxxT ξξξ

}
≥ xxxiCVaR1−δ {ξξξ i} holds. This motivates the introduction of the set

Oδ =
{

xxx ∈ Rd
++

∣∣ xxxi ≤ η/CVaR1−δ {ξξξ i} ∀i ∈ [d]
}
.

By construction, Fδ ⊆ Oδ . Furthermore, Oδ is compact and admits the scaling representation Oδ = βδ Ō,
where the scaling factor is given by βδ = CVaR1−δ

{
111T

ξξξ
}−1 ≈ δ 1/α since the (1−δ )-quantile and CVaR

for regularly varying distributions scale like δ−1/α as δ → 0.
For the salvage fund problem, we first employ a result from (Blanchet et al. 2024) to represent the

risk constraint φ(xxx,ξξξ ) as maxi=1,...,d ξξξ i − eeeT
i (III −QQQT )−1xxx−mmmi where eeei denotes the unit vector on the ith

coordinate. We use the following lemma to construct the superset to the feasible set Fδ .
Lemma 2 Let ξξξ be a random variable with density, we have that CVaR1−δ

{
maxi=1,..,N aaaT

i ξξξ +bbbT
i xxx+ ci

}
≥

maxi=1,..,N CVaR1−δ

{
aaaT

i ξξξ +bbbT
i xxx+ ci

}
This follows directly from the optimization formulation of CVaR (Rockafellar and Uryasev 2002),

together with weak duality. This lemma along with further calculations show that if x ∈ Fδ , −eeeT
i (III −

QQQT )−1xxx+mmmi +CVaR1−δ {ξξξ i} ≤ 0 for all i ∈ [m]. While such an outer set is not compact, it has a lower
bound which scales on the order of CVaR1−δ

{
111T

ξξξ
}

. To ensure compactness while also maintaining
the uniform critical scaling of Oδ , we introduce the additional constraint ||xxx||∞ ≤ ChCVaR1−δ

{
111T

ξξξ
}

.
Therefore, we have the set

Oδ =
m⋂

i=1

{xxx|eeeT
i (III −QQQT )−1xxx > mmmi +CVaR1−δ {ξξξ i} , ||xxx||∞ ≤ChCVaR1−δ

{
111T

ξξξ
}
}. (6)
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In practice, this additional constraint is reasonable as the modeler should have a limitation on the budget
spent after being given an order of magnitude of the expected money to be spent. The critical scaling is
then βδ = CVaR1−δ

{
111T

ξξξ
}
≈ δ−1/α .

Constructing the Lagrangian function of (HC-CVaRδ ), we have the equivalent problem of

f ⋆ := inf
xxx∈Rd

++

sup
λ≥0

ccc⊤xxx+λ CVaR1−δ

(
φ(xxx,ξξξ )

)︸ ︷︷ ︸
f (xxx,λ )

= inf
xxx∈Oδ

sup
λ≥0

ccc⊤xxx+λ CVaR1−δ

(
φ(xxx,ξξξ )

)
(7)

Since Oδ is compact and the inner optimization problem is convex in x and concave in λ , Sion’s minimax
theorem (Sion 1958) applies allowing us to solve the dual problem of maxλ≥0 minxxx∈Oδ

f (xxx,λ ). We first
focus on the inner problem minimization problem of minxxx∈Oδ

f (xxx,λ ). As Oδ scales with rate βδ for
sufficiently small δ , we introduce the substitution xxx = x̄xxβδ and instead solve

f ⋆ = βδ g⋆ = βδ max
λ≥0

min
x̄xx∈Ō

[
cccT x̄xx+

λ

βδ

CVaR1−δ {φ(x̄xxβδ ,ξξξ )}
]

:= max
λ≥0

min
x̄xx∈Ō

gδ (x̄xx,λ ) (8)

where x̄xx is now in a compact domain Ō independent of δ . We now focus on the characterizing the
tight scaling factor of the term CVaR1−δ {φ(x̄xxβδ ,ξξξ )} as δ → 0. For the portfolio optimization problem,
the following limit holds under Assumption 1: CVaR1−δ {φ(x̄xxβδ ,ξξξ )}→ α

α−1E[φ(x̄xx,Θ)α ]
1
α −1 (Blanchet,

Jorritsma, and Zwart 2024) as δ → 0. A similar proof technique in the context of the salvage fund problem
shows that β

−1
δ

CVaR1−δ {φ(x̄xxβδ ,ξξξ )}→ α

α−1 ·
∫

∞

1 P(φ(x̄xx,Θu)> 1)αu−α−1du as δ → 0. In both cases, after
finding the appropriate scaling, the CVaR risk terms uniformly converge to a stable limit independent of
δ for any subset C that is a compact subset of Rm.

