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ABSTRACT

This paper investigates a model-free, partition-based method for estimating Sobol” indices using existing
datasets, addressing the limitations of traditional variance-based global sensitivity analysis (GSA) methods
that rely on designed experiments. We provide a theoretical analysis of the bias, variance, and mean squared
error (MSE) associated with the partition-based estimator, exploring the effects of the sample size of the
dataset and the number of partition bins on its performance. Furthermore, we propose a data-driven approach
for determining the optimal number of bins to minimize the MSE. Numerical experiments demonstrate
that the proposed partition-based method outperforms state-of-the-art GSA techniques.

1 INTRODUCTION

Global sensitivity analysis (GSA) plays a crucial role in understanding and optimizing the behavior of
complex systems. Among various GSA methods, Sobol’ indices—variance-based measures of global
sensitivity—are widely used to quantify the influence of input variables on model outputs (Sobol” 1990).
These indices have been applied across diverse domains, including environmental modeling (Nossent
et al. 2011), engineering design (Hiibler 2020), epidemiology (Castellan et al. 2020), and climate science
(Miftakhova 2021).

The pick-freeze scheme is a widely used technique for estimating Sobol” indices in GSA (Saltelli et al.
2010; Janon et al. 2014). It involves freezing one input variable (or a subset of variables) while randomly
sampling the remaining inputs. By comparing the model outputs from these mixed input configurations,
the approach quantifies the contribution of each input variable or group of input variables to the output
variance, thereby enabling the estimation of Sobol’ indices of interest. Although the pick-freeze method is
known for its efficiency and robustness, it has two main limitations. First, it relies on a carefully designed
experiment to perform model evaluations. While this is typically feasible in computational studies, it
becomes impractical in real-world scenarios where conducting designed experiments is either infeasible or
prohibitively expensive. Second, the computational cost of the pick-freeze approach scales linearly with
the dimensionality of the input space to provide reliable Sobol’ index estimates for all input variables. For
complex systems with high-dimensional input spaces, this can lead to significant computational overhead.

Recent studies have proposed several methods for performing GSA with existing datasets, including
partition-based approaches (Plischke et al. 2013; Zhai et al. 2014; Borgonovo et al. 2016), rank-based
techniques (Gamboa et al. 2022; Klein and Rochet 2024), and nearest-neighbor methods (Devroye et al.
2018; Broto et al. 2020). In this work, we provide an in-depth investigation of the partition-based approach.
While partition-based estimators have demonstrated empirical effectiveness in GSA with existing datasets,
their theoretical properties remain underexplored. Additionally, the methodology for selecting the optimal
number of partition bins remains underdeveloped, despite its recognized importance (Borgonovo et al.
2016). Zhai et al. (2014) proposed a partition selection scheme to minimize the estimator’s variance, but
they did not analyze the bias. Borgonovo et al. (2016) and Antoniano-Villalobos et al. (2020) numerically
investigated the impact of the number of partition bins on the estimator’s bias and mean squared error (MSE);
however, their findings lack sufficient theoretical support. To address these gaps, we present a comprehensive
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study of model-free, partition-based Sobol’ index estimation. We provide a theoretical analysis of how
both the sample size and the number of bins affect the estimator’s bias and variance. Additionally, we
propose a data-driven approach for selecting the optimal number of partition bins for performing GSA
on a given dataset. Our numerical experiments demonstrate that this approach consistently identifies the
near-optimal number of bins and that the resulting partition-based estimator outperforms existing rank-based
and nearest-neighbor methods.

The remainder of this paper is organized as follows. Section 2 reviews the definition of the Sobol’
index and the partition-based approach for its estimation. Section 3 presents the theoretical analysis of the
partition-based estimator. Section 4 proposes a data-driven approach for selecting the optimal number of
partition bins for a given dataset. Section 5 presents numerical studies. Finally, Section 6 concludes the

paper.

