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ABSTRACT

We introduce a hybrid modeling approach for simulating carbon dioxide (CO2) dispersion in indoor
environments by integrating Cellular Automata (CA), Discrete Event System Specification (DEVS), and
agent-based modeling. The proposed framework enhances traditional models by incorporating dynamic
CO2 generators, random-walk algorithms, and CO2 sinks. We show how the method can be used to
examine the effects that room layouts, occupant movement, ventilation settings, and CO2 sinks and sources
placement have on indoor concentration patterns. The approach presented here enables the exploration of
various configuration parameters and provides a flexible and scalable tool for understanding CO2 diffusion.

1 INTRODUCTION

Recently, maintaining healthy indoor environments while ensuring energy efficiency has become a central
concern. Carbon dioxide (CO2) concentration is widely recognized as a key indicator of indoor air quality,
with significant implications for occupant comfort, cognitive performance, and the implementation of
demand-driven ventilation and occupancy detection systems (Mendell et al. 2024). Elevated CO2 levels
have been associated with reduced academic performance, productivity, respiratory health issues (Sadrizadeh
et al. 2022; Deng et al. 2024). However, conducting physical experiments to assess CO2 dispersion across
diverse indoor scenarios is often impractical due to cost, time, and logistical constraints.

To address these challenges, Modeling and Simulation (M&S) techniques have emerged as powerful
alternatives, enabling researchers to evaluate air quality under controlled virtual conditions. Existing
approaches include statistical-based for occupancy estimation, as well as physics-based methods such
as Computational Fluid Dynamics (CFD) for simulating airflow and CO2 distribution. While effective,
these techniques are often limited by high computational complexity or detailed input data and calibration
(Labeodan et al. 2015; Mou et al. 2022). Other methods, in particular, the hybrid combination of Cellular
Automata (CA) and Discrete Event System Specification (DEVS), known as Cell-DEVS formalism, has
been successfully applied to incorporate spatial and temporal dynamics, including room geometry, HVAC
systems, window and door locations, and occupant presence (Khalil et al. 2020; Khalil and Wainer 2024).
These models are valuable for applications such as sensor placement optimization, air quality monitoring,
and infection risk assessment. Despite their versatility, most current models are limited to two-dimensional
representations, restricting their applicability in scenarios where the three-dimensional airflow interactions
are significant.

To overcome these limitations, this study proposes a hybrid agent-based modeling approach that
combines CA and DEVS to simulate CO2 dispersion in three-dimensional indoor environments. The goal
of this work is to enhance spatial realism and better capture the dynamic behaviors of both occupants
and airflow patterns. Our approach incorporates dynamic CO2 generators, random-walk algorithms for
dispersion modeling, and the inclusion of CO2 sinks to assess their impact on CO2 reduction. The main
contributions of this work are: i) the development of a 3D model to simulate CO2 spread under dynamic
occupancy behavior; ii) the evaluation of different CO2 sinks to assess their impact on air quality; and iii)
a set of simulation experiments that validate the proposed approach and highlight its practical implications
for building design and environmental control strategies.
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2 RELATED WORK

Modeling CO2 dispersion in enclosed spaces is critical for addressing global warming, enhancing indoor
air quality, optimizing sensor placement, and reducing energy use. Various computational methods have
emerged, such as Labeodan et al. (2015), who noted challenges in obtaining reliable data for occupancy
detection due to environmental variability and human behavior. Calì et al. (2015) developed an algorithm
based on CO2 levels to estimate occupancy in various settings, although it depends on knowledge of
ventilation and outdoor CO2. Ryu and Moon (2016) leveraged a statistical decision tree and Hidden
Markov Model, finding that CO2 measurements, particularly the indoor-to-outdoor concentration ratio, are
key indicators of occupancy. Batog and Badura (2013) created a simplified bedroom model, focusing on
key surfaces like the bed and wardrobe, and simulated CO2 from a sleeping occupant over eight hours in
two scenarios: one without fresh air inlets and another with airflow gaps. Their findings highlights the
significance of proper CO2 sensor placement for accurate readings. Similarly, Pantazaras et al. (2016)
developed a method for predictive modeling of CO2 levels in specific indoor spaces by integrating room
characteristics, ventilation rates, and occupancy patterns, emphasizing the need for careful sensor placement
to enhance model accuracy.