With the scaling of the optimal budget xxx∗ and the CVaR term characterized, we finally analyze the
scaling of the optimal Lagrange multiplier λ ∗ as a function of δ , denoting the scaling factor of λ ∗ by
κδ . For now, we focus in the portfolio optimization case, but the salvage fund case follows with similar
reasoning. For notational simplicity, denote K(x̄xx) = α

α−1E[φ(x̄xx,Θ)α ]
1
α −1. In the limit as δ → 0, the two

components in the optimization program in (8) can only balance each other if cccT x̄xx and λ

βδ

K(x̄xx) are of the

same order. Therefore, we anticipate the scaling of λ = βδ λ̄ . For technical and computational purposes,
we limit our optimization problem to λ̄ ∈ [Ml,Mh] for some finite values Ml and Mh.

Due to the uniform convergence of CVaR1−δ {φ(x̄xxβδ ,ξξξ )} and the finiteness of gδ (x̄xx,λ ) on Ō ×
[Ml,Mh], our optimization problem converges uniformly and therefore epiconverges on this compact domain
(Rockafellar and Wets 1998):

gδ (x̄xx, λ̄ ) = cccT x̄xx+ λ̄CVaR1−δ {φ(x̄xxβδ ,ξξξ )}
epi−→ cccT x̄xx+ λ̄K(x̄xx) := g0(x̄xx, λ̄ ) (9)

Defining the functions ψδ (λ̄ ) = minx̄xx∈Ō gδ (x̄xx, λ̄ ) and ψ0(λ̄ ) = minx̄xx∈Ō g0(x̄xx, λ̄ ), epi-convergence of the
function gδ (x̄xx, λ̄ ) also implies uniform convergence and hence epi-convergence of the functions {ψδ (λ̄ )}
to ψ0(λ̄ ). Additionally, since the domain of ψδ (λ̄ ) is limited to λ̄ ∈ [Ml,Mh], ψδ (λ̄ ) is equi-coercive.

Epi-convergence combined with the equi-coerciveness of ψδ (λ ) allows us to deduce the convergence
of maximizers implying that λ̄ ∗

δ
→ λ̄ ∗

0 where λ̄ ∗
0 is the maximizer of limiting problem max

λ̄∈[Ml ,Mh]
ψ0(λ̄ ) =

max
λ̄∈[Ml ,Mh]

minx∈Ō cccT x̄xx+ λ̄K(x̄xx). Returning back to the scaling, we then have that λ ∗
δ
= βδ λ̄δ = λ̄0βδ +

o(βδ ); the scaling of the Lagrange multiplier is κδ = βδ . The same logic applied can also be applied to
the salvage fund problem to find the critical scaling of λ ∗ to be κδ = 1.

The additional extra constraint of λ̄ ∈ [Ml,Mh] may seem counterintuitive as we are arguing that λ̄

is independent of δ . However, the epi-convergence argument reveals an insightful observation: provided
that the optimal solution λ̄ ∗

0 of the limiting problem max
λ̄≥0 ψ0(λ̄ ) is finite, unique and independent of δ ,

Ml and Mh can be chosen quite conservatively apriori to ensure that λ ∗
0 ∈ [Ml,Mh] and the convergence of
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maximizers then guarantees that the optimal Lagrange multiplier λ̄ ∗
δ
∈ [Ml,Mh] for small enough δ . Noticing

that maxλ≥0 ψ0(λ̄ ) is equivalent to the program {min
xxx∈Ō

cccT x̄xx subject to K(x̄xx) ≤ 0}, a sufficient condition to

ensure that λ̄ ∗
0 are finite and unique are verification of Slaters condition for this new optimization program.

Independence from δ is immediate since this new program has constraints which are independent of δ .

