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ABSTRACT

This work presents an adaptive framework for dynamically calibrating digital twins (DTs) in response to
evolving real-world (RW) conditions. Traditional simulation-based models often rely on fixed parameter
estimates, limiting their adaptability over time. To address this, our approach integrates active learning
(AL) with a dynamic calibration mechanism that keeps the DT aligned with RW observations. At each time
step, a new data batch is received, and a conformal prediction-based monitoring system assesses whether
recalibration is needed. When a change in the RW system state is detected, DT parameters are updated
using an efficient AL strategy. The framework reduces computational overhead by avoiding unnecessary
DT evaluations while maintaining accurate system representation. We demonstrate the effectiveness of the
proposed approach in achieving adaptive, cost-efficient DT calibration over time.

1 INTRODUCTION

Digital twins (DTs) are powerful tools that create virtual representations of real-world (RW) systems, enabling
users to monitor, analyze, and optimize system performance. Unlike traditional simulation models, DTs
require continuous updates to remain aligned with RW observations. For instance, in epidemiological
modeling, DT parameters such as transmission or contact rates often evolve with the RW system state. For
example, a rise in infection counts may trigger behavioral changes or policy interventions (e.g., increased
social distancing), which in turn alter the effective reproduction number. As such, the DT must recalibrate
its parameters dynamically to maintain alignment with the evolving epidemic trajectory. Conventional
calibration approaches typically infer unknown parameters to match model outputs with RW data (Sung
and Tuo 2024), but they are often applied as a one-time process and do not support ongoing updates. This
work proposes an adaptive framework that continuously calibrates a simulation-based DT, allowing it to
remain responsive to evolving RW conditions.

Running a DT model is often computationally expensive due to its reliance on high-fidelity physical
simulations. To reduce this cost, traditional one-time calibration methods often use emulators—statistical
or machine learning (ML) surrogates that approximate DT behavior with lower computational overhead.
In continuous calibration, where the DT must regularly adapt to RW changes, minimizing DT evaluations
becomes even more critical. Efficient data collection is thus vital, especially in real-time settings. We use
Gaussian processes (GPs; Rasmussen and Williams 2005)—a popular class of emulators—to approximate
DT outputs. Trained on simulation results at selected inputs, GPs provide predictive distributions at new
inputs. We propose an active learning (AL) strategy that adaptively selects inputs for evaluating the DT
over time, improving calibration accuracy while reducing the number of DT evaluations.

Over the past decade, conformal prediction (CP) has gained substantial traction within the ML community
due to its ability to provide distribution-free uncertainty quantification (UQ) for both classification and
regression tasks (Angelopoulos and Bates 2023). CP enables the construction of prediction intervals that,
with a user-specified probability guarantee, contain the true output at an unseen input—regardless of the
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underlying ML model. In this work, we use CP to generate prediction intervals for RW observations based
on a GP emulator. In the context of DTs, which require dynamic calibration to remain aligned with the
evolving RW system, CP intervals serve a dual purpose. They not only quantify prediction uncertainty but
also function as a diagnostic tool for detecting when the current DT parameters may no longer be valid. To
this end, we propose a novel monitoring system that combines CP with a cumulative sum (CUSUM) control
chart (Page 1954) to track deviations between observed RW data and predicted values. When systematic
deviations exceed a predefined threshold, an alarm is triggered, indicating the need for DT recalibration.
This mechanism enables timely, data-driven updates, ensuring the DT continues to accurately represent the
RW system dynamics over time.

The remainder of this article is organized as follows. Section 2 formulates the problem and provides
an overview of the dynamic calibration framework. Section 3 introduces the AL strategy used to collect
DT data and estimate the calibration parameters at each time step. Section 4 details the CP approach for
constructing prediction intervals and detecting changes in the state of the RW system. Experimental results
are presented in Section 5. Finally, Section 6 concludes the paper.

2 OVERVIEW

2.1 Problem Formulation

Let x ∈ X ⊂ Rq denote the design input and θθθ ∈ Θ ⊂ Rp the generic calibration parameter of the DT
model. The DT is represented as a deterministic function η(x, θθθ) ∈ R, mapping each input pair (x, θθθ) to
a scalar output. Denote the true but unknown calibration parameter by θθθ∗ ∈ Θ, which best aligns the DT
output with RW observations. The design inputs at which the RW observations are collected are denoted by
xr ∈ X . Following the conventional simulation model calibration literature, we assume that the observed
RW system responses are generated according to the following mechanism:

y (xr) = η (xr, θθθ∗) + ε, and ε ∼ N
(
0, σ2 (xr)

)
,

where the term ε represents observational noise, assumed to follow a normal distribution with mean zero
and variance σ2(xr).