Recent studies have investigated Computational Fluid Dynamics (CFD) modeling for indoor envi-
ronments. For instance, Mou et al. (2022) used CFD to simulate airflow and CO2 distribution in a
seminar room to optimize sensor placement, revealing that airflow patterns and occupant-generated CO2
significantly affect concentration distributions. They stressed the importance of considering room layout,
ventilation design, and occupant activity in simulations. However, while CFD offers high accuracy, it can be
computationally demanding for large or complex environments and requires detailed boundary conditions
and expert calibration (Zhang et al. 2024). Consequently, researchers are seeking alternative modeling
techniques that provide a better balance of accuracy, efficiency, and scalability.

Cellular Automata (CA) models offer another promising approach by discretizing space into a grid
of cells, where global system behavior emerges from simple local interactions and transition rules (Khalil
and Wainer 2024). CA-based methods provide advantages in terms of computational efficiency, scalability,
and the ability to model spatially heterogeneous environments, making them highly suitable for indoor
CO2 spread simulation. In this research we aim to model the spread of CO2 using a hybrid approach
that combines Discrete-Event models specified using the DEVS formalism (Zeigler et al. 2000) and CA
(Wolfram 1984; Wolfram 1983). We propose an agent-based modeling framework in a spatial environment,
incorporating a stochastic algorithm to simulate the dispersion of CO2 particles as well as random walk.

CA is a method for modeling cell spaces using a regular n-dimensional grid, where each cell holds
one of a finite set of possible states. The system evolves in discrete time steps, with all cells updating
their states simultaneously according to a local transition rule. This rule determines the next state of a cell
based on its current value and the values of its neighboring cells (the neighborhood). Figure 1(a) shows a
two-dimensional CA, where each cell either contains a value or is empty, and its next state is computed
based on its current state and those of the adjacent cells (shaded area).

CA allows for detailed mathematical analysis and can effectively model complex systems through
simple computations in individual cells. While CA typically uses discrete-time updates suitable for
asynchronous applications like pedestrian flow and traffic, it often employs synchronous rules, complicating
the representation of time-triggered activities (Wang et al. 2023; Deng et al. 2022). Recently, combining
CA with other modeling techniques for simulating CO2 dispersion has gained interest. For example,
Sonnenschein et al. (2025) proposed a hybrid model integrating Land Use Regression (LUR) for baseline
CO2 concentrations with CA to assess urban traffic-related CO2 pollution by incorporating meteorological
and morphological factors. However, research applying CA for indoor CO2 dynamics remains limited.
Integrating CA with DEVS formalism and other paradigms could provide a more flexible approach for
simulating CO2 spread, enhancing temporal precision, modularity, and asynchronous modeling capabilities.
Cell-DEVS is a hybrid combination of both DEVS and CA.
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Figure 1: Two-dimensional cellular automaton with its neighborhood.

In Cell-DEVS, each agent in a cell is modeled using a hybrid combination of execution rules defined
later as a DEVS atomic model. A structure coupling mechanism is used to interconnect the cells. Indeed,
a Cell-DEVS model is an n-dimensional lattice where each cell is an atomic model, and the whole-cell
space is a coupled DEVS model (Wainer 2009). These cells communicate with each other through input
and output ports, allowing them to exchange information not only with neighboring cells but also with
other models defined in different formalisms defined outside the defined cell space. Figure 1(b) provides an
illustrative representation that highlights how Cell-DEVS integrates principles from both DEVS and CA.

To define a Cell-DEVS model, the first step is to define the atomic behavior of each cell a:

T DC =< X , Y, S, N, type, d, δint , δext , τ, λ , D >,

where X and Y are the sets of external input and output events, respectively, S is the set of possible states,
N is the set of input values, type specifies the type of delay (transport, inertial, or other), and d denotes the
delay duration. The local computing function τ determines the cell’s future state, while the output function
λ generates the corresponding output. Finally, D defines how long the state is held before a transition
occurs. When using a transport delay, the output is sent after the delay time d has passed. In contrast, an
inertial delay is used as a preemptive mechanism; it prevents any scheduled change from taking place upon
receiving an external event from a neighbor cell before the scheduled time. Once the atomic behavior of
each cell is specified, the next step is to define the complete cell space.