4 STOCHASTIC GRADIENT DESCENT PROCEDURES

The prior section provided a scaling method for λ ∗ and xxx∗ through the multipliers κδ and βδ respectively.
Subsequently, an equivalent preconditioned problem g(x̄xx, λ̄ ) efficiently was introduced. We now aim to solve
the maxmin problem of max

λ̄∈[Ml ,Mh]
minxxx∈Ō cccT x̄xx+ λ̄CVaR1−δ {φ(x̄xx,,,ξξξ )} with a stochastic gradient descent

procedure (Robbins and Monro 1951). Analysis of SGD shows a convergence rate of 1√
n for non-smooth

objectives and 1
n for smooth functions or strongly convex functions to the optimal value (Moulines and

Bach 2011). Such descent methods have a dependence on (i) the distance of the initial iterate to an optimal
point and (ii) a bound on Eξξξ [||∇xxx f (xxx,ξξξ )||22] where f is the function we wish to optimize. Looking at the
preconditioned problem with the optimization reformulation of CVaR, we have

min
x̄xx∈Oδ ,z∈R

cccT x̄xx+
λ̄κδ

βδ

(
z+

1
δ
E[(φ(βδ x̄xx,ξξξ )− z)+]

)
, (10)

we can also precondition z = hδ z̄ where hδ is a scaling factor that allows the CVaR term to converge to
a stable limit. The intuition here relies on the fact that for regularly varying distributions, we have that
the CVaR and VaR values have the same dependence as a function of δ . Therefore, for the portfolio
optimization problem, we have that hδ = 1, and for the salvage fund problem, we have that hδ = βδ . In
both cases, one arrives at the final preconditioned problem of:

min
x̄xx∈Oδ ,z∈R

cccT x̄xx+ λ̄

(
z̄+

1
δ
E[(

1
hδ

φ(βδ x̄xx,ξξξ )− z̄)+]
)

:= E[G(x̄xx, z̄, λ̄ ,ξξξ )]. (11)

Due to the preconditioning, the distance from the inital iterate to the optimal point is of constant order as

δ → 0. However, bounding the variance with Eξξξ [||∇(x̄xx,z̄)G||22]≤ 2||ccc||2 +
(

λ̄

δ

)2
(2
(

βδ

hδ

)2
L2 +1) reveals a

prohibitive 1
δ 2 term. Such a term limits the convergence rate of stochastic gradient descent procedures as

δ → 0.
To resolve this issue, we employ importance sampling. As a review of importance sampling, consider

calculating an expectation of function f (xxx) , where xxx ∼ P. if the function f (xxx) has high dependence on
xxx values which are near the "tails" of the distribution, the number of samples needed to get an accurate
representation grows rapidly. To alleviate this problem, we can sample random variables yyy(i) from a separate
distribution Q and calculateEP[ f (xxx)] using the transformation: EP[ f (xxx)] =

∫
f (xxx)P(dx)=

∫
f (xxx) P(dx)

Q(dx)Q(dx).
Properly tuning the alternative distribution Q can lead to a reduction in the variance of our measurement.
For a basic review on importance sampling methods, see (Asmussen and Glynn 2007; Shortle and L’Ecuyer
2011). Importance sampling in the context of stochastic gradient descent has been used to improve the
optimization of finite sum optimization (Needell et al. 2014). We introduce the following notion of
efficiency for importance samplers.
Definition 2 An alternative measure Q is said to have bounded relative error with respect to the scaling
parameter δ and event cδ if

limsup
δ→0

EQ(R2I(cδ ))

EQ(RI(cδ ))2 =CI < ∞

where R(xxx) is the likelihood ratio associated with Q for xxx.
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Algorithm 1: Stochastic Gradient Descent of g(x̄xx, z̄) =E[G(x̄xx, z̄,ξξξ , λ̄ )] with importance sampling

Initialize x̄xx0 ∈ Rd
+, z̄zz0 ∈ R independent of δ ;

for t = 1,2, ...,T do
Sample ξξξ i through an importance sampler Q that satisfies Assumptions 3;
Calculate likelihood ratio R(ξξξ i; x̄xxk,zzzk,δ );
Calculate subgradients according to formulas;

• ∂̃x̄xxG(x̄xx, z̄,ξξξ ;δ ,λ ) = c+ λ

δ

βδ

hδ
I( 1

hδ
φ(βδ x̄xx,ξ )> z̄) ·∇x̄xxφ(βδ x̄xx,ξ ) ·R(ξξξ i; x̄xxk, z̄k,δ )

• ∂̃z̄G(x̄xx, z̄,ξξξ ;δ ,λ ) = λ − λ

δ
I( 1

hδ
φ(βδ x̄xx,ξξξ )> z̄) ·R(ξξξ i; x̄xxk, z̄k,δ )