A key distinction between a DT and a traditional simulation model is that, unlike standard practices,
the physical system continuously provides RW data. As a result, the DT must be continuously updated
to reflect RW changes, enabling adaptive predictions and decision-making. To capture this evolution, we
introduce a time index t to denote when new RW data becomes available. The calibration parameter θθθ∗t ∈ Θ
then represents the unknown parameter vector that best characterizes the RW system at time t; that is, it
encapsulates the state of the RW at time t. Let θ̂θθ

∗
t denote the estimated calibration parameter at time t based

on available data. To incorporate this temporal dependency, we refine the RW data generation mechanism
as follows:

yt (x
r
i ) = η (xr

i , θθθ
∗
t ) + εi,t, and εi,t ∼ N

(
0, σ2

t (x
r
i )
)
, i = 1, 2, . . . , br (1)

where we assume that at each time step t, RW system responses are observed at br different design points,
denoted as y (xr

1) , y (x
r
2) , . . . , y (x

r
br). We also assume that, given the true system state θθθ∗t , the observed

pairs (xr
i , yt (x

r
i )) are independent, implying that the noise terms εi,t are independently distributed across

both time steps and design points. The formulation in (1) explicitly captures temporal variations in both the
calibration parameter vector and the observation noise, distinguishing our approach from static calibration
methods and more accurately reflecting the dynamic nature of the RW system.

2.2 Framework for Dynamic Calibration of Digital Twins

At each time step t for t = 1, 2, . . . , T , a batch of br ≥ 1 RW data points is received. Let xr
t,i, for

i = 1, 2, . . . , br, denote the design input points at which RW data are observed at time t. While our
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formulation allows xr
t,i to vary within a time step, it also accommodates repeated observations at fixed

design inputs. Denote the streaming dataset at time t as Dt = {(xr
t,i, yt(x

r
t,i)) : i = 1, 2, . . . , br}. A

key challenge is that as new data arrive, the state of the system that the DT intends to predict may shift.
This potential change requires updating the estimated calibration parameter vector over time. Algorithm 1
outlines the proposed framework for dynamically calibrating the DT.

Algorithm 1: Dynamic calibration framework.

1 Input: The initial batch of RW data, D0 = {(xr
0,i, y0(x

r
0,i)) : i = 1, 2, . . . , br}

2 Obtain the parameter estimate θ̂θθ
∗
0 and the emulator (η(x, θθθ)|S0) via Algorithm 2

3 for t = 1, 2, . . . , T do
4 Receive Dt = {(xr

t,i, yt(x
r
t,i)) : i = 1, 2, . . . , br}

5 if stateChanged (detected via Algorithm 3) then
6 Obtain the parameter estimate θ̂θθ

∗
t and the emulator (η(x, θθθ)|St) via Algorithm 2

7 else
8 Set θ̂θθ

∗
t ← θ̂θθ

∗
t−1, (η(x, θθθ)|St)← (η(x, θθθ)|St−1)

9 Output: θ̂θθ
∗
t and (η(x, θθθ)|St) for t = 1, 2, . . . , T

Our framework consists of two main components that enable dynamic information exchange between
the DT and the RW system. The first component updates the estimate of the calibration parameter vector
using observed RW data, while the second monitors potential changes in the RW system state by comparing
observations against the calibrated DT. This structure allows the DT to remain aligned with evolving
RW system behaviors. While methods such as Bayesian optimization (BO) can also be used to estimate
calibration parameters (Jeon and Shashaani 2024), they typically treat calibration and monitoring as separate
objectives. For example, BO would require one GP emulator to identify optimal parameters and a separate
GP to support monitoring, leading to a split treatment of estimation and change detection. In contrast, our
framework uses a single GP to support both tasks, enabling the two components to share information and
provide mutual feedback throughout the sequential process.

We begin with the initial batch of RW data, D0 = {(xr
0,i, y0(x

r
0,i)) : i = 1, . . . , br} (see line 1 in

Algorithm 1). An initial parameter estimate θ̂θθ
∗
0 is obtained using D0 and the DT via Algorithm 2 (see

Section 3). Since DT evaluations are typically grounded in complex physics and can be computationally
expensive, it is essential to minimize the number of such evaluations required during parameter estimation.
To this end, we employ an AL strategy that efficiently selects informative design and calibration parameter
input points to run the DT. We use subscripted x and θθθ (e.g., xj , θθθj) to denote inputs selected by the
AL procedure. This procedure adaptively queries the DT to generate a dataset of size n1 + bs, that is,
S0 = {((xj , θθθj), η(xj , θθθj)) : j = 1, 2, . . . , n1+bs}, where n1 is the size of the initial sample and bs denotes
the number of adaptively acquired samples. The output of Algorithm 2 includes not only the parameter
estimate θ̂θθ

∗
0 but also a GP emulator, η(x, θθθ) | S0, constructed through targeted sampling. This surrogate

model enables fast and accurate predictions of the DT output, acting as a proxy for real-time RW inference
and the detection of system state changes.

