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ABSTRACT

This paper introduces an active learning framework for manifold Gaussian Process (GP) regression,
combining manifold learning with strategic data selection to improve accuracy in high-dimensional spaces.
Our method jointly optimizes a neural network for dimensionality reduction and a Gaussian process
regressor in the latent space, supervised by an active learning criterion that minimizes global prediction error.
Experiments on synthetic data demonstrate superior performance over randomly sequential learning. The
framework efficiently handles complex, discontinuous functions while preserving computational tractability,
offering practical value for scientific and engineering applications. Future work will focus on scalability
and uncertainty-aware manifold learning.

1 INTRODUCTION

Gaussian Process Regression (GPR) (Rasmussen and Williams 2006) is a powerful non-parametric frame-
work widely used in machine learning, statistics, and scientific computing for regression and uncertainty
quantification tasks. However, standard GPR methods face significant challenges as the input dimension
grows, suffering from the curse of dimensionality: computational scalability deteriorates, and the ability to
capture the underlying data structure diminishes as data becomes increasingly sparse in high-dimensional
spaces (Beyer et al. 1999).

To address these limitations, manifold Gaussian Processes (mGPs) have emerged as a promising
alternative. By leveraging manifold learning techniques, mGPs project high-dimensional data onto a lower-
dimensional latent space while preserving its intrinsic geometry (Meilă and Zhang 2024). This approach
not only mitigates the challenges of high-dimensional inference but also enhances predictive performance
by exploiting the data’s underlying structure. Recent advances include graph-based distance metrics (e.g.,
Isomap (Tenenbaum et al. 2000)) combined with Matérn Gaussian processes (Borovitskiy et al. 2020;
Fichera et al. 2023), as well as wrapped Gaussian processes for manifold-valued data (Mallasto and Feragen
2018).

Despite these innovations, the performance of GPR—and by extension, mGPs—heavily depends on the
quality and representativeness of the training data. In many real-world applications, acquiring labeled data
is expensive or time-consuming, necessitating efficient data acquisition strategies. Active learning for GPR
has been extensively studied due to the model’s inherent ability to quantify predictive uncertainty, making it
a natural fit for sequential data selection. Early work by MacKay (1992) laid the theoretical foundation for
Bayesian active learning, later adapted to GPR by Seo et al. (2000), demonstrating superior convergence
compared to passive sampling. Subsequent developments include uncertainty sampling (prioritizing high-
variance points) and information-theoretic approaches, such as mutual information maximization for sensor
placement (Krause et al. 2008) and Bayesian Active Learning by Disagreement (BALD) for parameter-
aware selection (Houlsby et al. 2011). These methods have been extended to deep GPR models (Ma et al.
2019) and related tasks like uncertainty quantification and inverse problems (Chen et al. 2021; Heo and
Sung 2025).
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In practice, active learning strategies must balance exploration (reducing global uncertainty) and
exploitation (optimizing a downstream objective). This trade-off is well-studied in Bayesian optimization
(BO) (Frazier 2018), where acquisition functions like Expected Improvement (EI) and Upper Confidence
Bound (GP-UCB) (Srinivas et al. 2010) align naturally with active learning objectives. For instance, GP-UCB
provides theoretical regret bounds, making it suitable for bandit-style optimization tasks. Cost-sensitive
active learning methods further refine this balance by incorporating labeling costs into the acquisition
function (Kapoor et al. 2007), which is critical in domains like medical diagnosis. Recent work has also
focused on robustness: Martinez-Cantin et al. (2018) combined robust regression (GPs with Student-t
likelihood) with outlier diagnostics to improve reliability.

In the context of mGPs, active learning can efficiently refine the model by targeting regions of high
uncertainty or high potential improvement. For example, Sauer et al. (2023) and Binois et al. (2019)
adopted the integrated mean-squared error (IMSE) criterion—originally proposed by Cohn et al. (1996),
Cohn (1996)—to minimize prediction error. Kim et al. (2024) further integrated manifold learning with
GP-UCB for optimization on manifolds. However, active learning tailored to mGPs remains underex-
plored, particularly for regression tasks where latent space geometry and high-dimensional inputs interact
dynamically.

This paper proposes a novel active learning framework for manifold Gaussian Process regression,
bridging the gap between efficient data acquisition and dimensionality reduction. Our key contributions
include:

• a unified framework integrating manifold learning with IMSE-based active learning for mGPs,
• enhanced efficiency through strategic point selection in the latent space, and
• scalability for high-dimensional data by operating on intrinsic low-dimensional manifolds.