Set x̄xxk = ΠŌ(x̄xxk−1 −ηt ∂̃x̄xxG(x̄xxk, z̄k,ξξξ iii,λ ) and z̄k = z̄k−1 −ηt ∂̃z̄G(x̄xxk, z̄k,ξξξ iii,λ );

Return ˆ̄xxx = 1
T ∑

T
k=1 x̄xxk, ˆ̄z = 1

T ∑
T
k=1 z̄k and f̂ = f (βδ x̂xx)

We begin by introducing the following assumption on our desired importance sampler.
Assumption 3 Suppose that for any points x̄xx ∈ Rm and zzz ∈ R, we can construct an importance sampling
distribution Q(x̄xxk, z̄,δ ) and likelihood parameter R(ξξξ k+1; x̄xxk, z̄,δ ) with bounded relative error for the event
{ 1

hδ
φ(βδ x̄xx,ξξξ )> z̄} as δ → 0.

Importantly, our importance sampler is allowed to be state-dependent; it depends on the current position
xxxk, zk. We can incorporate the importance sampler into our stochastic subgradient approach as shown in
Algorithm 1. The results by He et al. (2024) analyze algorithms akin to Algorithm 1 by showing almost
sure convergence to the optimal solution along with asymptotic normality that is independent of δ assuming
bounded relative error.

To complete the theoretical analysis of our gradient descent procedure, we introduce a typical assumption
of decaying step sizes:
Assumption 4 The step sizes in the stochastic gradient descent algorithm are of the form ηt = η0t−τ for
a constant η0 and 0 ≤ τ < 1.

For technical reasons, we also need to ensure that our solution is bounded away from 0 for any δ .
Assumption 5 For any δ > 0 and λ > 0, the optimal value to the optimization program (10) is finite and
positive.

With the assumptions set, we have the following theorem demonstrating that our preconditioned
importance sampling based algorithm has no dependence on the rarity parameter δ in convergence.
Theorem 1 Assume that Assumptions 1-5 are enforced. Further suppose that βδ and hδ scale such that
limδ→0

βδ

hδ
< ∞ Then, we have that there exists a computable δ1 such that for all δ < δ1 and all λ > 0,

Algorithm 1 has the following relative error guarantee: For f (xxx;λ ) = minxxx∈Oδ
cccT xxx+λCVaR1−δ {φ(xxx,ξξξ )},

we have f (βδ
1
T ∑

n
i=1 x̄xxk;λ )− f (xxx∗,λ )
f (xxx∗,λ )

≤ K
nτ for a constant K independent of δ

Proof Sketch: There are three main ingredients in the proof method provided. Firstly, we must provide
a new upper bound to

EQ[||∇(x̄xx,z̄)G(x̄xx, z̄, λ̄ ,ξξξ )||2]≤ 2||ccc||2 +2
λ 2

δ 2

[(
βδ

hδ

)2

L2 +1

]
EQ[R(ξξξ , x̄xxk, z̄k,δ )

2I(
1
hδ

φ(βδ x̄xxk,ξξξ )> z̄k)].

(12)
Due to the assumption on the ratio of βδ

hδ
, that term can be bounded by a finite constant for sufficiently

small δ . With the bounded relative error assumption, we have that the EQ[R(ξξξ , x̄xxk, z̄k,δ )
2I( 1

hδ
φ(βδ x̄xx,ξξξ )>

z̄)]≤ (CI +1)P( 1
hδ

φ(βδ x̄xxk,ξξξ )> z̄k)
2 for sufficiently small δ . We next have to argue that for any possible
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iterate {x̄xxk,zk}, we have that P( 1
hδ

φ(βδ x̄xxk,ξξξ )> z̄k)≤Cδ for some constant C. Due to the scaling chosen
for x̄xx and z̄ along with the compact nature of the set Ō, this can be verified for both running examples. So,
we have that EQ[||∇(x̄xx,z̄)G(x̄xx, z̄, λ̄ ,ξξξ )||2]≤ 2||ccc||2 +2λ 2(L2 +1)(CI +1)C2 := GT a bound which does not
blow up as δ → 0. Using standard projected subgradient descent procedures (Duchi 2018), we have that