At each time step t ≥ 1, we receive a batch of br new RW data points, denoted by Dt (line 4 of
Algorithm 1). While new data arrive continuously, the RW system state does not necessarily change
meaningfully at every step. Therefore, recalibrating the DT at each time point would be inefficient and
often unnecessary. As a result, we incorporate a monitoring mechanism to evaluate the current DT model’s
adequacy over time. Specifically, we employ CP (described in Section 4) to construct prediction intervals
for RW observations and use a CUSUM-based method to detect potential shifts in the RW system state.
This combination enables us to quantify the uncertainty in predictions and promptly detect when the DT no
longer aligns with reality to the extent that recalibration is needed. If the CP approach detects a meaningful
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state change (line 5 of Algorithm 1), recalibration of the DT is triggered. This involves obtaining an
updated parameter vector estimate θ̂θθ

∗
t and constructing a new emulator η(x, θθθ) | St using the DT dataset,

St, collected through the proposed AL strategy (line 6 of Algorithm 1). Otherwise, the previously estimated
parameter vector is retained, and the current emulator remains unchanged (line 8 of Algorithm 1), thereby
avoiding unnecessary DT evaluations and reducing computational costs.

3 ADAPTIVE DIGITAL TWIN DATA ACQUISITION VIA ACTIVE LEARNING

Suppose that we receive the RW dataset, Dt, at time t, and our monitoring tool (discussed in Section 4)
indicates that the DT, using the previously estimated parameter vector θ̂θθ

∗
t−1, no longer adequately represents

the current RW system. In this case, we initiate a recalibration process using AL to efficiently update the
calibration parameter estimate at time t by sequentially selecting the most informative input points for
evaluating the DT.

AL leverages acquisition functions to quantify the utility of unseen input locations, prioritizing regions
in the input space that are expected to maximize the information gain. While AL has been successfully
applied to construct globally accurate emulators for simulation models (Gramacy (2020), Chapter 6), these
strategies are not directly applicable to calibration tasks. Specifically, evaluating the simulation model in
regions far from the calibration-relevant space can result in unnecessary computational costs. Furthermore,
as the input-space dimensionality increases, the calibration region becomes proportionally smaller, making
it even less likely that traditional AL strategies will effectively target the area of interest.

Recent work has demonstrated the potential of tailored AL strategies for calibration. For instance,
Sürer et al. (2024), Sürer (2025), and Koermer et al. (2024) propose approaches that specifically target
parameter estimation and RW system response prediction. While Sürer et al. (2024) and Sürer (2025)
develop acquisition functions aimed at learning the posterior distribution of the calibration parameter vector,
Koermer et al. (2024) focus on improving RW response predictions within the Kennedy and O’Hagan
(KOH) framework (Kennedy and O’Hagan 2001). However, these approaches are designed for calibration
with a fixed RW dataset and typically treat the calibration process as a one-time, offline task.

Algorithm 2 outlines the AL procedure, which serves two primary objectives: (1) estimating the
calibration parameter vector θθθ∗t , and (2) constructing an emulator that accurately predicts the mean of the
RW response yt(x

r) for any design input xr ∈ X at time t. This emulator plays a central role in the
monitoring mechanism by facilitating the detection of system-state changes and enabling timely recalibration
and adaptation—topics that will be discussed in Section 4.

Algorithm 2: Active learning for digital twins (at time t).

1 Input: The initial batch of DT data, St,1 = {((xi, θθθi), η(xi, θθθi)) : i = 1, 2, . . . , n1} for
n1 ∈ Z+

2 Build an emulator (η(x, θθθ) | St,1)
3 for ℓ = 1, 2, . . . , bs do
4 Find θ̂θθ

∗
t,ℓ via (4)

5 Acquire (xn1+ℓ, θθθn1+ℓ)← argmin
(x,θθθ)∈X×Θ

IMSEℓ(x, θθθ), where IMSEℓ(·, ·) is defined in (5)

6 Evaluate the digital twin at (xn1+ℓ, θθθn1+ℓ) to obtain η(xn1+ℓ, θθθn1+ℓ)
7 Set St,ℓ+1 ← St,ℓ ∪ ((xn1+ℓ, θθθn1+ℓ), η(xn1+ℓ, θθθn1+ℓ))
8 Build an emulator η(x, θθθ) | St,ℓ+1

