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ABSTRACT

Colorectal cancer (CRC) is the third leading cause of cancer-related death in the U.S., despite being
largely preventable through screening. Interventions such as mailing fecal immunochemical tests (FIT) or
sending patient reminders have shown varying success in increasing screening rates. Simulation modeling
has played a key role in estimating the impact of these interventions on long-term health outcomes by
representing the natural history of CRC. Using a simulation model of CRC, in this work, we developed a
metamodeling-based decision tree to help clinics and health systems select CRC screening interventions
that best match their population. Our approach uses estimates of intervention effectiveness based on
pre-intervention screening levels, eliminating the need for users to assume how an intervention will impact
outcomes. By tailoring recommendations to population characteristics and baseline screening rates, the
decision tree supports data-driven decisions to improve CRC screening and, ultimately, population health.

1 INTRODUCTION AND MOTIVATION

1.1 Colorectal Cancer

Colorectal cancer (CRC) is the third most common cause of death by cancer for men and the fourth most
common cause of death by cancer for women in the United States (Siegel et al. 2024). Numerous studies
have shown that increasing CRC screening can significantly improve health outcomes, by preventing death
and detecting precancerous polyps before they become cancerous (Mandel et al. 1993; Shaukat et al. 2013;
Cheng et al. 2021). Average-risk individuals ages 45-75 are recommended to be screened for CRC using
modalities including routine colonoscopy or a fecal immunochemical test (FIT). If someone screens with
FIT and the result is negative, no further action is needed until the next annual screening. However, if
the FIT result is positive, a diagnostic colonoscopy is recommended to locate and remove any polyps.
Alternatively, individuals may undergo a routine screening colonoscopy, which allows for both detection
and removal of polyps in a single procedure. Once screened, individuals are considered to be up-to-date
with CRC screening: 10 years for colonoscopy and 1 year for FIT. (U.S. Preventive Services Task Force
2021). As of 2021, only 72.2 percent of age-eligible individuals were up-to-date with CRC screening
nationally (Cox et al. 2021).

1.2 Screening Interventions

Interventions are strategies implemented to improve health outcomes within a target population. There
is a substantial evidence base demonstrating the effectiveness of many different types of interventions in
increasing CRC screening uptake in age-eligible populations (Dougherty et al. 2018; Young et al. 2019;
Davis et al. 2018). Each intervention typically involves a cost and yields a certain level of effectiveness,
usually compared to usual care (no intervention). Ideally, the most desirable interventions are those that
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are highly effective while remaining low in cost.
Dougherty (2018) compares 73 different clinical trials to assess the effectiveness of various interventions

on specific populations. They evaluated six individual interventions as well as combined approaches. Risk
ratios were computed by comparing the number of individuals that screened before the intervention (under
usual care) to those who screened during the intervention, relative to the total population. These risk ratios
varied across trials due to differences in population demographics, sizes, and levels of acceptance to screening
recommendations. This study demonstrates that selecting an appropriate intervention is not a straightforward
process. Another study applied the Exploration, Preparation, Implementation and Sustainment (EPIS)
framework to describe how interventions are selected, prepared and implemented in clinical settings. This
process underscores the complexity of selecting an intervention tailored to a population’s current screening
levels and barriers (Ferrari et al. 2023). More recent work has focused on creating causal-loop diagrams
to illustrate the complexity of factors influencing the selection and implementation of interventions within
populations. These causal-loop diagrams highlight how variables such as cost dynamics, sustainability
challenges, and the complexities of screening contribute to the decision-making process, as well as the
overall costs and long-term sustainability of an intervention (Cancer Control Pop Sim 2025). Overall,
these findings emphasize the need for more sophisticated decision-making tools, as results for the same
intervention varied considerably.