2 PARTITION-BASED METHOD FOR SOBOL’ INDEX ESTIMATION

Consider acomputational model % = f(X), where f is areal-valued function, and X := {X;, X5,...,X,} € 2
denotes the p-dimensional input vector, with 2~ C R? representing the input space. Let [p] :={1,,2,...,p}.
Given a subsetu C [p], define Xy, as the subvector of X corresponding to the indices inu, and let X _, := X\ X,
denote its complement. The Sobol’ index of X, is defined as:

Var (E(% | Xu)) _ E (B2 (¥ | Xu)) - (E(#))’

= Var (%) - Var (%) ' M

The Sobol” index S" quantifies the contribution of X, to the variance of the output %'. The value of S"
ranges in [0, 1], with a larger value indicating a greater influence of X, on the variability of %/. In particular,
when u = {i} and X, consists of a single input X;, S’ is known as the first-order Sobol’ index of X;, for
each i € [p] (Sobol’ 2001).

Let 7 = {(X1,%),(X2,%),...,(X,,%,)} denote a given dataset of size n, where X; = (Xy i, X_u,)
denotes the ith input vector, X,; and X_,; denote the subset of entries in X; indexed by u and —u,
respectively, and % represents the corresponding model output. Our goal is to estimate the Sobol” index S"
given in (1) from 2. While estimating E (%) and Var (%) in (1) is relatively straightforward, estimating
E (E2 (7| Xu)) is more challenging. Classical methods based on the pick-freeze scheme (Saltelli et al.
2010; Janon et al. 2014) and nested simulation (Gordy and Juneja 2010) require designed experiments to
run the computational model for generating outputs, which is not applicable when only existing datasets
are available. To address this limitation, we consider a model-free, partition-based estimator for estimating
g =E(E*(# | Xy)). We begin by noting the following identity:

E(E2(# | X.)) =E(ZE (% | X)) . @)

The right-hand side (RHS) of (2) can be estimated by n~! i @,-f(Xu’,-), where fA(Xu‘,,-) denotes an
estimator for E (% | X, = Xy;). To construct fA(Xu,,-), we partition the support of X, into H non-overlapping
equiprobable bins {Bj,By,...,By}, i.e., Xy falls into each bin with equal probability. Given each input
vector X; = (Xy,i,X_y,;) in the dataset &, there exists a bin By such that Xy ; € By for some k € [H]. For
notational convenience, for a given i € [n], let B(X,;) denote the bin containing Xy ;. Define |B(Xy,)| =

i1 {Xy,j € B(Xu,)} as the number of data points (X;,%;) whose input subvector Xy ; falls within
the bin B(X,,;). We estimate E (% | X, = Xy ;) by averaging the outputs whose corresponding Xy ;’s fall
within B(Xy,), i.e., f(Xuy,-) =|BXu))| 'Y iXu,€B(Xy;) Zj- The partition-based estimator of g can be given
by

n ~ 1n
YU (Xui) == Y HBXu) Y, 3)
i i=1

jZXu.jGB(XuJ‘)
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and the partition-based estimator S" follows as

TR el i YL )
L = (7 L )

i=1

The estimator S* given in (4) addresses two key limitations of the traditional Sobol’ index estimators
built on the pick-freeze scheme. First, it does not require a designed experiment, making it suitable to
be applied directly to a given dataset. More importantly, the sample size n for estimating all first-order
Sobol’ indices S',82,...,8” is independent of the input-space dimensionality p. In contrast, the classical
pick-freeze scheme requires a sample size that increases linearly with p to obtain reliable first-order Sobol’
index estimates.

3 THEORETICAL ANALYSIS OF THE PARTITION-BASED ESTIMATOR

This section analyzes the theoretical properties of the partition-based estimator SU, defined in 4), for
estimating first-order Sobol’ indices, i.e., when |u| = 1. We begin by analyzing the bias and variance of
the estimator g given in (3). The following assumptions are stipulated to facilitate analyses.

Assumption 1 Each component X; of the input vector X is independently and uniformly distributed over

Z.
Assumption 2 The variance of the model output % is bounded.

Assumption 3 Let x; and x; be two realizations of the input vector X,. There exists a positive constant
L such that
E(Z [ Xu=x1) —E(Z [ Xy =x2)| < L|[x; — %],

where || -|| denotes the Euclidean norm.