We validate our approach through synthetic experiments, demonstrating improvements over passive
sampling and standard active learning methods.

The paper is organized as follows: Section 2 reviews GPR fundamentals. Section 3 introduces our
active learning method with active learning Cohn (ALC) acquisition function for mGP regression. Section 4
illustrates the framework with three case studies, and Section 5 discusses future directions. The codes are
available through the GitHub link https://github.com/XavierOwen/ALC-AEGP.

2 BACKGROUND ON GPR

The Gaussian Process Regression (GPR) model assumes the following probabilistic representation for the
response y(xxx):

y(xxx) = µ(xxx)+Z(xxx)+ ε,

where
Z(xxx)∼ GP(0,τ2k(·, ·)), and ε

iid∼ N(0,σ2).

Denote Ω ⊂Rp as the input domain and output y(xxx) ∈R1. Here, k(·, ·) : Ω×Ω →R+ is the correlation
function of the process Z(xxx). Common choices include the Matérn and Gaussian correlation functions (or
SE-ARD kernels):

Matérn:
p

∏
l=1

1
Γ(ν)2ν−1

(
2
√

ν |xil − x jl|
θl

)ν

Kν

(
2
√

ν |xil − x jl|
θl

)
, Gaussian: exp

{
−

p

∑
l=1

(xil − x jl)
2

θl

}
,

where Kν is the modified Bessel function of the second kind and θθθ ∈Rp
+ are length-scale parameters.

The mean function µ(xxx) determines the model class:

• Ordinary kriging: µ(xxx) is an unknown constant;
• Universal kriging: µ(xxx) = β0 +βββ

⊤xxx (linear in inputs);
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• General case: µ(xxx) is an unknown combination of basis functions, selectable via stepwise forward
regression (Joseph et al. 2008; Joseph and Kang 2011) or shrinkage methods (Hung 2011; Kang
et al. 2024).

For simplicity, we assume µ(xxx) = 0 throughout this paper. The proposed methods can be extended to
non-zero mean cases through response centering or trend removal in preprocessing.

Given observed data {xxxi,yi}n
i=1, we need to estimate the unknown parameters that the length-scale

parameters θθθ , the variance of Z(·) τ2, and the variance of the noise σ2. To estimate σ2, if the training data
contain replications at some if not all design points, then σ2 can be estimated in advance using pooled sample
variance. The response vector yyy follows the multivariate normal distribution yyy ∼N (0,τ2KKKn+σ2IIIn), where
KKKn is the n×n correlation matrix with KKKn,i j = k(xxxi,xxx j), and IIIn is the n-dim diagonal matrix.

The parameters (θθθ ,τ2,σ2) can be estimated via maximum likelihood method, and the −2log-likelihood
of the data is

Q ≜−2logL = n logτ
2 + logdet(KKKn +ρIIIn)+

1
τ2

(
yyy⊤ (KKKn +ρIIIn)

−1 yyy
)
. (1)

Here ρ = σ2/τ2 is the noise-to-signal ratio. If ρ = 0, the GPR becomes an interpolation model which
is usually used to model deterministic computer simulation outputs. If the data does not contain replications
at any design point and the noise variance σ2 is not zero, we can consider ρ as an unknown parameter
and estimate it by maximizing the log-likelihood. Given the other parameter values, the MLE of τ2 is

τ̂
2 =

1
n

yyy⊤(KKKn +ρIIIn)
−1yyy

obtained by solving ∂Q/∂τ2 = 0. Replace τ2 by τ̂2 in Q and minimize Q with respect to (θθθ ,ρ) if σ2

cannot be estimated from the pooled variance from replicated observations.
The predictive distribution of y at any new query point xxx is also normally distributed with

E(y(xxx)|yyy,τ2,ρ,θθθ) = kkkn(xxx)′(KKKn + ρ̂IIIn)
−1yyy, (2)

s2
n(xxx)≜ var(y(xxx)|yyy,τ2,ρ,θθθ) = τ̂

2 [1− kkk(xxx)′(KKKn + ρ̂IIIn)
−1kkk(xxx)

]
+ σ̂

2, (3)

where kkkn(xxx) is the correlation between xxx and xxxi, i.e., kkkn(xxx) = [k(xxx,xxx1), . . . ,k(xxx,xxxn)]
⊤. The GPR predictor

is the conditional mean ŷ(xxx) = kkkn(xxx)′(KKKn + ρ̂IIIn)
−1yyy. It is also the Best Linear Unbiased Predictor (BLUP)

(Santner et al. 2003) for y(xxx) under the GP assumption. We can construct the predictive confidence interval
for y(xxx) from (3).