In Cell-DEVS, this space is modeled as a coupled DEVS model, formally represented as follows:

GCC =< Xlist , Ylist , I, X , Y, η , {t1, · · · , tn}, N,C, B, Z >,

where Xlist and Ylist denote the list of external input and output couplings, respectively; I is the set of states,
X and Y are the sets of external input and output events, respectively; η ∈ N defines the neighborhood
size; and {t1, · · · , tn} is the number of cells in each dimension of the lattice. The cell space itself is denoted
by C, with N being the neighboring cells. B represents the set of border cells, which can have different
behavior than the interior cells or can be configured with wrap-around boundaries. The function Z is the
translation function that maps the output port of a cell to the input port of another cell.

Random walk algorithms have shown to be useful to include stochastic behavior in the movement of
particles within indoor environments. These algorithms simulate the trajectories of individual particles based
on probabilistic rules, effectively capturing the effects of turbulent diffusion and airflow variability (Wang
and Mu 2011; Marashian et al. 2023). In this context, a hybrid model integrating random walk algorithms
with agents defined using CA and DEVS modeling and simulation could offer a more comprehensive and
flexible modeling framework for simulating CO2 dynamics in realistic indoor scenarios.
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3 MODELING THE SPREAD OF CO2 PARTICLES

In this section we present various CO2 spread models that combine a cellular model with a discrete-event
specification. Khalil et al. (2020) introduced such hybrid models to study CO2 dispersion in a room and
to identify the optimal placement and detection latency of CO2 sensors, a complex problem in building
design. A closed space was modeled as a set of neighboring cells representing the 2D layout of a room.
The formal specification of the two-dimensional Cell-DEVS CO2 model presented in (Khalil et al. 2020)
is:

CO2 =< Xlist ,Ylist ,S,X ,Y,η ,N,{t1, t2},C,B,Z >,

where Xlist = Y list = {∅}; S = type : {0,1,2,3,4,5} and conc : {double}; X = Y = ∅; η = 5; N =
{(0,0),(−1,0),(0,−1),(0,1),(1,0)}; t1 = 14; t2 = 20; C = {Ci j|i ∈ [0,14]∧ j ∈ [0,23]}; and B = {∅}
(unwrapped cell space); Z is the translation function that defines the internal and external function. The
local computing function τ of the atomic model of each cell and the duration function D are shown in
Table 1 and Table 2, respectively. The neighborhood is a Von Neumann and only the North (N), East

Table 1: Values of τ(N).

τ(N) N
conc= average of neighbors type= 0

conc= neighbors average + 12.16 ppm type= 1
conc= - 10 ppm type= 2
conc= 500 ppm type= 3
conc= 400 ppm type= 4
conc= 300 ppm type= 5

Table 2: Values of D(s).

D(S) S
R0 += 1,000 type= 0
R0 += 5,000 type= 1
R0 += 1,000 type= 2
R0 += 1,000 type= 3
R0 += 1,000 type= 4
R0 += 1,000 type= 5

(E), West (W), and South (S) neighbors are considered. This model was implemented using the CD++
tool. Each area could use one of six model types, representing CO2 levels in particles per million (ppm),
based on gas diffusion rules: open-air space (constant 500 ppm); CO2 sources (fixed emissions); walls (no
diffusion); open doors, windows, and vents (diffusers with baseline CO2 concentrations of 500, 400, and
<300 ppm, respectively). Each cell in the cell space was defined by its model type. Diffuser cells were
unaffected by surrounding CO2 levels. CO2 sources were modeled as an occupant at rest, with an average
breathing interval that emitted CO2 every 5 seconds and a diffusion interval set at 1.