Assumption 1 ensures that each bin contains the same expected number of data points. Assumption 2
guarantees the boundedness of the variance of the partition-based estimator g. Assumption 3 imposes a
Lipschitz condition on the conditional mean, an assumption commonly adopted in Sobol’ index inference
(Klein and Rochet 2024). We are now in a position to derive the bias of g.

Proposition 1 Under Assumption 1, the bias of the partition-based estimator g is given by

bias@:Z(l—(l—,ﬁ,)"»EWar(?/|xu>>—fE<2|;|( X <E<@rxu,,->—E<@|xu,,->>2),
i,):Xu,i, Xu,jEB1
(%)

where B denotes the first partition bin. Furthermore, if Assumption 3 also holds, then

H Cl\m L’ . _H C1\m L?
;(1 —(1—H " )")E(Var(# | Xu)) — 7 < |bias(g)| < ;(1 —(1=H )"E(Var (% | Xy)) + T (6)

The proof of Proposition 1 is deferred to Appendix A.1. We have the following remarks. First, the
upper bound on bias(g) provided in (6) can be simplified to c3-n~'H +c4- H 2, where c3 and ¢4 are some
positive constants—this form will be utilized in Section 4. Second, Proposition 1 reveals that the bias of
the estimator g depends on both the number of bins H and the sample size n. Equation (5) shows that the
bias can be expressed as the difference between two nonnegative terms. The second term on the RHS of
(5) reflects the average variation of the conditional expectation within an arbitrary bin (e.g., B;), which
intuitively decreases as the number of bins H increases. In contrast, the first term on the RHS increases
with H. Consequently, when H is small, g tends to be biased downward, while a larger value of H may
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lead to an upward bias. Notably, numerical observations made by Antoniano-Villalobos et al. (2020) can
be well explained by Proposition 1.

To minimize |bias(g)|, the H value should be carefully selected to balance the two competing terms
on the RHS of (6). Notably, the first term contains E (Var (% | X,)) = Var (%) - (1 —S"). Therefore, when
the Sobol” index of Xy, SY, is large (i.e., (1 —S") is small), a greater value of H may help reduce the bias.
Conversely, when S" is small, the first term on the RHS of (6) dominates, favoring a smaller H. As a
result, estimating Sobol’ indices for different input variables using the same dataset may require different
choices of H. This theoretical insight echoes the observation made by Antoniano-Villalobos et al. (2020)
that tailoring H to each input variable improves estimation performance. Furthermore, as the sample size
n increases, the number of bins H should also increase to reduce the bias effectively. In particular, setting
H=0 (nl/ 3) is a practical strategy for minimizing the upper bound given in (6). This choice follows the
recommendation of Borgonovo et al. (2016) and Antoniano-Villalobos et al. (2020), based on heuristic
and empirical grounds; our analysis offers a formal justification. Next we analyze the variance of g.

Proposition 2 Under Assumptions 1 and 2, the variance of the partition-based estimator g can be bounded

as follows: 1 {
Var(g) <cj— —cr— 7
@) =<ec—cm. (7
where c¢; and ¢, are some positive constants.

The proof of Proposition 2 is deferred to Appendix A.2. Proposition 2 shows that Var(g) depends
on both the sample size n and the number of bins H. Given n being fixed, increasing H typically results
in a greater upper bound for Var(g). This is intuitive, since a larger H value means fewer data points in
each bin, increasing the variability of the partition-based estimator. As the sample size n increases, its
impact dominates that of the number of bins H. To reduce the variance, it is sufficient for the sample size
n to approach infinity, with no specific requirement on H. This is in stark contrast to the bias of g, which
vanishes only when both H and » tend to infinity.

The next result provides an upper bound on MSE(g), which directly follows from Propositions 1 and
2.

Corollary 1 Under Assumptions 1, 2, and 3, the MSE of the partition-based estimator g can be bounded
as follows:

MSE(g) < H+ ! 2+ 1 : (8)
g) < C3n C4H2 Cln Cana

where c¢] to ¢4 are some positive constants.