1.3 Evolution of Simulation Modeling to Inform Intervention Selection

Our goal with this work is to build on previous simulation work done to estimate population-level health
outcomes and help stakeholders make data-driven decisions related to interventions. In this section, we will
briefly discuss the evolution of this work over time. The previous work done to model CRC health outcomes
is a necessary precursor to this work, and the results motivate the current approach. The NC-CRC (North
Carolina Colorectal Cancer) Simulation model is a validated tool designed to estimate long-term health
outcomes for a given population under different screening scenarios (e.g., usual care, mailed FIT outreach,
policy change, etc.) (Koutouan et al. 2021). The NC-CRC model uses a discrete-time microsimulation
approach to represent colorectal cancer development and screening behaviors at the individual level, enabling
detailed tracking of disease progression and the effects of different interventions over time. Using data on
cancer incidence and natural history progression timelines, and age and stage specific survival probabilities,
the model simulates the development and growth of polyps and CRC over time at the individual level. The
model simulates the potential for individuals to develop one or more adenomas, incorporating growth patterns
and transition probabilities based on lesion size and cancer stage, which in turn shape the likelihood of CRC
detection and probability of survival dependent on age, race and sex under varying screening strategies.
These individual level outcomes can then be used to generate population level outcomes. The model relies
on multiple input sources, with two key inputs being: (1) a population of individuals who are age-eligible
for CRC screening, and (2) baseline CRC screening rates within that population. It produces a range of
health outcomes, including the number of CRC cases and deaths, as well as the estimated life years lost -
defined as the difference between an individual’s actual lifespan and their expected lifespan had they not
died from CRC. While the natural history of CRC remains unchanged in the model, health outcomes can
be improved through intervention implementation of an intervention. By running the model under baseline
screening levels and then re-running it with increased screening rates associated with a specific intervention,
we can evaluate the potential improvements in outcomes that would result if the higher screening level
were achieved (Koutouan et al. 2021).

The NC-CRC simulation model has been used to answer a range of research questions related to CRC
screening, including: the impact of screening interventions and insurance expansion on health outcomes
and costs (Lich et al. 2017; Davis et al. 2019; Lich et al. 2019), the level of intervention and associated
costs needed to reach national screening targets (Hicklin et al. 2022), and the impact of interventions
on addressing screening gaps in prioritized populations (Powell et al. 2020). Additionally, the NC-CRC
model results were used to create a decision-making tool that walked users through exploring the expected
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health and financial impact of different interventions for a population of Oregon Medicaid enrollees or
a population of North Carolina residents (O’Leary et al. 2023). While this decision tool helped users
understand the impact of intervention choice on health outcomes and associated costs across subgroups
(e.g., by age or race), some users noted limitations due to the tool’s inclusion of only a few interventions,
focus on two US states, and inability to adjust the baseline characteristics to reflect their local population.
This feedback highlighted the need for a more adaptable decision support tool capable of adjusting to any
population and intervention type, motivating our development of a metamodeling approach.

In order to address stakeholder concerns over limited use of the decision-making tool, we chose to
create a unique metamodeling approach which allows us to generate health outcomes for any population
and any intervention screening level scenario. Our team recently demonstrated how linear regression,
polynomial regression, and random forest metamodels can be used to predict cancer cases and life years
lost instantaneously without requiring additional simulation runs (Stanfield et al. 2024). Instead of
simulating entire populations, this approach ran 5,000 replications of each individual to create individual-
level metamodels for each person type. A total of 180 person types were considered, based on age (45-74),
race (Black, White, Other), and sex (Male, Female). The experimental design involved changing six input
screening levels based on screening modality (FIT and colonoscopy) and by period (before, during or
after the intervention). The intervention period lasted five years, with before and after periods representing
the number of years an individual remained age-eligible. A decision tool was created to allow users to
input their population’s demographic information and current screening (i.e., pre-intervention) levels, target
screening levels to achieve during the intervention, and the expected post-intervention screening levels. This
tool may be most useful for stakeholders who have a strong understanding of their population’s screening
levels and the expected impact of an intervention. However, for many stakeholders, this level of certainty
is not available, highlighting the need for a more flexible tool to guide intervention selection.

Thus, in this work, we prioritized the design of a metamodel tool that requires minimal user inputs to
project intervention effectiveness and downstream health outcomes. Rather than requiring users to estimate
the effectiveness of an intervention themselves, our approach only requires knowledge of the population’s
current screening rate and basic demographic information. Using these inputs, based on our simulations,
we generate individualized metamodels and build a decision support tool in the form of a decision tree.
This tool recommends the most suitable intervention based on the user’s context and can be tailored to
minimize cancer cases, life years lost, or overall costs. Here, we describe the development of the tool and
apply it specifically to interventions to support uptake of CRC screening by stool testing. We assume that
FIT screening during an intervention depends on baseline screening behavior. Our goal was to develop the
framework for this type of metamodel decision tree-based decision support tool, with future work intended
to build the tool to incorporate other screening modalities and intervention scenarios.