3 ACTIVE LEARNING FOR MANIFOLD GAUSSIAN PROCESS REGRESSION

3.1 Manifold Gaussian Process Regression

The Manifold Gaussian Process (mGP) (Calandra, Peters, Rasmussen, and Deisenroth 2016) addresses key
limitations of standard Gaussian Process Regression (GPR) by jointly learning a data transformation and a
GPR model. Standard GPs rely on covariance functions (e.g., squared exponential) that encode smoothness
assumptions, which may be inadequate for modeling discontinuous or complex functions (e.g., robotics
tasks with contact dynamics). The mGP framework decomposes the regression task into:

F = G◦M,

where M : X →H is a deterministic mapping from the input space X to a latent feature space H ⊂RQ,
and G : H →Y is a GPR model on H . Here Y ⊂R is the space of the response. For the map M, we employ
multilayer neural networks. In each layer, the transformation is defined as ZZZi = Ti(XXX) = σM(WWW iZZZi−1 +BBBi),
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where σM is the activation function and WWW i and BBBi are the weight matrix and bias vector for the i-th layer.
Consequently, M(XXX) = Tl ◦Tl−1 ◦ · · · ◦T1(ZZZ0) with ZZZ0 = XXX , and the collection of these hyperparameters is
denoted by θθθ M.

The mGP defines a valid GP over X with the covariance function:

τ
2k̃(xxx1,xxx2) = τ

2k(M(xxx1),M(xxx2)),

where k is the standard kernel (e.g., SE-ARD or neural network kernel) with hyperparameters θθθ G.
This formulation allows the model to adaptively learn feature representations that align with the regression
objective, overcoming the limitations of unsupervised transformations (e.g., PCA or random embeddings)
that may not preserve the task-relevant structure.

The mGP optimizes the parameters θθθ mGP = [θθθ M,θθθ G] jointly by minimizing the Negative Log Marginal
Likelihood (NLML):

NLML(θθθ mGP) = n logτ
2 + logdet(K̃KKn +ρIIIn)+

1
τ2 yyy⊤(K̃KKn +ρIIIn)

−1yyy,

where K̃KKn is the kernel matrix evaluated on the transformed inputs M(XXX). Gradients are computed via
backpropagation through M (if M is a neural network) and the kernel hyperparameters θθθ G. The predictive
distribution at a test point xxxn+1 is a normal distribution with mean and variance specified by (2) and (3)
except kkkn is replaced by k̃kkn and KKKn by K̃KKn.

One can see that the Deep Gaussian Process (or DGP) (Damianou and Lawrence 2013) is closely
connected with mGP since both involve latent space transformations before applying GPR. However, they
are distinct extensions of standard GPR because DGPs learn this transformation hierarchically through
layers of GPs, while mGPs often assume a geometric prior and embed the data accordingly. The mGP
framework offers several key advantages over traditional GPs and unsupervised feature learning methods.
By jointly optimizing the feature mapping M and GPR G under a supervised objective, it learns task-aware
representations that can handle discontinuities (e.g., step functions) and multi-scale patterns more effectively
than standard kernels like SE-ARD or neural network covariances. The flexibility of parameterizing M as
a neural network (e.g., [1−6−2] layers) allows it to unwrap complex input geometries, while retaining
the GP’s probabilistic uncertainty quantification—critical for robotics and control applications. However,
this approach also introduces challenges: the joint optimization θθθ mGP = [θθθ M,θθθ G] is non-convex and may
converge to suboptimal local minima, particularly with high-dimensional θθθ M. Additionally, sparse data
around discontinuities can lead to overfitting in the deterministic mapping M, causing misaligned feature
representations. While probabilistic extensions (e.g., Bayesian neural networks for M) could mitigate this,
they often sacrifice tractability. Despite these limitations, the mGP’s empirical performance on benchmarks
in Calandra et al. (2016) demonstrates its superiority in scenarios where input-space geometry violates
standard GP assumptions.