Corollary 1 shows that setting H = &(n'/3) yields the optimal convergence rate & (n1) for the upper
bound on MSE(g). To determine the convergence rate of §U, we note that the remaining terms on the RHS
of (4), i.e., (n 'Y, %)% and n=' YL, %2, are both &'(n~ '), which do not depend on H. Building on the
MSE convergence analysis for ratio estimators by Zhang (2025), we can show that MSE(§“) achieves a
convergence rate of &(n~') when H = €'(n'/3). While H = 0/(n'/?) serves as a general guideline, choosing

H in practice is more nuanced due to its dependence on constants c¢1—c4 in (8). The next section introduces
a data-driven method for estimating the optimal H.

4 A DATA-DRIVEN APPROACH FOR CHOOSING THE NUMBER OF BINS

This section presents a data-driven method for setting the number of bins H to implement the partition-based
method. We leverage the bias and variance bounds established in Propositions 1 and 2, which contain the
constants c; through c4. Inspired by Zhang et al. (2022), who developed a method for estimating constants
in optimal budget allocation for nested simulation, we propose a data-driven approach for estimating the
constants in our setting.
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We begin by expressing the expectation and variance of g using (6) and (7):

E(§)205+C3%+C4$ , Var(g):c%—czn% , )
where cs is a constant serving as an estimate of E (g). Given a fixed value of H, E (g) and Var(g) can be
estimated via bootstrapping (Zhang et al. 2022). Let fiz(H) and 63 (H) denote their corresponding bootstrap
estimators, where B denotes the bootstrap sample size. Define the set .7 := {H,H>,...,H,, }, which consists
of m distinct values for the number of bins H. For each H; € #, we obtain the corresponding tiz(H;) and
0% (H;). We then perform a least-squares regression of the estimated bootstrap means {fiz(H;)}", on the
vectors {(1,n~'H;,H;?) T} | to estimate the constants c3, c4, and cs, denoting the estimates by ¢3, ¢4, and
¢s. Similarly, we conduct a least-squares regression of the estimated bootstrap variances {673 (H;)}", on
the vectors {(n~!,—(nH;)~')"}" | and provide ¢; and ¢,. An appropriate value of H, H*, is the solution
to the following optimization program:

. (. H 1\ 1 1
H" =argmin (c3—+ca75 | +ta-——F . (10)
HE[2,n/2] n H n nH

Since the objective function in (10) is convex under mild conditions on ¢», 3, and ¢y, the solution is
unique. We round the value of H* to the nearest integer and use it as the number of partition bins to build
the partition-based estimator given in (4). Algorithm 1 outlines the detailed steps.

Algorithm 1 Data-driven approach for determining the number of partition bins

1: Input: dataset 7 = {(X1,%1),(X2,%),...,(Xn, %)}, set A = {H\,H,,...,Hy,}, bootstrap sample
size B
Output: the number of bins H*
for each H; € 57 do
for b=1to B do
Draw data points independently with replacement from & and get a bootstrap sample of size
n, Iy,
Construct the estimator g; using 7, based on (3);
: end for
8:  Obtain the mean and variance estimates: fg(H;) =B 'Y5 ,g; and 63(H;) =B 'Y5 (g} —
Hs(Hi)*;
9: end for
10: Regress {lip(H;)}", on {(I,n*lH,-,Hi’z)};":1 to obtain ¢3, ¢4, and Cs;
11: Regress {G(H;)}™, on {(n*l,—(nH,-)*l)};.":1 to obtain ¢; and ¢;

12: Determine H* using (10) and round it to the nearest integer value.