1.4 Decision Trees for Colorectal Cancer

Decision trees have been used in the context of colorectal cancer with a variety of objectives. Some examples
of decision tree applications for CRC-related objectives are: prediction of CRC risk factors (Vanezis et al.
2014), early diagnosis and screening (Khalil et al. 2020), survival prediction (Kwon et al. 2016), treatment
response (Hossain et al. 2018), and identification of biomarkers (Wang et al. 2017). While they have been
applied to diagnosing and estimating outcomes such as survival prediction and treatment response for the
individual, there is much less work in the area of selecting CRC screening interventions using decision
trees. Some papers use decision trees to evaluate the cost effectiveness of a given intervention (Rice et al.
2018), and others have compared screening modalities using decision trees (Nur et al. 2025). We add to
this work by developing a population-level decision tree to aid users across health settings in identifying the
most effective CRC screening intervention based on their population’s unique demographics and current
screening level. This tool can be used across any population or scenario, making it a powerful resource
for guiding evidence-based, context-specific intervention selection in diverse healthcare settings.
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2 METHODOLOGY

To create our population-level decision tree, we followed a structured approach. First, we sampled screening
level scenarios to input into the simulation model. Screening levels are defined as the proportion of people
who are not up to date with screening with a given modality (FIT or colonoscopy). A screening level
scenario is a combination of these different screening levels. These scenarios were then run through the
model for each intervention, generating metamodels for our outcome of interest, dollars per cancer case
averted. After training the individual-level metamodels, we simulated various weights for different person
types to reflect diverse population demographics and derive a population-based weighted average of cancer
cases averted per unit cost. Finally, using the screening levels, demographic information, and intervention
effectiveness estimates in terms of dollars per cancer case averted, we constructed the decision tree.

2.1 Intervention Scenarios Simulated

In this work, we consider a decision between two intervention approaches: mailed FIT and reminders. In a
mailed FIT intervention, patients recieve a notification that they are due for screening and will receive a FIT
test in the mail to be completed and returned for testing. In a reminders intervention, patients receive an
automated call informing them that they are overdue for screening and briefly informs them why screening
is important and of their options.

2.2 Sampling for Screening Level Scenarios

We considered nine different screening parameters for each scenario. Each screening parameter had a range
of screening levels that could be achieved. For example, FITbe f ore was one of our screening parameters
and it could take on screening levels between 0% and 40%, as demonstrated in the literature and shown
in Figure 3. The screening parameters considered are listed in Table 1 below.

Table 1: Screening Parameters for Colorectal Cancer.

Screening Parameter Description
FITbe f ore,FITduring,FITa f ter The proportion of people who screened with FIT each year before,

during or after the 5-year intervention period.
COLONbe f ore,COLONduring,COLONa f ter The proportion of people not up-to-date with screening that screened with

routine colonoscopy, during or after the 5-year intervention period.Note,
colonoscopies are offered every five years if an individual is not up-do-
date. Once received, and individual is up-to-date for 10 years.

DIAGbe f ore,DIAGduring,DIAGa f ter The proportion of people who received a diagnostic colonoscopy after a
positive FIT test before, during or after the 5-year intervention period.

We focus on CRC screening interventions that aim to increase FIT screening during the intervention
period. The extent of this increase depends on the FIT screening level before the intervention. To simplify
the model, we made several assumptions regarding routine and diagnostic colonoscopy screening levels.
We assume that COLONbe f ore =COLONduring =COLONa f ter and DIAGbe f ore = DIAGduring = DIAGa f ter.
We also assume that FITbe f ore = FITa f ter. In other words, the intervention is assumed to only increase
FIT screening during the years of intervention. Note that these assumptions suggest that our estimates
for long-term health outcomes are conservative, as we anticipate that in a real world implementation, the
intervention would likely have a positive impact on the number of individuals who consistently screen over
time (after the intervention) and that increased focus on FIT screening would likely have spill over effects
on other screening modalities. However, these secondary effects have not been well documented in the
literature. We assume that FIT screening levels range from 0%-40%, routine colonoscopy screening levels
range from 0%-80% and diagnostic colonoscopy screening levels range from 0% to 90%. In the model, we
assume that once individuals recieve a diagnostic colonscopy, their future screening modality switches to
colonoscopy. Routine colonoscopy parameters are incorporated to reflect this change in screening behavior.
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Since we made assumptions about screening levels during and after the intervention, we only sample
screening parameters before the intervention, (FITbe f ore,COLONbe f ore,DIAGbe f ore), as follows:

1. Generate N=10,000, 3-dimensional, (FITbe f ore,COLONbe f ore,DIAGbe f ore), screening vectors.
2. Use k-means clustering to test different number of clusters (n), where N >> n.
3. Measure the normalized euclidean distances between each pair of centroids.
4. Select the smallest n such that the normalized euclidean distance is less than .025, which represents

sampling values for screening levels that are less than 1% apart.
5. Generate n centroids and use those as our scenarios to be run through the model for metamodel

training set.

We tried values of n=500, 1,000, 1,500 and 2,000. The relationship between number of centroids and
minimum normalized euclidean distance and the scatterplots of centroids are shown for all n in Figure 1
and for n = 500 and 2000 in Figure 2, respectively. Our goal, as outlined in Step 4 of our approach, was
to generate a sufficient number of centroids to ensure that the minimum normalized Euclidean distance
was less than or equal to 0.025. To achieve this, we selected the 2,000 centroids generated, as this number
successfully met the required distance threshold.

Figure 1: Minimum Distance between two centroids vs number of clusters.

2.3 Assumed Impact on Screening of Different Interventions

After generating 2,000 screening levels (see section 2.2), we determined the values for 8 out of the 9 screening
level parameters (FITbe f ore,FITa f ter,COLONbe f ore,COLONduring,COLONa f ter,DIAGbe f ore,DIAGduring,DIAGa f ter).
The next step was to develop a function to estimate the FITduring parameter for each intervention approach.
To do this, we incorporated estimates from the literature on intervention effectiveness with respect to
screening uptake, which allowed us to directly calculate the FITduring levels within the simulation model.

In Dougherty (2018), risk ratios were calculated based on the proportion of individuals who screened
under the usual care (or no intervention) scenario compared to those who received a mailed FIT or reminder
intervention. We used these risk ratios to generate curves that illustrate the relationship between usual care
and each intervention. Since the highest no-intervention FIT screening was 39.4%, we assumed FITbe f ore
screening must be between 0% and 40%. For the mailed FIT intervention, we found that a cubic equation
worked best with the data provided. For the reminder intervention, due to a lack of data for screening
increases when no intervention screening levels exceed 30%, we applied a linear equation for the FITbe f ore
values between 0%-30%. For FITbe f ore values greater than 30% and less than or equal to 40%, we assumed
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Figure 2: Scatterplots of centroids for n = 500 and n = 2000.

they had the same level of effectiveness as interventions at 30%.The effectiveness of each intervention was
calculated using Equation (1), which quantifies the change in screening levels based on pre-intervention
screening data.

Risk Ratio = 1+
(FITduring −FITbe f ore)

FITbe f ore
, where (1)

FITbe f ore =no intervention screening levels and FITduring = intervention screening levels

The equations to calculate the intervention level screening for both mailed FIT (2) and reminders (3)
are shown below. The corresponding curves are shown in Figures 3 and 4 for the mailed FIT and reminder
interventions, respectively. In each figure, the blue dots represent the risk ratios reported in Dougherty
(2018), while the orange curves depict the fitted effectiveness functions as shown in equations (2) and (3).

FITduring = 9.4103FIT 3
be f ore −7.6205FIT 2

be f ore +2.5342FITbe f ore +0.1506, 0 ≤ FITbe f ore ≤ 40. (2)

Figure 3: Mailed FIT Intervention Curve
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FITduring = f (FITbe f ore) =

{
0.8212FITbe f ore +0.0592 if FITbe f ore ≤ 30
1.006FITbe f ore if FITbe f ore > 30

(3)

Figure 4: Reminders Intervention Curve

Once we selected n=2,000, we multiplied that by 3 to determine the total number of runs per person type,
as each of the 2,000 scenarios needed to be simulated under three scenarios: usual care (no intervention),
mailed FIT, and reminders.