9 θ̂θθ
∗
t ← θ̂θθ

∗
t,bs , St ← St,bs+1

10 Output: Emulator (η(x, θθθ) | St) and θ̂θθ
∗
t

At each time step t, we implement Algorithm 2, which comprises bs stages indexed by ℓ. In each stage, a new
input vector for running the DT is acquired, and its corresponding output is obtained. The procedure begins
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by generating an initial DT simulation dataset of size n1 to construct a preliminary emulator (lines 1–2
of Algorithm 2). The initial sample can be generated using space-filling design strategies—such as Latin
hypercube sampling—or by uniformly drawing points from the input space. These techniques promote
broad coverage of the input space and are well-established in the design of computer experiments; see
Santner et al. (2018) for a comprehensive overview. Let St,ℓ = {((xi, θθθi), η(xi, θθθi)) : i = 1, 2, . . . , nℓ}
denote the DT simulation dataset collected up to stage ℓ of Algorithm 2 during time step t. The full set
of observed DT outputs up to stage ℓ is denoted by ηηηℓ = (η(x1, θθθ1), η(x2, θθθ2), . . . , η(xnℓ

, θθθnℓ
))⊤. Under

the GP prior, the joint distribution of the observed DT outputs in ηηηℓ and the unknown DT output η(x, θθθ)
at an unseen input point (x, θθθ) follows a multivariate normal (MVN) distribution:[

ηηηℓ
η(x, θθθ)

]
∼MVN

(
0,

[
Kℓ kℓ(x, θθθ)

kℓ(x, θθθ)
⊤ kℓ((x, θθθ), (x, θθθ))

])
, (2)

where kℓ(x, θθθ) := (kℓ ((x, θθθ), (x1, θθθ1)) , . . . , kt ((x, θθθ), (xnℓ
, θθθnℓ

)))⊤ represents the nℓ × 1 vector of
cross-kernel evaluations between the input point (x, θθθ) and each observed training point (xi, θθθi), i =
1, 2, . . . , nℓ. While we adopt a Gaussian kernel in our implementation, the approach is kernel-agnostic
and can accommodate alternative choices. The matrix Kℓ has dimensions nℓ × nℓ, with entries given
by kℓ((xi, θθθi), (xj , θθθj)) + υδij , where υ > 0 is the nugget parameter, and δij is the Kronecker delta
function, which equals 1 if i = j and 0 otherwise. The nugget parameter υ helps ensure numeri-
cal stability by enforcing positive definiteness. Conditioning the joint GP prior (2) on St,ℓ yields the
predictive distribution (η(x, θθθ)|St,ℓ), which is normal with mean mℓ(x, θθθ) and variance s2ℓ (x, θθθ), i.e.,
(η(x, θθθ)|St,ℓ) ∼ N

(
mℓ(x, θθθ), s

2
ℓ (x, θθθ)

)
, where

mℓ(x, θθθ) = kℓ(x, θθθ)
⊤K−1

ℓ ηηηℓ and s2ℓ (x, θθθ) = kℓ((x, θθθ), (x, θθθ))− kℓ(x, θθθ)
⊤K−1

ℓ kℓ(x, θθθ) . (3)

At each stage ℓ, we refine the parameter vector estimate θ̂θθ
∗
t,ℓ to align the emulator’s predictions with

the RW system (line 4 of Algorithm 2). By iteratively updating θ̂θθ
∗
t,ℓ through targeted DT data collection,

we enhance the emulator’s accuracy for RW response predictions at time t. This is achieved by minimizing
the sum of squared differences between the observed RW responses and the emulator’s predictive mean:

θ̂θθ
∗
t,ℓ = argmin

θθθ∈Θ

τt∑
j=1

br∑
i=1

(
yt−j+1

(
xr
t−j+1,i

)
−ml

(
xr
t−j+1,i, θθθ

))2
, (4)

where τt denotes the detection delay—the time elapsed between the actual change in the RW system’s
state and the moment the monitoring mechanism raises an alarm. The method for identifying τt is
described in Section 4. We solve the nonlinear optimization program in (4) using standard off-the-shelf
optimizers. At stage ℓ, the emulator and the parameter vector estimate θ̂θθ

∗
t,ℓ are used to provide a predictive

distribution for the RW response yt(x
r) at any design input xr ∈ X . Due to the data generation model

in (1), the predictive distribution of the RW observation at design point xr is normal with mean and
variance respectively given by E [yt(x

r)] = mℓ

(
xr, θ̂θθ

∗
t,ℓ

)
and V [yt(x

r)] = s2ℓ

(
xr, θ̂θθ

∗
t,ℓ

)
+ σ2

t (x
r), that is,

yt(x
r) ∼ N

(
mℓ

(
xr, θ̂θθ

∗
t,ℓ

)
, s2ℓ

(
xr, θ̂θθ

∗
t,ℓ

)
+ σ2

t (x
r)
)

.