A

S NUMERICAL EVALUATIONS

This section evaluates the proposed partition-based approach. Subsection 5.1 details the numerical examples
and the experimental setup. Subsection 5.2 examines the impact of the number of partition bins and the
effectiveness of Algorithm 1. Subsection 5.3 compares the partition-based estimator with other Sobol’
index estimation approaches using given datasets.
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5.1 Numerical Examples and Experimental Settings

Ishigami function. The Ishigami function is a classical example for evaluating the performance of
Sobol” index estimators (Ishigami and Homma 1990). The model is given by % = sin (X)) + 7sin (X2)2 +
0. ngL sin (X)), where the X;’s are independent and uniformly distributed over [, 7]. We are interested in
estimating the first-order Sobol’ indices, whose true values are S 1'=0.3134, $?2 = 0.4424, and S* = 0.

g-function. The p-dimensional g-function, widely used in the GSA literature (Owen 2013), is given
by # =TI, gi(X;), where g;(X;) = (|4X; — 2| +a;)/(1 +a;) and a; > 0. Each X; is independently and
uniformly distributed over [0, 1]. In this example, we consider p = 3 with a; =19, @, =9, and a3 = 4.
The true first-order Sobol” indices are S' = 0.0475, S? = 0.1898, and S = 0.7594.

For each numerical example, we use a given dataset of size n = 500. For each H € {1,2,...,100}, we
conduct 1,000 independent macro-replications to estimate the MSE, bias, and variance of the partition-based
estimators 5‘\1, 3‘2, and S3. The optimal number of par}\ition bins, H*, is defined as the value of H that
minimizes the estimated MSE. We compare H* with H* obtained by Algorithm 1 in Subsection 5.2 to

evaluate the performance.

5.2 The Effect of H on the Performance of the Partition-based Estimator

We first investigate the impact of H on the performance of the partition-based estimator. Figure 1 shows the
MSE, the squared bias, and the variance of the partition-based estimator as functions of H for the Ishigami
function example. We observe that the variance exhibits only minor fluctuations as H varies, whereas the
squared bias varies significantly as H changes. For the input variables with relatively large Sobol’ indices
(i.e., X' and X?), the H* values tend to be large. Conversely, for the input variable with small Sobol’ index
(i.e., X3), the H* value is relatively small. These observations corroborate our theoretical results presented
in Propositions 1 and 2. Figure 2 presents the MSE, the squared bias, and the variance as functions of H
for the g-function example, further confirming the impact of H observed in the Ishigami function example.

X1 X2 X3
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0.014 - MSE

* H 0,030
0.150 1
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0.020 +

0.008 1 0.100

0.015 +
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0.025 k 0.005
|, I

0.000 A 0.000 ~

0.004

0.002

0.000

6 2‘0 46 66 B‘D 160 6 2‘0 4‘0 66 Bb 160 ll) Zb 4‘0 66 Bb ].60
H H H
Figure 1: The Ishigami function example: MSE, squared bias, and variance of the partition-based estimator
as functions of the number of bins H.

We next examine the effectiveness of Algorithm 1 in its choosing an appropriate value for the
number of bins for estimating the first-order Sobol’ indices. To implement Algorithm 1, we adopt
2 ={10,20,30,40,50} and set the bootstrap sample size to B = 500. To evaluate the algorithm’s perfor-
mance, we conduct 100 macro-replications and compare the H* value obtained on each macro-replication
with the optimal value H* identified in Figures 1 and 2. Figure 5 in Appendix B displays the H* values
obtained by Algorithm 1 in both examples. In the Ishigami function example, the H* values used to
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Figure 2: The g-function example: MSE, squared bias, and variance of the partition-based estimator as
functions of the number of bins H.

estimate the Sobol” indices across all three dimensions yield MSE values comparable to those obtained
using the H* values. In the g-function example, although a few H* values selected for estimating S' result
in significantly higher MSEs compared to H*, the majority yield MSEs close to their respective optimal
values. These results highlight the effectiveness of Algorithm 1.

5.3 Comparison of Different Sobol’ Index Estimators

We evaluate the performance of the proposed partition-based estimator given in (4) by comparing it with two
established approaches for estimating Sobol’ indices from given datasets: the rank-based method (Gamboa
et al. 2022; Klein and Rochet 2024) and the nearest-neighbor method (Devroye et al. 2018; Broto et al.
2020). Both competing methods require choosing specific parameter values: the number of neighbors
for the nearest-neighbor estimator and the number of lags for the rank-based estimator. To ensure a fair
comparison, we conduct 1,000 macro-replications to estimate the MSE, bias, and variance of each method,
and select the parameter value that minimizes the estimated MSE for each.