We validated this model with real-world data and showed that the model effectively represented CO2
diffusion, dissipation and latency. Based on these results, we modified the static generator (a DEVS model
that represented a stationary occupant) as well as CO2 behavior after the generator left the room. We
modeled scheduled emissions and effects of movement (such as a person walking) on CO2 distribution.

To address these limitations, we introduced a dynamic CO2 generator to the original Cell-DEVS model.
Each cell contained the concentration, type, a counter, and a direction. The rules for this
model are defined as follows:

% rules for CO2 generator
rule : {counter += 1;} 1000 {if cell type 1 AND counter != 2 OR 5}
rule : {type = 0; add 12.16ppm of CO2; counter += 1;} 1000 {if cell type 1 AND counter = 2}
rule : {add 12.16ppm of CO2; counter = 0;} 1000 {if cell type 1 AND counter = 5}

% rules when open cells are affected by CO2 neighbors
rule: {type = CO2; counter = neighbors counter; direction = randInt(100) or neighbor

direction; (depends if scheduled or random movement)} 1000 {if cell type 0 AND
neighbors(counter = 2 AND type = 1 AND direction is correct)} (4 rules)

% set of rules if type 0 for CO2 dissipation
rule: {calculate average concentration of all surrounding cells} 1000 {if cell type
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open air}

% set of rules for the remaining cases
rule: {maintain preset CO2 concentration;} 1000 {if cell of other types}

rule: {counter += 1;} 1000 {any type} % default rule

These rules included logic to prevent generator from passing through walls, regulate CO2 emission timing,
handle transitions between cell types, and model diffusion in open-air spaces.

We tested the dynamic CO2 generator with two types of scenarios: i) randomly, to model organic
movement and distribution, and ii) a scheduled path representing a person arriving and visiting specific
rooms in sequence. The environment represents a bachelor apartment layout with a door and vents in the
kitchen and bathroom. To simulate active breathing, CO2 emissions were increased every 3 seconds. The
left panel in Figure 2 shows CO2 concentration, while the right panel shows the generator’s position. We
can see the results from the random scenario starting at the entrance (green door). The generator remains

Figure 2: Random CO2 generation. Start at the entrance at 0 (left), 5 (middle), and 10 (right) minutes.

near its starting point, saturating that area with CO2 leaving other regions mostly unaffected (similar to the
static scenario) as we used a uniform distribution for movement direction, which resulted in a tendency for
circular paths. Next, we run a scheduled scenario representing a person entering at home, leaving the door
open, staying around 1 minute and 30 seconds in the living room, 2 minutes in the kitchen, and finishing in
the bathroom. Figure 3 illustrates CO2 distribution over the course of this planned movement. As expected,

Figure 3: Scheduled CO2 generation for times 0, 1.45, 3.45, and 4 minutes (left to right).

CO2 spread across the apartment. Notably, a significant concentration remained in the entrance hallway,
even with the door open. This highlights both the rapid spread of CO2 and its slow dissipation, even in
well-ventilated conditions.

3.1 Effect of Plants and CO2 Sinks on Indoor CO2 Levels

The model above was further extended to investigate CO2 level variations in a closed indoor environment,
where moving occupants act as CO2 sources. We evaluate the effectiveness of adding plants and CO2 sinks
placed in various positions throughout the room. Each cell now considers the type and concentration
of CO2. Walls are modeled as impermeable structures that block CO2 diffusion and maintain constant
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values (barrier). Doors are initialized with a typical indoor baseline CO2 level (500 ppm), while windows
maintain lower concentration to simulate the influence of outdoor air. Ventilation cells actively reduce CO2
concentration to simulate mechanical air extraction. Workstations behave as passive air cells, averaging
the CO2 levels of their non-wall neighbors. Simulations were carried out using the Cell-DEVS formalism
and Cadmium tool.