After updating the parameter vector estimate θ̂θθ
∗
t,ℓ, we select a new input (xn1+ℓ, θθθn1+ℓ) to evaluate DT

and obtain the corresponding output η(xn1+ℓ, θθθn1+ℓ). This new data point is then added to the current DT
dataset St,ℓ (lines 6–7 of Algorithm 2). To guide this selection, we use the integrated mean squared error
(IMSE) of RW predictions as our acquisition function (line 5 of Algorithm 2). At each stage ℓ, we identify
the input that, when added to the emulator’s training set, most effectively reduces the overall prediction
uncertainty. Specifically, the IMSE for a candidate input point (x, θθθ) is defined as:

IMSEℓ (x, θθθ) =

∫
x′∈X

s2ℓ,(x,θθθ)

(
x′, θ̂θθ

∗
t,ℓ

)
dx′ , (5)
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where s2ℓ,(x,θθθ)

(
x′, θ̂θθ

∗
t,ℓ

)
denotes the predictive variance of the emulator at

(
x′, θ̂θθ

∗
t,ℓ

)
after adding the

candidate input point (x, θθθ) and its unknown output η (x, θθθ) to the current DT dataset. With fixed GP
hyperparameters, the covariance matrix Kℓ is updated by adding a new row and column associated with the
candidate input point (x, θθθ), and its inverse can be efficiently computed via a rank-one update. Substituting
the matrix inverse into the expression for the emulator’s predictive variance in (3) yields

s2ℓ,(x,θθθ)

(
x′, θ̂θθ

∗
t,ℓ

)
= s2ℓ

(
x′, θ̂θθ

∗
t,ℓ

)
+

covℓ
(
(x′, θ̂θθ

∗
t,ℓ), (x, θθθ)

)2

s2ℓ (x, θθθ) + υ
,

where covℓ
(
(x′, θ̂θθ

∗
t,ℓ), (x, θθθ)

)
= kℓ

(
(x′, θ̂θθ

∗
t,ℓ), (x, θθθ)

)
− kℓ

(
x′, θ̂θθ

∗
t,ℓ

)
K−1

ℓ kℓ (x, θθθ). Notice that the pre-

dictive variance s2ℓ,(x,θθθ)

(
x′, θ̂θθ

∗
t,ℓ

)
remains unaffected by the hypothetical DT output η(x, θθθ).

In summary, at each time step t, Algorithm 2 is executed to construct the DT dataset St,ℓ from scratch.
After acquiring a sample of n1 + bs DT data points, the parameter vector estimate and the emulator at the
final stage are returned (lines 9–10 of Algorithm 2). Rather than generating a new space-filling design at
each time step t, we reuse the same initial sample across all time steps; that is, S1,1 = S2,1 = · · · = ST,1.

4 DETECTION OF REAL-WORLD SYSTEM STATE CHANGES VIA CONFORMAL PREDICTION

Algorithm 3: Detecting the need for DT recalibration using conformal prediction (at time
t).

1 Input: The past τt−1 RW datasets
t−1⋃

t′=t−τt−1

Dt′ (training), the new RW dataset Dt

(validation), the emulator η(x, θθθ) | St−1, the parameter vector estimate θ̂θθ
∗
t−1, the

miscoverage level αt, α ∈ (0, 1), and αt,1 ← αt

2 Obtain conformal interval Ĉt(x
r
t,i) via (6), and update αt,i via (7), for i = 1, 2, . . . , br

3 Compute the cumulative sum CSt′ , for t′ = 1, 2, . . . , t, iteratively via (8)
4 if CSt > c̄+ 2sc̄ (Computed via (9)) then
5 stateChanged ← true
6 Set αt+1 ← α; τt ← length of the most recent upward excursion of CSt′

7 else
8 stateChanged ← false
9 Update αt+1 ← αt,br+1; τt ← τt−1 + 1

10 Output: stateChanged, αt+1, and τt

We use CP to construct high-probability, distribution-free prediction intervals for the true RW sys-
tem response at a new design input point. CP guarantees marginal coverage under the assumption of
data exchangeability, whereas GPs yield predictive uncertainty estimates contingent on strong modeling
assumptions. To enhance robustness, CP has recently been integrated with GP modeling (Papadopoulos
2024; Jaber et al. 2025). However, ensuring data exchangeability becomes challenging in streaming
settings, where data arrive sequentially and the underlying distribution may evolve. Recent advances in
adaptive conformal inference address this issue by accommodating temporal distribution shifts (Gibbs and
Candès 2021). In parallel, conformalized GP methods that account for such distribution shifts have been
investigated by Xu et al. (2025).