E[G(
1
n ∑ x̄xxk,

1
n ∑ z̄k, λ̄ ,ξ )]−E[G(x̄xx∗, z̄∗, λ̄ ,ξ )]≤ 1

2n

[
||(x̄xx0, z̄0)− (x̄xx∗, z̄∗)||2 +GT ∑

n
k=1 η2

k
ηn

+G2
T

n

∑
i=1

ηk

]

≤ 1
2n

[
||(x̄xx0, z̄0)− (x̄xx∗, z̄∗)||2 +G2

T
∫ n

0 η0x−2τdx
ηn

+G2
T

∫ n

0
η0x−τdx

]
≤ n−τ

[
||(x̄xx0, z̄0)− (x̄xx∗, z̄∗)||2 +

G2
T η0

1−2τ
+G2

T
η0

1− τ

]
︸ ︷︷ ︸

K

.

Due to the relation f (xxx,λ ) = βδ ·E[G(x̄xx, z̄, λ̄ ,ξξξ )], we have that

f (1
n ∑

n
i=1 xxxi,λ )− f (xxx∗,λ )

f (xxx∗,λ )
=

E[G(1
n ∑

n
i=1 x̄xxi, z̄, λ̄ ,ξξξ )−G(x̄xxi, z̄∗, λ̄ ,ξξξ )]

E[G(x̄xx∗, z̄∗, λ̄ ,ξξξ )]
≤ K

nτE[G(x̄xx∗, z̄∗, λ̄ ,ξξξ )]
. (13)

Finally, we argue that E[G(x̄xx∗, z̄∗, λ̄ ,ξξξ )] which is the optimal solution to the program in (11) has no
dependence on δ . Due to the optimal critical scalings chosen in the previous section and Assumption 5,
all terms in the minimization program are of constant order and the result follows.

4.1 Ascent Procedure For Optimal Lagrange Multiplier

The prior section provided an algorithm to optimize the minimization problem in (11) which is the inner
minimization problem. The focus of this section is to combine this algorithm with a secondary ascent
procedure to find the optimal value of λ̄ that solves the maxmin game. By the envelope theorem, we have
that ∇ψ(λ̄ ) where ψ(λ̄ ) = minx̄xx∈Ō cT x̄xx+ λ̄CVaR1−δ

{
1

hδ
φ(βδ x̄xx,ξξξ )

}
is

z̄∗(λ )+
1
δ
E
[
(

1
hδ

φ(βδ x̄xx∗,λ )− z̄∗(λ ))+

]
= CVaR1−δ

{
1
hδ

φ(βδ x̄xx∗,ξξξ )
}
.

So, we can construct a projected sub-gradient ascent algorithm on ψ(λ̄ ) to converge to the optimal λ̄ ∗.
This algorithmic procedure is highlighted in Algorithm 2. Importantly, to once again reduce the variance
of the measurement of the CVaR term that guides the gradient ascent, we employ the same state dependent
importance sampler from Assumption 3 at the convergence point achieved from Algorithm 1. The output
of this procedure is a optimal solution to the preconditioned parameters x̄xx and λ̄ and an estimate of f (xxx)
which is computed through the critical scaling βδ .

Algorithm 2: Stochastic Gradient Ascent of ψ(λ̄ ) with importance sampling

Input δ , λ0 > 0, Ml , and Mh;
for k = 0,1, ...,T −1 do

Solve the inner minimization problem using Algorithm 1 with λ̄ = λk to get (x̄xxk, z̄k);
Sample N points ξξξ i from an importance sampler Q that satisfies Assumption 3 at point (x̄xxk, z̄k);
Calculate their associated likelihood parameters R(ξξξ i, x̄xxk,zzzk,δ );
Compute ∆k = z̄k +

1
δ

1
N ∑

N
i=1(

1
hδ

φ(βδ x̄xxk,ξξξ )− z̄k)
+;

Set λk+1 = Π[Ml ,Mh] [λk +ηk∆k]

Return λT , x̄xxT , and βδE[G(x̄xxT , z̄T , λ̄ ,ξ )]
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5 NUMERICAL EXPERIMENTS

Due to space constraints, the numerical experiments presented in this version of the paper focus on the
salvage fund problem. All computations were implemented in Python and the linear optimization program
which defines φ(xxx,ξξξ ) was solved using the CVXPY optimization package. The parameters of the problem
were chosen as follows. The matrix QQQ was defined to be a m∗m matrix where QQQi j = 0 if i = j and 1/m
otherwise. The vector mmm has defined to be 1 for all i ∈ [m]. The losses ξξξ i were set to be i.i.d Pareto random
variables with scale parameter α = 3. For step sizes, η0 was chosen to be 1/2 and τ was chosen to be
2/3. From the discussion of the critical scaling, we have hδ = βδ ≈ δ−1/a and κδ = 1 for the salvage fund
problem. To be overly conservative, the upper bound on the feasible set O had Ch set to be 100.