A code snippet used to compute concentration values for plants, CO2 sinks, and sources is shown
below:

switch(state.current_state.type){
case PLANT: { ...
if(neighbors.type != IMPERMEABLE){
concentration +=

neighbors.concentration;
num_neighbors++; }

new_state.concentration =
concentration / num_neighbors -

(plant_decrease / 480); break; }
case SCRUBBER: { ...
if(neighbors.type != IMPERMEABLE){
concentration +=

neighbors.concentration;
num_neighbors++; }

new_state.concentration =
concentration / num_neighbors - 10;

case CO2_SOURCE: { ...
if(neighbors.type != IMPERMEABLE){
concentration +=

neighbors.concentration;
num_neighbors++; }

new_state.concentration =
(concentration / num_neighbors) +

concentration_increase;
...

CO2 sources simulate human breathing by adding a fixed amount of CO2 to their cell every ten minutes.
Plants absorb a small portion of CO2, decreasing the local concentration slightly, whereas CO2 sinks remove
a larger amount, simulating active filtration mechanisms.

Figure 4 illustrates the results for a scenario in this model. The simulation, run for 1440 minutes,
examines how CO2 levels are affected by occupants, plants, and sinks in a closed space. The initial
condition, shown in Figure 4(a), features all occupants outside the room and active ventilation. Under these
conditions, CO2 remains below 500 ppm (blue cells), aided by sinks and plants absorbing CO2. Figure 4(b)

(a) (b) (c) (d) (e)

Figure 4: Indoor CO2 concentration with moving occupants, plants and CO2 sinks.

depicts thirteen occupants entering the room, shown as red cells moving toward assigned workstations
(gray cells). As they move, expanding red zones in the left panel indicate rising CO2 levels, with the size
of these zones varying to reflect individual breathing rates, which were randomly assigned. Over time,
CO2 concentration steadily increases due to ongoing respiration. Figure 4(c) shows all occupants at their
workstations. The red regions have expanded compared to (b), indicating increased CO2 levels, especially
from occupants with higher breathing rates. As more people enter, overall CO2 rises, but ventilation units
and sinks (blue cells) help circulate air and reduce CO2, especially near the edges where devices are present.
The central area has higher CO2 due to lack of vents, while plants along the walls have minimal impact.

Figure 4(d) shows ten occupants leaving, causing red CO2 zones to shrink as vents, sinks, and plants
absorb CO2. The central area remains more concentrated with CO2 than the edges, where changes are
minimal, indicating that the plants had little impact on overall CO2 levels. Figure 4(e) depicts the final
scene with all occupants gone; fresh air (blue) expanded, and CO2 (red) decreased as ventilation and sinks
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removed residual CO2. Plants, specifically Prayer plants, had minimal impact, absorbing about 215 ppm
over 1440 minutes, compared to 18,158 ppm produced by a single person in the same period, showing
their limited role in reducing CO2 levels.

3.2 Effect of Distance between CO2 Sources

This example investigates how varying the distance between CO2 sources influences the overall indoor CO2
concentration. Simulations were carried out using the Cell-DEVS formalism and CD++ tool. Different
distances between CO2 sources were tested to analyze how their separation affects diffusion patterns and
concentration levels over time.

Each cell in the model represent an agent characterized by type, counter, and concentration.
As before, the behavior of the model is defined by the τ function. The rules to generate cells simulating
occupants are as follows:

{...}
% Moving person
rule : { ~c := $conc; ~ty := $type; } { $conc := ((121.6*2) + (((-1,0)~c + (0,-1)~c

+ (0,0)~c + (0,1)~c + (1,0)~c)/5)); $counter:= $counter + 1; } 5000
{ $type = -900 AND $counter < 125 }

rule : { ~c := $conc; ~ty := $type; } { $conc := (((-1,0)~c + (0,-1)~c + (0,0)~c
+ (0,1)~c + (1,0)~c)/5); $counter:= $counter + 1; $type:=-100; } 5000
{ $type = -900 AND $counter = 125 }

{...}

These dynamic source cells emit CO2 for 125 update cycles to simulate active breathing, and then revert
to standard air cells, simulating the departure of human activity.

Simulation results are shown in Figure 5, where magenta cells indicate the position of occupants actively
emitting CO2, red cells represent fixed CO2 sources, white cells correspond to impermeable walls that block
CO2 diffusion, blue cells denote ventilation units maintaining ambient CO2 levels at 300 ppm, and yellow
cells depict the room’s air duct system. At the beginning of the simulation, two individuals are placed

(a) (b) (c)

Figure 5: Effect of Distance on CO2 sources.