Full conformal and split CP are two foundational methods for constructing prediction intervals (An-
gelopoulos and Bates 2023). While split CP offers greater computational efficiency by requiring only a
single model fit, it typically sacrifices statistical efficiency relative to full CP approaches. In contrast, full
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CP achieves higher statistical efficiency by leveraging the available data more effectively, but it incurs
substantially higher computational costs due to repeated model training. Between these extremes, methods
such as cross-CP (Vovk 2015) and CV+/Jackknife+ (Barber et al. 2021) provide a practical trade-off,
minimizing the number of model fits while using the entire dataset for both training and calibration. In
this work, we integrate Jackknife+ into our dynamic calibration framework to construct CP intervals.

At time step t, we receive a new RW dataset, Dt =
{(

xr
t,i, yt(x

r
t,i)

)
, i = 1, 2, . . . , br

}
. We aim to

assess whether the RW system’s state has changed enough to necessitate recalibration of the DT. To do so,
we use the most recent RW observations in Dt as well as a window of historical data spanning the previous
τt−1 time steps, where τt−1 denotes the detection delay. To assess consistency with the past behavior, we
construct a prediction set Ĉt(x

r
t,i) for each RW response yt(xr

t,i), for i = 1, 2, . . . , br, using the accumulated

dataset
t−1⋃

t′=t−τt−1

Dt′ , where Dt′ =
{(

xr
t′,i, yt′(x

r
t′,i)

)
, i = 1, 2, . . . , br

}
, and the new design inputs xr

t,i for

i = 1, 2, . . . , br. Given a target miscoverage level α ∈ (0, 1), we aim to ensure that the true RW system
responses lie within their corresponding prediction sets with probability at least 1 − α. If a significant
portion of the new RW system observations fall outside their prediction sets, it may signal a change in the
underlying RW system, warranting DT recalibration. Algorithm 3 outlines the full procedure for detecting
such changes.

We begin by defining some notation. For any value vi indexed by i = 1, 2, . . . , n, define q̂+n,α :=
the ⌈(1−α)(n+1)⌉-th smallest value of v1, v2, . . . , vn as the (1−α)-quantile of the empirical distribution of
the vi’s. Similarly, let q̂−n,α denote the α-quantile of the empirical distribution, i.e., q̂−n,α := the ⌊α(n+1)⌋-th
smallest value of v1, v2, . . . , vn. CP relies on the concept of a non-conformity score, which quantifies the
discrepancy between the prediction made by a baseline model and the true value yt(x

r
t,i). A higher score

indicates a greater discrepancy between the predicted and true values, implying lower conformity. In this
work, we use a normalized non-conformity score based on the leave-one-out (LOO) residuals—see, e.g.,
(Jaber et al. 2025; Papadopoulos 2024) for similar use in GP settings—defined as follows:

RLOO
t′,i :=

∣∣∣yt′ (xr
t′,i

)
−mt,−(t′,i)

(
xr
t′,i, θ̂θθ

∗
t−1

)∣∣∣√
σ2
t′

(
xr
t′,i

)
+ s2t,−(t′,i)

(
xr
t′,i, θ̂θθ

∗
t−1

) , t′ = t− τt−1, . . . , t− 1 and i = 1, 2, . . . , br,

wheremt,−(t′,i)(·, ·) and s2t,−(t′,i)(·, ·) denote the emulator’s predictive mean and variance at time t, computed

by excluding the training point
(
xr
t′,i, θ̂θθ

∗
t−1

)
. The term σ2

t′(x
r
t′,i) accounts for the observation noise. To

compute residuals, we use the emulator’s mean and variance at
(
xr
t′,i, θ̂θθ

∗
t−1

)
to predict the RW system

response at design input xr
t′,i. Since the emulator may not have been trained on this exact point—due to the

DT data collection mechanism in Algorithm 2—we identify the nearest training input in St−1 and exclude
it when computing the LOO prediction.

Computing LOO residuals typically requires retraining the emulator multiple times, once for each
excluded input point. However, we circumvent this computational burden by using efficient rank-one
update formulas for GP modeling, allowing fast LOO residual computation without retraining the GP
model. The Jackknife+ prediction interval (Barber et al. 2021) Ĉt(x

r
t,i) for the RW system response at

design input xr
t,i is given byq̂±τt−1×br,α

{
mt,−(t′,i)

(
xr
t,i, θ̂θθ

∗
t−1

)
±RLOO

t′,i ×
√
σ2
t

(
xr
t,i

)
+ s2t,−(t′,i)

(
xr
t,i, θ̂θθ

∗
t−1

)}t−1,br

t′=t−τt−1,i=1

 . (6)