2.4 Metamodeling Approach

We used a metamodeling approach to guide our metamodel generation (Stanfield, Mayorga, O’Leary, and
Lich 2024). The outcome of interest for developing the decision tree to choose between interventions
was the cost of the intervention divided by the number of cancer cases averted (CCA) (dollars per CCA).
Cancer cases averted refers to the difference between the number of people who developed cancer with
an intervention compared to usual care. We also needed to know the number of FIT tests (NumFIT S) and
number of diagnostic colonoscopies (NumCOLON) to derive costs. We assumed a routine FIT test costs
$15.92 and a colonoscopy costs $813.49, based on 2024 Medicare reimbusement data, literature on the
likelihood of events during colonoscopy (e.g., polyp removal, complications), and clinician input. The cost
per cancer case averted was then estimated using equation 4:

Cost
CCA

=
$15.92∗NumFIT S +$813.49∗NumCOLON + ci

CCA
(4)

Here, ci represents the fixed intervention cost per person for intervention i. We estimate cMF = $20.84
for mailed FIT and cR = $1.43 for reminders. These intervention costs were derived from the literature
(Davis et al. 2019). We assumed this cost would be applied to every individual in the target population
for screening.

The simulation model was developed using AnyLogic version 8.5.2, a widely used multi-method
simulation software. We conducted 6,000 simulation runs, covering all combinations of 2,000 screening
level scenarios and 3 intervention strategies (usual care, mailed FIT, and reminders). Following a previously
cited metamodeling approach (Stanfield et al. 2024), we simulated 180 person types—defined by age,
race, and gender—with 5,000 replications each. For each screening scenario, a simulation run (5000
replications by 180 person types) required approximately 1 to 2 minutes to complete. From our simulation
runs, we estimated the number of cancer cases following an intervention, along with the number of
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FITs and colonoscopies used during an intervention. We generated cubic regression metamodels for the
cost-effectiveness ratios based on these three health outcomes.

2.5 Simulating Demographic Mixes

To generate population-level health outcomes, we considered a weighted average of the individual-level
estimates of health outcomes generated by the individual-level metamodels. Since we had 180 person
types, we considered 180 weights. The decision tree we trained used screening levels and population
level estimates to choose between the mailed FIT and reminders interventions based on the minimum
dollars per cancer cases averted. The splits in the decision tree were based on screening levels before the
intervention as well as demographic characteristics in the population. Therefore, we could have generated
180 demographic-based weights directly and had the decision tree split based on the proportion of one
person type there was in the population. However, we know that clinics or health systems do not always
know what proportion of their populations are in each of the 180 person type categories. On the other
hand, they typically are required to report demographic characteristics of their population and, thus, are
likely to have estimates of the proportion of patients by sex (male, female), race (black, white, other) and
age. For age we use the following brackets which align with US Census data: 45-49, 50-54, 55-59, 60-64,
65-69 and 70-74. Therefore, we generated decision trees using the following approach, where the users
know their clinic pre-intervention screening levels and their populations sex, race, and age distributions:

1. Randomly generate M = 1000 combinations of the following 14 variables shown in Table 2, making
sure all of same category sum to 1.

Table 2: Values for Clinic to Select

Variable Value
FITbefore 0–40

COLONbefore 0–80
DIAGbefore 0–90

Sex Weights (Male, Female) Values between 0–1, sum to 1
Race Weights (Black, White, Other) Values between 0–1, sum to 1

Age Weights (45–49, 50–54, ..., 70–74) Values between 0–1, sum to 1

2. Assume relationships between sex, race and age are similar to US Census (U.S. Census Bureau
2020), and assume proportion of people in each age within an age bracket are uniformly distributed.

3. Use US Census assumptions to filter the M combinations of 14 weights into the 180 person types.
4. Use before intervention screening levels to estimate 3 health outcomes for each of the 180 person

types.
5. Find the weighted average of the 180 person types using 180 generated weights.
6. Train the decision tree using before screening levels and independent demographic characteristics

instead of 180 person types.