3.2 Active Learning for mGP

The Active Learning Cohn (ALC) criterion (Cohn et al. 1996; Seo et al. ) is a foundational information-
theoretic strategy for sequential experimental design in Gaussian Process Regression (GPR). It selects new
data points xxxn+1 that maximize the model’s average predictive uncertainty over the input space. Formally,
this is achieved by minimizing the integrated mean squared error (IMSE) across the input space (Cohn
1996), which corresponds to reducing the average posterior variance. Neglecting the constant noise variance,
the IMSE is defined as:

s̆2
n+1(xxx|xxxn+1)≜ τ̂

2
[
1− k̃kkn+1(xxx)⊤(K̃KKn+1 +ρIIIn+1)

−1k̃kkn+1(xxx)
]
,

IMSE(xxxn+1)≜
∫

X
s̆2

n+1(xxx|xxxn+1)dxxx,
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where xxxn+1 is selected from a finite candidate pool Xcand ⊂X , typically constructed using a space-filling
design. The term k̃kkn+1(xxx) = [k̃(xxx,xxx1), . . . , k̃(xxx,xxxn+1)]

⊤ and K̃KKn+1 denote the kernel vector and (n+1)×(n+1)
correlation matrix evaluated in the learned latent space H = M(X ) using the current mGP parameters.

Minimizing the IMSE is equivalent to maximizing the expected reduction in posterior variance, leading
to the ALC acquisition function:

ALC(xxxn+1) =
∫

X
s2

n(xxx)− s̆2
n+1(xxx|xxxn+1)dxxx ∝

∫
X

τ̂
2k̃kkn+1(xxx)⊤(K̃KKn+1 +ρIIIn+1)

−1k̃kkn+1(xxx)dxxx,

where s2
n(xxx) is computed via (3) except that k function is replaced by k̃, and thus kkkn(xxx) by k̃kkn(xxx) and

KKKn by K̃KKn. To approximate the integration numerically, we introduce a fixed reference set Xref of size m
sampled from X using Latin Hypercube Design. The ALC objective becomes:

ALC(xxxn+1) ∝ ∑
xxx∈Xref

τ̂
2k̃kkn+1(xxx)⊤(K̃KKn+1 +ρIIIn+1)

−1k̃kkn+1(xxx).

In contrast to Sauer et al. (2023), which employs DGPs, our method integrates ALC with mGPs. At
each active learning iteration, the most informative training point is selected via:

xxx∗n+1 = argmax
xxx∈Xcand

ALC(xxx),

and subsequently removed from the candidate pool Xcand. This selection procedure iteratively reduces
overall model uncertainty, leveraging the mGP’s ability to capture complex geometric structures in latent
space. To enhance computational efficiency, we adopt two strategies. First, we support batch selection by
choosing B design points per iteration, indexed by round r. Second, instead of evaluating ALC on the full
candidate set, we incorporate a pre-screening step: among the candidate set Xcand, we identify the top
K > B points with the highest predictive variance, denoted X ∗

r :

X
(r)

cand =
{

xxx(r)1 ,xxx(r)2 , . . . ,xxx(r)K

}
,

and compute ALC only on X
(r)

cand. We then select the B points with the highest ALC scores. The
complete procedure is outlined in Algorithm 1.

4 EXAMPLES

We evaluate the proposed Active Learning Manifold Gaussian Process (ALmGP) framework on four
benchmark experiments. These experiments are designed to assess the effectiveness of ALmGP under
varying geometric structures and data complexities. The acquisition strategy is based on the ALC criterion
and model optimization is carried out using the L-BFGS algorithm implemented in the PyTorch library
(Paszke et al. 2019). The optimizer employs strong Wolfe line search conditions (line_search_fn =
strong_wolfe), with early stopping triggered when the relative RMSE change

Relative RMSE Change =
∣∣∣∣Lcurrent −Lprevious

Lcurrent −Linitial

∣∣∣∣
falls below a predefined tolerance threshold. To ensure positivity and improve stability during opti-

mization, all hyperparameters of the mGP model are squared before being passed to the optimizer. All
neural network weights are initialized using PyTorch’s default scheme, while GP hyperparameters—output
variance and length scale—are initialized to 1.
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Algorithm 1 Active Learning for Manifold Gaussian Process Regression (ALmGP).