5.1 Construction of Importance Sampler

To deploy our algorithm, we develop an importance sampling scheme for the event of interest: {φ( xxx
δ

1
a
,ξξξ )>

z
δ

1
a
} that satisfies the conditions in Assumption 3. Since φ( x̄xx

δ 1/a ,ξξξ ) is a linear minimization problem, any

feasible solution to the constraints given in φ( x̄xx
δ 1/a ,ξξξ ) would be an upper bound to the function itself. A

necessary condition for the inequality φ( x̄xx
δ 1/a ,ξξξ )>

z̄
δ 1/a is that any feasible solution to the linear programming

problem is also greater than z̄
δ 1/a . Specifically, the values b = max(ξξξ i −mmmi) and y = 0 will always be

a feasible solution to the constraints of the linear program presented in (4) with an objective value of
max(ξξξ i −mmmi). So, we sample such that max(ξξξ i −mmmi) ≥ z̄

δ 1/a to ensure all samples satisfy the necessary
condition. We have that {

max(ξξξ i −mmmi)≥
z̄

δ 1/a

}
⊂

d⋃
i=1

{
ξi >

z̄
δ 1/a +mmmi

}
. (14)

With this defined, our importance sampler uses a mixture probability. Specifically, consider the probability

distribution where with probability
P
(

ξξξ i>
z̄

δ1/a +mmmi

)
∑

d
i=1 P

(
ξξξ i>

z̄
δ1/a +mmmi

) , we sample with ξξξ i >
z̄

δ 1/a +mmmi through inversion

sampling while all other components are drawn from the Pareto distribution. Conditioned on ξξξ i being chosen,

the random vector ξξξ has probability measure
I(ξξξ i>

z̄
δ1/a +mmmi)P(dl)

P(ξξξ i>
z̄

δ1/a +mmmi)
. Therefore the full proposal distribution is

Q(dl) =
d

∑
i=1

I(ξξξ i >
z̄

δ 1/a +mmmi)P(dl)

∑
d
i=1P(ξξξ i >

z̄
δ 1/a +mmmi)

. (15)

For this importance sampler, the likelihood ratio R(ξξξ ,wk,δ ) is
∑

d
i=1 P

(
ξξξ i>

z̄
δ1/a +mmmi

)
∑

d
i=1 I

(
ξξξ i>

z̄
δ1/a +mmmi

) . The sampler Q(dl) and the

associated likelihood ratio can be shown to be unbiased and have bounded relative error as δ → 0 thereby
satisfying Assumption 3. Blanchet et al. (2019) contains the associated calculations similar sampling
distributions albeit for normal distributions. Proving bounded relative error of such samplers for regularly
varying distributions follow the same arguments with minor calculations differences.

5.2 Numerical Results for Inner Minimization

To test the efficiency of Algorithm 1 and its lack of dependence on δ , the projected subgradient descent
algorithm was run with initial iterates x̄xx0 and z̄0 to be 111. To first find an estimate of xxx∗ and z∗, the algorithm
was run until two consecutive iterates satisfied |x̄xxn − x̄xxn−1| ≤ 10−3 and |zzzn − zzzn−1| ≤ 10−3 for a fixed value
of λ = .8. Once these optimal values were stabilized, 30000 importance samples were drawn to get a more
accurate representation of the minimal objective function ψδ (λ ). These values are recorded in the second
column of Table 1.
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To test relative error convergence, both algorithms were run until the optimization values reached within
5% of the optimal value recorded in Table 1. The number of iterations and time per iteration were recorded
for both our preconditioned importance sampling method and a standard Monte Carlo SGD approach. To
further reduce variance for small δ , batch gradient descent was employed for both algorithms. The number
of samples for each batch was increased appropriately to allow for the standard SGD approach to converge.
To estimate the CVaR risk value when testing convergence, an empirical estimate using 20000 importance
samples was used if the function value was suspected to be close to the objective value (the samples used in
the gradient descent iteration indicated an empirical objective function close to the ψδ (λ )). The required
iteration and computation complexity (time/samples) for each method are shown in Table 1.