1.25 meters apart (Figure 5(a)), and CO2 concentration begins to rise around them (Figure 5(b)). After
125 breathing cycles, they move to the bottom room and are positioned 3.25 meters apart (Figure 5(c)).
As a result, CO2 concentration in the left room decreases due the absence of a source, while it begins
to rise in the bottom room with the arrival of the new sources. The duct system enables CO2 spread
between the two upper rooms. CO2 diffuses in all directions from the emitting cells, and the concentration
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gradually increases over time. The simulation results indicate that when sources are close together, CO2
levels rise more quickly. In contrast, when the distance between sources increases, the concentration builds
up more slowly. These findings suggest that the distance between individuals influences how quickly CO2
accumulates in indoor environments.

3.3 CO2 Cell-DEVS Model with Random Walk Algorithm

In this section, we show how to combine cellular modeling, discrete-event simulation and random walk
algorithms (in 2D and 3D environments). The idea is to model the indoor spread of CO2 particles in a
3D environment. The cell space is used to build an agent based model in which each cell contains the
behavior of the particles in a room, discretizing a continuous space using a rectangular grid. Each of the
cells are updated using a continuous-time specification. In addition, a random walk algorithm is used to
represent the movement of the CO2 particles in a more realistic fashion using a stochastic model, because
the randomness of the movements, makes the random walk algorithm a good approach to model the spread
of air particles in 2D and 3D space. The three methods are combined and simulated for different indoor
scenarios using the Cadmium tool.

To define the behavior of the agents on each cell, which is then reproduced in all the cells in the cell
space, first we need to define a local transition function. This should take into consideration the random
walk algorithm, where each object can move freely in all directions based on a stochastic rule. In Figure 6,

Figure 6: 2D and 3D Random Walk Models.

we show a 2D (left) and 3D (right) example of how the random walk works. In the former, the objects move
up, down, left, and right at random; while in the latter the object can also move upward and downward. The
probability of choosing the direction is varied and can be changed in each calculation, which is activated
using a discrete-event simulation algorithm based on the DEVS formalism.

The behavior of the model is defined in τ function, which is used to define the behavior of the agent on
each cell. In this case, the cells defined as sources increase the concentration of CO2, while cells defined
as vents, doors, and windows decrease it. The implementation of this behavior is as follows:
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switch(state.current_state.type){
case IMPERMEABLE:
new_state.concentration = 0; break;

case DOOR:
new_state.concentration = base; break;

case WINDOW:
new_state.concentration =

window_conc; break;
case VENTILATION:
...

case AIR:
...

case WORKSTATION:
...

case CO2_SOURCE:{ ...
if(neighbors.type != IMPERMEABLE){
// Neighbor on top
if (neighbors.first[0] ==
std::get<0>(currentLocation) &&
(neighbors.first[1] - 1) ==
std::get<1>(currentLocation)){
concentration +=

neighbors.concentration +
floor(neighbors.concentration*
distneg(rng)/500 );
num_neighbors++;

}

// Neighbor on right
else if((neighbors.first[0] - 1) ==
std::get<0>(currentLocation) &&
neighbors.first[1] ==

std::get<1>(currentLocation)){
concentration +=

neighbors.concentration +
floor(neighbors.concentration*
distneg(rng)/500 );
num_neighbors++;

}
// Similar for Neighbor on bottom, left,
// itself and above
else if((neighbors.first[2] - 1) ==
std::get<2>(currentLocation)){

concentration +=
neighbors.concentration +

floor(neighbors.concentration*
distneg(rng)/500 );
num_neighbors++;

}
// behind
{...}

In this code, the τ function first checks the type of each cell. Cells classified as walls (IMPERMEABLE) are
assigned a concentration of zero, while doors, windows, and ventilation cells are updated with predefined
concentration values that represent air exchange characteristics. For CO2 source cells, the concentration is
increased by considering the contribution of neighboring cells. The CO2 concentration of cells classified
as air and workstation is updated in a similar way. To simulate the variability introduced by the random
walk algorithm, a random number generator based on the Mersenne Twister algorithm was initialized using
a non-deterministic seed to ensure variability across runs. A uniform integer distribution in the range [-70,
70] was used to produce evenly distributed random values within this interval.