Input: Initial training dataset {xxxi,yi}n0
i=1 with small sample size n0; reference set Xref ⊂X and candidate

set Xcand ⊂X ; tuning parameters including screening size K, batch size B, convergence threshold Tol,
maximum total sample size Nmax, and initial values and optimization settings for fitting the mGP.
Output: Trained mGP model and estimated parameters after active data acquisition.
Step 0: Fit the mGP model using the training set {xxxi,yi}n0

i=1 by minimizing the negative log marginal
likelihood (NLML) with respect to θθθ mGP using the L-BFGS algorithm (Nocedal and Wright 2006).
for r = 1,2, . . . ,⌊Nmax/B⌋ do

Step 1: Compute posterior predictive variance for all points in Xcand, and select the top K points with
highest variance. Denote this screened set as X

(r)
cand.

Step 2: For each xxx ∈ X
(r)

cand, compute the ALC acquisition score ALC(xxx) using the current mGP
model.
Step 3: Select the top B points in X

(r)
cand with the highest ALC values. Add them to the training set

and remove them from Xcand.
Step 4: Re-train or update the mGP model using the expanded training dataset.
Step 5: Evaluate the cross-validation error or training mean squared error (MSE). If the error falls
below the threshold Tol, terminate the loop and return the final fitted mGP model.

end for

Model performance is evaluated using the Root Mean Square Error (RMSE) computed on an inde-
pendently generated test set, which has ntest number of points sampled from X using Latin Hypercube
Design:

RMSE =

√
1

ntest
∑

i
(ŷi − yi)2,

where ŷi and yi denote the predicted and ground truth values at test location xxxi, respectively. Each
experiment is repeated 10 times to ensure statistical robustness. The mean and range of RMSE values are
reported and compared against a baseline strategy using completely random sampling B design points from
Xcand.

4.1 Piecewise Trigonometric Function

This example features a piecewise trigonometric function adapted from Sauer et al. (2023), with noise
ε ∼ N (0,0.12):

F(x) =


1.35cos(12πx), x ∈ [0,0.33],
1.35, x ∈ [0.33,0.66],
1.35cos(6πx), x ∈ [0.66,1].

The initial dataset consists of n0 = 10 points generated using Latin Hypercube Design over [0,1]. The
test set contains 500 uniformly spaced points, and both Xcand and Xref consist of 100 evenly spaced points
in the same interval. The neural network uses [1-6-2] architecture and LogSigmoid activation. The batch
size is B = 1, and the total budget is Nmax = 50. L-BFGS uses history_size = 20, a learning rate of
0.001, a maximal number of iterations per optimization step 20 and a maximum of 5,000 training iterations
with early stopping tolerance Tol = 10−5. The active learning process ends with 15 new samples and
achieves an average completion RMSE of 0.156. Figure 1 shows the details of the training data, the fitted
function, the latent space, and the comparison of RMSE of active learning for mGP using the proposed
ALC strategy and random sampling.
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Figure 1: (a) The black dots indicate the final selected training data and the blue solid line is the true
piecewise trigonometric function. (b) The green dashed line represents the final predicted value the green
shaded area denotes the prediction confidence interval. (c) Learned a two-dimensional latent space. (d)
Comparison of test RMSE over iterations: our method (green, solid) vs. random acquisition (red, dashed).
Lines show the mean of 10 runs; shaded areas indicate the minimum to maximum range.

4.2 Two-Dimensional Deterministic Function

We consider a two-dimensional function also from (Calandra et al. 2016), defined as:

f (x1,x2) = 1−φ(x2;3,0.52)−φ(x2;−3,0.52)+
x1

100
,

which is then rotated by 45◦. The function φ(·; µ,σ2) is the PDF of N (µ,σ2). Then initial training
data (n0 = 50), test data, and the reference set Xref are all of size 500 and sampled from [0,10]2 using
LHD. Predictions are also evaluated on a grid over X with mesh size 0.2. This neural network maps
the 2D input to a latent space, and the architecture is [2−10−3], with the same LogSigmoid activation.
The active learning proceeds with batch size B = 1 and budget Nmax = 50. The L-BFGS is run with
history_size = 50, learning rate 0.01, a maximal number of iterations per optimization step 50, and
a max of 5000 iterations. The active learning procedure concludes with 100 samples after 50 iterations,
reaching an average RMSE of 0.0152 for the proposed method. Figure 2 and 3 show the detailed results.

4.3 Three-Dimensional Function on the Unit Sphere

This example uses a test function defined on the 3D unit sphere:

f (x,y,z) = cos(x)+ y2 + ez, where x2 + y2 + z2 = 1.