When the RW data generation mechanism evolves over time, conformal inference must be adapted to
account for these distributional shifts. To this end, we introduce a time-varying miscoverage sequence αt,
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updated online. This adaptive mechanism monitors the empirical miscoverage frequency of past prediction
sets and adjusts αt accordingly: decreasing the level when the prediction sets under-cover and increasing it
when they over-cover. Let α1 denote the initial miscoverage estimate (we set α1 = α in our experiments).
The update rule at each time step t for each i is given by:

αt,i+1 = αt,i + γ
(
α− 1

(
yt(x

r
t,i) /∈ Ĉt(x

r
t,i)

))
, (7)

where γ > 0 is a fixed step size parameter, and 1(A) is the indicator function, returning 1 if event A
is true and 0 otherwise. Intuitively, if the prediction set fails to cover the RW response, αt,i is reduced,
widening prediction intervals in subsequent steps.

To detect change points, we monitor prediction interval widths. As the RW system evolves, these
intervals widen, signaling increased uncertainty in the predictions. For completeness, suppose that the
underlying RW system remains unchanged from time step 1 to t− 1. To detect an upward shift in the CP
interval widths, we use the CUSUM control chart. At time step t, the cumulative sum (CS) is recursively
computed as

CSt′ = max
{
0, C̄t′ − (c̄+ sc̄) + CSt′−1

}
, (8)

where CS0 = 0, and t′ = 1, 2, . . . , t. The term C̄t′ denotes the average CP interval width at time t′,

defined as C̄t′ = (br)−1
br∑
i=1

∣∣∣Ĉt′(x
r
t′,i)

∣∣∣, and the average and standard deviation of widths for all CP intervals

constructed up to time t are given by

c̄ = t−1
t∑

t′=1

C̄t′ and sc̄ =

√√√√(t− 1)−1

t∑
t′=1

(C̄t′ − c̄)2 . (9)

An alarm is triggered when CSt exceeds the threshold c̄+2sc̄ (line 4 of Algorithm 3), signaling a significant
deviation from historical system behavior. When this occurs, the flag stateChanged is set to true, and
τt is reset to the number of consecutive time points with positive CS values (lines 5–6 of Algorithm 3), i.e.,
the length of the most recent upward excursion of CSt. If no change is detected, then τt is incremented
by one, extending the delay window (lines 7–9 of Algorithm 3).

Thus far, we have assumed the observational noise variance σ2
t (·) is known. In practice, it is typically

unknown and must be estimated from data. We approximate σ2
t (·) using the sample variance of residuals

between observed RW responses and their corresponding emulator predictions. After obtaining the final
estimate θ̂θθ

∗
t and the emulator η(x, θθθ) | St (the last step of Algorithm 2), we compute the residuals

yt′
(
xr
t′,i

)
−m′

t

(
xr
t′,i, θ̂θθ

∗
t

)
for i = 1, 2, . . . , br and t′ = t− τt + 1, . . . , t. Their sample variance estimates

σ2
t (·). While our mathematical formulation in (1) allows the observational noise variance σ2

t (·) to depend
on xr, our current inference assumes that the noise is homoscedastic, i.e., constant across all design inputs
at a given time t. This simplifying assumption may be restrictive in scenarios where the observational noise
is input-dependent. Inaccurate variance estimates can lead to CP intervals that are either too narrow or too
wide, which may misrepresent uncertainty and hinder accurate detection of state changes. Incorporating
heteroscedastic noise estimation into our framework is a direction that we are actively pursuing for future
work.

5 EXPERIMENTS

This section demonstrates the proposed dynamic calibration framework using a synthetic example. Specif-
ically, we consider the DT model η(x, θ) = sin(10x− 5θ), with scalar-valued design input x ∈ X = [0, 1]
and parameter input θ ∈ Θ = [0, 1]. The RW system responses yt(xri ) are generated according to (1). The
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RW system undergoes changes in its underlying state at four unknown time points: t = 15, 35, 60, and
80. Specifically, the RW system is observed over T = 100 time steps, with observations given by:

yt(x
r) =



η(xr, θ∗t = 0.1) + ε, ε ∼ N
(
0, 0.22

)
if 0 ≤ t ≤ 14

η(xr, θ∗t = 0.3) + ε, ε ∼ N
(
0, 0.12

)
if 15 ≤ t ≤ 34

η(xr, θ∗t = 0.8) + ε, ε ∼ N
(
0, 0.22

)
if 35 ≤ t ≤ 59

η(xr, θ∗t = 0.5) + ε, ε ∼ N
(
0, 0.12

)
if 60 ≤ t ≤ 79

η(xr, θ∗t = 0.7) + ε, ε ∼ N
(
0, 0.22

)
if 80 ≤ t ≤ 100 .