In existing CO2 models, particles move to the neighbor cells using a uniform method for spreading,
as shown in Figure 7. The dark brown cell in the middle of the first image represents a CO2 source that
increase the concentration of the cell. In the following iterations, the CO2 particles move to the neighbor
cells and increase their CO2 concentration.

Figure 7: Deterministic spreading of CO2 particles - Iterations #1(left) to #5 (right).

As we can see in Figure 8, when we combine the model with a random walk method, the use of a
more realistic spread of CO2 particles add randomness to the increase of CO2 in the neighboring cells as
it is done in a random way.
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Figure 8: Random Walk spreading of CO2 particles - Iterations #1(left) to #3 (right).

After defining the cell’s behavior, we define specific parameters and a configuration of the cell space
as well as of each cell. An extract of a JSON configuration file, where we can include different objects
like doors, walls, windows, vent, and CO2 sources, together with their specific parameters is shown below:

"scenario": {
"shape": [ 43, 40, 8],
"wrapped": false,
"default_delay": "transport",
"default_cell_type": "CO2_cell",
"default_state": {

"counter": -1,
"concentration": 500,
"type": -100

},
"default_config": {

"CO2_cell": {

"conc_increase": 143.2,
"base": 500,
"resp_time": 1,
"window_conc": 400,
"vent_conc": 300}

},
"neighborhood": [

{"type": "von_neumann",
"range": 1}]

},
"cells": [{}]

Figures 9 and 10 present simulation results comparing CO2 dispersion patterns using a deterministic
method (left) versus the proposed random walk approach (right), for both 2D and 3D building layouts.
In both scenarios, the introduction of the random walk algorithm significantly alters the CO2 dispersion
dynamics. In Figure 9, the 2D simulations highlight how the deterministic method results in smoother and

Figure 9: 2D CO2 spread. Deterministic (left) and with Random Walk (right).

more uniform diffusion patterns centered around the CO2 sources. In contrast, the random walk approach
introduces localized variations and asymmetries, reflecting the stochastic nature of particle movement.
Indeed, some regions near sources exhibit lower concentrations than surrounding cells, emphasizing the
irregular dispersion introduced by random motion. Figure 10 shows similar behavior in a 3D environment.
The deterministic simulation again yields a more structured and symmetric distribution, while the random
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Figure 10: 3D CO2 spread.

walk approach introduces more irregular and diffuse spread of CO2 particles. This results in faster
propagation and more realistic dispersion.

From a methodological perspective, the deterministic CO2 model, computes the concentration of each
cell as the average of the neighboring cells’ concentrations, resulting in a smooth but uniform spread.
Using random walk, the concentration update in each cell reflects a randomized fraction of the neighboring
cells’ CO2 concentration. This modification includes local fluctuations without imposing a significant
computational burden, as it avoids the need to track individual particles explicitly. In this context, the
random walk approach provides a way to approximate the natural stochastic behavior of gas diffusion.

4 CONCLUSION

We presented a hybrid modeling approach for simulating CO2 dispersion in indoor environments by
integrating CA, DEVS, random walk algorithms and 2D and 3D modeling techniques. We addressed
the limitations of traditional models by incorporating dynamic CO2 generators, random-walk dispersion
algorithms, and CO2 sinks to capture more realistic indoor air behavior. Through a series of simulation
experiments, we demonstrated how room layout, occupant movement, and source placement significantly
influence CO2 distribution patterns.

The proposed models are well-suited for studying CO2 spread in enclosed spaces. They provide a
flexible framework for evaluating the impact of various design and operational parameters, including sensor
placement, ventilation strategies, occupancy levels, and furniture arrangements. This approach can support
more informed decisions in the design and management of healthy and energy-efficient indoor environments.
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