Tables 1 summarizes the results obtained by the three approaches. In both examples, the partition-
based estimator consistently outperforms the other two methods in estimating the first-order Sobol’ indices
corresponding to all input variables. Figure 3 summarizes the Sobol’ index estimates in the Ishigami
function example. The partition-based estimator yields lower bias than the other two methods in estimating
S! and S?, while maintaining comparable variance, and achieves the lowest bias and variance for S3. Figure
4 presents the Sobol’ index estimates for the g-function example, where the partition-based estimator
consistently attains the lowest bias and variance across all first-order Sobol’ indices.

6 CONCLUSION

This paper introduced a model-free, partition-based method with a data-driven approach for estimating
Sobol’ indices from a given dataset. Our theoretical analysis reveals how both the number of bins and the
dataset size influence the estimator’s MSE, leading to a data-driven approach for choosing an appropriate
number of bins to use in practice. Numerical experiments demonstrate that the proposed approach reliably
selects a near-optimal number of bins, and that the partition-based method achieves lower MSE in Sobol’
index estimation compared to state-of-the-art rank-based and nearest-neighbor estimators. These results
underscore the practical advantages of the proposed method for real-world sensitivity analysis.
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Table 1: Comparison of the partition-based, nearest-neighbor, and rank-based estimators in the Ishigami
function and g-function examples. The smallest value for each performance metric is highlighted in bold.

y . Ishigami g-function
Sobol” index Method MSE Bias® Variance MSE Bias® Variance
Partition 797x107% 1.90x107 797x10%4[294x10% 200x10® 293x1074
st Nearest-neighbor | 8.93x 107* 4.70x 107> 8.46x107* | 2.64x 1072 4.00x 10~* 2.60x 102
Rank 1.09%x 1073 6.70x 1075 1.02x1073 | 7.72x 1073 1.48x 1073 6.24x 1073
Partition 1.09x103 400x10 % 1.09%x103 | 844x10% 4.00x10> 8.04x1074
52 Nearest-neighbor | 1.27x 1073 1.40x 107> 1.25x1073 | 2.53x 1072 1.01x 1073 2.43x 102
Rank 1.29% 1073 1.06x107* 1.18x 1073 | 1.09x 1072 5.04x 1073 5.85x 1073
Partition 1.10x105 4.00x10° 7.00x10°®[223x10% 7.00x10% 217x1074
53 Nearest-neighbor | 1.89x 107* 1.10x 107> 1.78x107% | 1.06 x 1072 1.57x 1073 9.06 x 103
Rank 454%x107* 820x107° 3.72x107* | 2.15x 1072 1.98x 1072 1.63x1073
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Figure 3: The Ishigami function example: summary of Sobol” index estimates obtained from 1,000 macro-
replications using the partition-based, nearest-neighbor, and rank-based estimators.
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Figure 4: The g-function example: summary of Sobol’ index estimates obtained from 1,000 macro-
replications using the partition-based, nearest-neighbor, and rank-based estimators.
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A PROQOF IN SECTION 3
A.1Proof of Proposition 1

Proof. ~ We first write the bias of g given in (3) as follows:

+

E(Z-E(ZE(Z | Xy)) E( Z%B X)X 9/—*2% %Xm))
J:Xu,j€B(Xy,i)
1 & 1 &
= Y E(B(X, )= Y E (B (BXu)| "% | Xui) E(% ] Xu,)
i=1 i=1
1 n

n

Il
—

1

E (E (!B(Xu,iﬂ_l (& —%) | Xu,i) E(% | Xu,i))
X EB(Xu),jAi

Ly (Ve[ Xu)) 1y & %, o
_nZ’E< B(Xu,i)| > Zl 1B(X, )|JX/§(X )@ B, Z E(%; | Xu,i)
J#i i

(@)

For term (i), we have

o 2 (G V1 X)) = B gy Ve 1)

i=1

— 5 (B (o Var (3% 1 Xur) | 1B0X1) =) ) = 30 L B(Var (84 %) PB(X1)| =)

nng

H

_y 1<n 1>H1 "= H)TE (Var (9 | Xa)) = - (1= (1= H 7)) E (Var (% [ Xu,))

np=1 np \np — 1
where the second to last equality follows from the fact that (|B(Xy,;)| — 1) follows a Binomial distribution
Binomial(n—1,H ).