(10)

Algorithm 1 begins with an initial RW sample of size 10, observed at uniformly distributed design points
in X (i.e., |D0| = 10). The DT data are then collected according to Algorithm 2 to estimate the initial
unknown calibration parameter, θ∗0, based on D0. At each time step, we receive a batch of br = 3 RW
data points, generated via (10) at design points uniformly sampled from X . When Algorithm 3 detects a
state change, we collect bs = 50 new DT data points and estimate the corresponding calibration parameter
using Algorithm 2. We use a fixed initial DT sample St,0 of size n0 = 10, with the input points uniformly
drawn from the input space, in Algorithm 2.

Figure 1 shows the CP intervals over time steps t = 1, 2, . . . , 38. From t = 1 to t = 14, and again
from t = 20 to t = 34, the RW system remains unchanged, during which most RW data points lie within
the CP intervals. At t = 15 and t = 35, the RW system undergoes a change, leading to many RW data
points falling outside the CP intervals. As residuals increase after these changes, the CP interval widths
also widen in subsequent time steps.

Figure 2(a) shows the CP interval widths over time, corresponding to each batch of br = 3 new RW
data points. Because the interval widths for the three new points at each time step t are similar, the CP
intervals appear indistinguishable. Figure 2(b) displays the number of RW data points not covered by the
CP interval at each time step. Since we receive br = 3 new points at each step, the number of uncovered
points can be at most three. When the RW system changes but the method has not detected it yet, the
number of uncovered points increases, causing wider CP intervals. Once the interval width surpasses the
CUSUM threshold, a new state is declared.

Figure 3 illustrates the bs = 50 DT data points collected through our AL procedure, along with the
estimated calibration parameters. When a meaningful RW state change is detected, DT data are densely
collected around the parameter region of interest, ensuring detailed exploration of the most relevant areas.
Simultaneously, the design space is fully covered to ensure accurate estimation of the RW system behavior
at any given design input x using the emulator. Although initial parameter estimates deviate from the true
region of interest, the estimated parameters θ̂∗t,ℓ converge closely to the true values in the later stages of
the AL procedure.

Finally, Figure 4 shows the coverage rate of RW data points over time for different RW batch sizes,
br ∈ {1, 2, 4, 8}. In our framework, larger batch sizes typically result in more robust CP intervals over time,
as the RW data points at each time step are used to construct intervals in subsequent steps based on their
residuals. Consequently, increasing br tends to improve the reliability of the coverage. An exception occurs
with br = 1, where the coverage rate improves after approximately t = 60. However, this improvement is
misleading: because change points are not accurately detected using this batch size, larger residuals lead
to wider CP intervals and artificially high coverage.

6 CONCLUSION

This work introduces a dynamic calibration framework for DTs and outlines several directions for future
research. While the data generation model in (1) assumes normally distributed errors, the framework
itself is distribution-free and broadly applicable. Future work will explore alternative generation processes,
methods for estimating input-dependent noise variance, and applications to real-world case studies. An
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(a) (b)

(c) (d)

Figure 1: CP intervals obtained at time steps t = 1, 2, . . . , 14 (a), t = 15, 16, . . . , 19 (b), t = 20, 21, . . . , 34
(c), and t = 35, 36, . . . , 38 (d), with each time step receiving br = 3 RW observations. Circle markers
represent the RW data points received, and vertical lines indicate the CP intervals associated with each
point at its corresponding time step. Cyan and red indicate whether the RW observation is covered or
uncovered, respectively. The dashed magenta line shows the expected RW response value E[yt(xr)] for
0 ≤ t ≤ 14 and 15 ≤ t ≤ 34 in (a)–(d).

(a) (b)

Figure 2: The CP interval widths (a) and the number of RW data points not covered by their respective
CP intervals (b).
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(a) (b)

Figure 3: The trajectory of the estimated calibration parameter at each stage of the AL procedure (a) and
the design and parameter input points selected by the AL procedure (b).

(a) (b)

Figure 4: Illustration of the RW cumulative (a) and per-time-step (b) coverage rates for different batch
sizes br ∈ {1, 2, 4, 8} across 30 independent macro-replications of the experiment.

important extension is the incorporation of model discrepancy. The KOH framework models the RW system
as the sum of the simulation output and a discrepancy term, capturing systematic differences between the
model and reality. Despite known identifiability challenges (Plumlee 2017), incorporating a discrepancy
component would enable a more comprehensive treatment of uncertainty in simulation-based calibration.
Finally, the current DT data collection strategy via AL does not reuse evaluations from previous time
steps. Retaining informative data points across time could reduce DT evaluation costs and improve overall
efficiency—another promising direction for future work.
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