It can be reformulated on the disk as g(x,y) = cos(x)+ y2 + e1−x2−y2
for x2 + y2 ≤ 1. We construct

training, test, and reference sets (each of size 500) by sampling (v,α) ∈ [−1,1]× [0,2π] using Latin
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Figure 2: (a) The heat map is the true function value with the black dots representing the initial training
data. (b) The heat map is the final predicted value, and the black dots are the overall training data. (c)
Comparison of test RMSE over iterations: our method (green, solid) vs. random acquisition (red, dashed).
Lines show the mean of 10 runs; shaded areas indicate the minimum to maximum range.
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Figure 3: The three heat maps represent three latent dimensions with respect to the original input (x1,x2).

Hypercube Design and mapping them to (x,y,z) via:

z = v, x =
√

1− v2 cos(α), y =
√

1− v2 sin(α).

The neural network has architecture [3-10-2], and training starts from n0 = 50 samples. Active learning
is run with Nmax = 100 and B = 1. The L-BFGS is configured with history_size = 50, a learning
rate of 0.01, a maximal number of iterations per optimization step 20 and 5,000 training iterations. The
active learning stops when it reaches the full budget of 100 samples, yielding the averaged RMSE as low
as 6×10−3 for the proposed method. See the results in Figure 4 and 5.

4.4 Borehole

This example models the groundwater flow function of the borehole, a well-known benchmark for nonlinear
regression. The function depends on eight physical parameters, such as radius and aquifer transitivity.
The detailed definition of the variable and the math expression of the function are included in Kang et al.
(2023). Inputs are generated via LHS and mapped to physical ranges.

The neural network has architecture [8-30-4], and training starts from n0 = 50 samples. Active learning
is run with Nmax = 150 and B = 1. The L-BFGS uses history_size = 50, learning rate 0.001, a maximal
number of iterations per optimization step 100, and 10,000 training iterations. Early stopping is triggered
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Figure 4: (a) The heat map represents the true function value on the 3-dim unit sphere and the dots are the
initial training data. (b) The heat map is the final predicted value and the black dots are the overall training
data. (c) Comparison of test RMSE over iterations: our method (green, solid) vs. random acquisition (red,
dashed). Lines show the mean of 10 runs; shaded areas indicate the minimum to maximum range.
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Figure 5: (a) The heat map represents the true function value f with respect to the two latent dimensions.
(b) The heat map represents the 1st latent dimension with respect to (x,y,z). (c) The heat map represents
the 2nd latent dimension with respect to (x,y,z).

when the relative test RMSE change is below 10−8. The proposed active learning stops when it reaches
the full budget of 150 samples, yielding an average RMSE as low as 0.6. See the results in Figure 6.

5 CONCLUSION

This paper introduced an active learning framework for manifold Gaussian Process (mGP) regression,
combining the strengths of manifold learning with sequential experimental design. By integrating the
Active Learning Cohn criterion with mGPs, we demonstrated how to strategically select training points
that simultaneously improve predictive accuracy and exploit low-dimensional data structure. The proposed
method addresses key limitations of standard GPs in high-dimensional spaces, where traditional covariance
functions often fail to capture complex or discontinuous patterns. Our experiments validated the framework’s
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Figure 6: Comparison of test RMSE over iterations: our method (green, solid) vs. random acquisition (red,
dashed). Lines show the mean of 10 runs; shaded areas indicate the minimum to maximum range.

efficacy in reducing integrated mean squared prediction error (IMSE) while maintaining computational
tractability through efficient hyperparameter optimization and neural network-based manifold learning.

Several promising extensions emerge from this work. First, the current framework assumes a determin-
istic manifold mapping M. A Bayesian treatment of M (e.g., via Bayesian neural networks or variational
inference) could quantify uncertainty in the latent space, improving robustness when training data is sparse
or noisy. This would require advances in approximate inference to handle the non-conjugacy between neural
networks and GPs. Second, the computational cost of active learning scales with the reference set size m
is used for IMSE approximation. Developing sparse approximations or gradient-based sampling for the
ALC integral could enhance scalability to very high-dimensional input spaces. Techniques from stochastic
optimization, such as mini-batch reference sampling and merit exploration. Lastly, the interpretability of
learned manifolds could be improved by incorporating domain-specific constraints (e.g., physics-informed
neural networks) or disentangled representations. This would bridge the gap between black-box flexibil-
ity and interpretable modeling, particularly in scientific applications where mechanistic understanding is
paramount.
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