3 RESULTS

Once we generated the population level estimates, we were able to generate a decision tree as shown in
Figure 5 below.
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Figure 5: Decision Tree for Selecting Best CRC Intervention for a Given Population

The decision tree illustrates the optimal intervention strategy at each split based on population-level
predictors (as shown by the bold inequality) and shows how well the model performed in identifying
the intervention that maximized cancer cases averted per dollar. For instance, if a population has a pre-
intervention FIT screening rate below 11%, the model recommends reminders as the preferred strategy.
Within each terminal node, the value displayed beneath the intervention label indicates the proportion of
simulated scenarios (out of M = 1000) classified into each intervention group. The number on the left
reflects the proportion of scenarios assigned to mailed FIT, and the number on the right reflects those
assigned to reminders. For example, in the 1000 scenarios with different screening levels and demographic
weights, out of all of the scenarios where FITbefore screening was greater than or equal to 11% but less than
25%, the decision tree correctly classified mailed fit as the best intervention in 99% of those scenarios,
while 1% were classified as reminders. The percentages below represent the proportion of populations
simulated which ended up in each terminal node. Based on this figure, the main driver for intervention
selection is FIT screening before the intervention is applied. The other two screening predictors and our
demographic predictors did not ultimately determine which intervention was the most cost effective. We
could expect that FITbefore is the most important of the screening levels, since we assume that the other
screening levels remain the same before, during and after the intervention. If we were to remove this
assumption about diagnostic colonoscopy and routine colonoscopy screening, these screening levels may
influence the decision. Additionally, in this work, our demographic weights represent the proportion of
people who are that person type in the population. Therefore, our cancer cases averted per unit cost used
to derive the decision tree is a weighted average, instead of a total number based on the number of people
of each person type in the population. Calculating cost at the population level instead of the individual
level and then averaging with population weights could result in the inclusion of demographic predictors
in the decision tree. Finally, our costs were limited to the cost per FIT, the cost per colonoscopy, and the
cost of an intervention for one person. If we were to consider the costs associated with cancer care, this
may influence our final decision since cancer care costs are age dependent.

4 CONCLUSION AND FUTURE WORK

In this work, based on our validated CRC model, we have trained cubic regression metamodels to estimate
the cost-effectiveness of interventions, created synthetic populations to generate population-level estimates,
and trained a decision tree to help users make an informed decision on which intervention to choose based
on their population such cost per cancer cases averted is minimized. We have used a validated simulation
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model to generate metamodels which feed into a decision tree, making the estimates from the simulation
interpretable and likely easy to apply for end-users. We learned that with FIT-based interventions, the
most important factor to consider when choosing an intervention is the current FIT screening level of the
population.

Looking ahead, important areas for future development include integrating additional intervention
strategies under consideration (e.g., patient navigation), as well as incorporating other colorectal cancer
screening modalities. Another area of future work is to develop more complex metamodels with higher
performance to estimate outcomes and train the decision tree while still maintaining some level of inter-
pretability. In this work, we considered 1,000 combinations of inputs to generate the decision trees (see
section 2.5) .In future work, we could also consider sensitivity analysis on the number of weights and see
how that impacts decision making. To create 180 different weights from assumptions about demographic
characteristics (e.g., combinations of age, sex, and race), we assumed that the populations resembled the
US Census population. This way, decision makers only needed to know proportions of each sex, race and
age bracket independently, and not how they relate to one another (i.e. what proportion of females are
black, etc). In the future, we could generate different versions of this based on what the decision makers
may know, whether it is assuming these three variables are independent, assuming that they know how
two out of the three are related, or assuming they know the proportion of people in each of the 180 person
type categories. Lastly, we could expand our model by incorporating additional data from the literature
on intervention effectiveness and use it to develop new effectiveness functions. This work establishes a
framework for generating decision trees that inform population-level intervention decisions. By translating
complex simulation outputs into interpretable, actionable guidance, this approach represents a meaningful
advancement in supporting evidence-based public health strategy. While future enhancements can further
improve precision and generalizability, the methods developed here already offer a powerful tool for making
informed, data-driven decisions at the population level.
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