For term (ii), we have

1 & %;

SVYE| T Y — — E (% | Xu.)
n 1:21 ‘B(X )| Jj: Xujé(x i) | (X >‘ J: Xujg(x i) ’
JFi J#i

=1_ZE E(% | Xu,)-E ’B(Xu,i)r]' Y (@-2)|X
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1 _
=Y ELBXu) ) B Xu) (B(% | Xui) —E(% | Xu,))

H
_ —%E (Z(z’gk’)l y (E(%\Xu,i)—E(@j!XuJ)f) ;

k=1 (i,))Xu,i, Xu,j€Bk

Hence, we have

|bias(§)|:% (1—(1—H"")E(Var(# \Xu,l))—%ﬂz ((2|Bl|)_l ) (E(%[Xu,i)—E(@j|Xu,j))2> .

(i,))Xu,i,Xu,jEB1

If Assumption 3 holds, we further have

’ZE(@\B]DI )) <E<%rxu,i>—E<@j\Xu,j>>2)
(i.J)

i,j ZXu‘l‘,Xu‘jGBl
H -1 2 2
<—E ((2\31\) Y L(Xui—Xu)) >
n (l j)ZXu'i,Xu‘jGBl

H . L? L?
<— < =
_HE<<2|BI|> )y H2> <

(iaj):Xu,i:Xu.j €B)

which yields (6).

A.2 Proof of Proposition 2

Proof. ~ We first write the estimator g given in (3) as follows:

1 & 1 1 & 52
[ Y/ A— Y, = — o =-Yy k|
”; |B(Xu,)| unjg(xu,) Z’lzxgégk k,xg'esk k;l”k

where By denotes the kth bin, n; := |By| is the number of data points in the kth bin, and Sy == Y;.x, ,c5, %-
Notice that Var (g) =n~2 Y4, Var (57 /n;). We begin by analyzing Var (S7 /n;) for k € [H]. Specifically,
for a fixed k, we have the following decomposition:
k>) .

S2 SZ S2
Var <k> = Var <E (k nk>> +E <Var <k
Ny Ny ny
On the one hand, for i > 1,
s2 52 S S
E(k nk:'> =Ny - E(g k:i>: nk'Var<k nk=i>+nk-<E<k
Ny ny Ny ny

2
O,
(%) = ot

o))
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where L and sz are the mean and variance of the outputs % whose corresponding X, values fall within By,
respectively. On the other hand, Var (n; 'S7| n = i) = n? Var (n, >S;| nx = i). The Taylor expansion yields
n 282 = wE + 24 (nk_lSk — W) + R(Sk), where R(Sy) denotes the remainder satisfying R(Sy) = O(n?).
It follows that n? Var (n,:zS,%‘ ng = n) < 8mptof +2Var (R(Sy)) < ¢-mu?o?, where c is some positive
constant, and the last inequality follows from R(Sy) = ¢/(n, ). Hence, we have
S2
Var <nk> < Var (sz +nku,%) +E (c : nKulfckz)
k
= u Var () + ¢ - W2 o2 E () = uinpr(1 — pr) + cu? otnpy
1 1 1 n n n
:#g”'ﬁ <1H> +C'N136k2'”‘ﬁ = (ﬁ*m) +c- ppo; <ﬁ> :

Hence, Var(g) <n 'Yyt (H'—H ) +c-n 'Y ufo} -H ' <cn' —cr(nH) ™', where ¢; and
¢y are some positive constants. O
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Figure 5: Comparisons of the H* values obtained by Algorithm 1 in the 100 macro-replications and the H*
value for each input variable in the Ishigami function example (top) and the g-function example (bottom).
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