Table 1: Iteration and time measurements to reach 5% error for the naive gradient descent algorithm and
the preconditioned scaled importance sampling algorithm.

δ ψδ (λ ) Samples Iterations (Importance) Time (Importance) Iterations (Naive) Time (Naive)
10−2 12.577 2000 38 36.2 sec 2 49.3 sec
10−3 27.813 4000 33 82.3 sec 156 79.4 sec
10−4 62.938 7500 32 100.6 sec 3681 94.5 sec
10−5 139.377 15000 21 243.7 sec 22421 231.7 sec

The constant number of iterations in the convergence of the importance sampling scaled SGD method
is evident from the table unlike the naive method which has a massive level of growth in the iterations
needed as δ → 0. Both SGD methods take similar levels of time per iteration indicating no disadvantage in
computation efficiency in the importance sampling scaled method used. This numerical results affirm our
approach of efficiently optimizing the CVaR minimization problem as the importance sampling critically
scaled SGD method displays a constant number of samples used to arrive at a solution which has a desired
ε relative error. As a final comparison, the scaled importance sampling based SGD was compared to the
naive unscaled SGD solution for a fixed δ = 10−4. Both methods were run until 5% relative error. The left
plot of Figure 1 shows a comparison of the convergence of the relative values while the right plot shows
an empirical CDF for the number of iterations needed for our scaled importance sampling SGD approach.
We once again see the rapid convergence with our optimization procedure while a naive stochastic gradient
descent approach faces two separate but important problems of taking too long to reach the neighborhood of
the optimal solution and having significant noise when approaching the optimal solution. This matches our
discussion about the runtime analysis regarding theorems projected gradient descent. The preconditioning
allows us to immediately begin our optimization procedure in an appropriate neighborhood around the
optimal budget and the importance sampling reduces the large variance in the gradients around the optimum.
The right plot shows a empirical CDF of the number of iterations needed to reach 5% accuracy for 400
different runs of the scaled importance sampling based SGD. We see the majority of runs take on the
order of 50-150 iterations of batch stochastic gradient descent while all runs took less than 250 iterations
significantly less than the batch iterations needed for a naive SGD method.

5.3 Numerical Results of Ascent Procedure for Optimal Lagrange Multiplier

With numerical evidence of the convergence of the inner minimization problem of the Lagrangian problem
for a fixed λ , we employ Algorithm 2 to converge to an optimal λ . The outer ascent procedure was run for
T = 200 iterations and the inner optimization problem was run for 150 iterations. To speed up convergence,
the values of (x̄xxk, z̄k) were used as the initial condition for the next run of the outer procedure. Table 2
shows the convergence to the optimal λ for varying values of δ along with an estimate of the optimal
value of 1T xxx∗+λ∗CVaR1−δ {φ(xxx∗,ξξξ )} := f (n)(xxx,δ ). For all δ , we used 3000 samples to estimate ∆k in
Algorithm 2. We set Ml = .1 and Mh = 2 and initialized with λ0 = 1.
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Figure 1: (left) A graph of the comparison of an example run of the number of iterations needed to reach
5% accuracy for a batch stochastic gradient descent method and our importance sampling based SGD
method for the salvage fund problem. The number of iterations required to reach the desired ε accuracy
is orders of magnitude smaller. (right) An empirical CDF of the number of iterations needed to each 5%
accuracy of the true solution for the salvage fund problem with δ = 10−4.

Table 2: Numerical Results for Ascent Procedure to optimize λ for Salvage Fund Problem.

δ Optimal λ f (n)(xxx,δ )
10−2 .726 18.424
10−3 .883 41.339
10−4 .904 87.316
10−5 .876 218.366

As δ approaches 0, the optimal λ seemed to converge to same neighborhood. This matches the epi-
convergence observation that the limiting optimization problem had a unique solution under the conditions,
the optimal Lagrange multiplier will converge to that value.

6 CONCLUSION AND DISCUSSION

We develop a critically scaled importance sampling based stochastic gradient descent approach to solve
CVaR constrained optimization problems within the rare event regime efficiently. Through our two guiding
examples, we demonstrate a end-to-end procedure to develop both the necessary critical scalings needed for
the algorithm through epi-convergence arguments and the required importance sampling assumptions. A
rather interesting research avenue includes using this initial optimization procedure for the CVaR constrained
problem to achieve optimization values and feasible solutions for the original probabilistic CC-OPT.
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