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ABSTRACT

Vaccination is a critical intervention to mitigate the impact of infectious disease outbreaks. However,
vaccination decision is complex and influenced by various factors such as individual beliefs, access
to vaccines, trust in healthcare systems, and importantly, social norms within communities, the shared
understandings and expectations about vaccination behavior. This paper analyzes the impact of social
norms on vaccine uptake and subsequent disease transmission by explicitly incorporating these norms into
an extension of the agent-based COVID-19 simulation model, COVASIM. We aim to analyze how social
norms affect vaccination rates and disease spread. We demonstrate this by implementing community-
specific vaccination norms that influence agents through the perceived vaccination behaviors of their social
networks. Our simulated case study explored targeted communication about vaccination uptake through
different age groups. Through this intervention, we examined the effectiveness of adjusting perceptions of
community vaccine uptake to better align with its true value.

1 INTRODUCTION

Vaccination represents the most effective means of preventing infectious disease outbreaks (Betsch et al.
2017; Cascini et al. 2021). A high degree of vaccination coverage is paramount for protecting individual
and public health, mitigating healthcare expenditures, and sustaining global health. While ensuring access
to vaccines and building public trust are fundamental, the decision to get vaccinated is multifaceted. It is
shaped by various factors beyond access and trust, including personal beliefs about health and disease, and
the shared understandings and expectations within communities about vaccination.

These socially shared expectations, or norms, dictate what is considered acceptable or typical health
behavior within a group or society, significantly influencing vaccination decisions (Rimal and Real 2003).
Factors such as perceived social pressure to get vaccinated, observing peers and respected community figures
receiving the vaccine, and prevailing attitudes toward vaccination within an individual’s social network all
contribute to shaping social norms. Moreover, these norms are not static—they can evolve in response to
targeted interventions and shifts in public opinion (McDonald and Crandall 2015). As such, understanding
and strategically influencing social norms presents a valuable opportunity to reduce vaccine hesitancy and
achieve the high levels of coverage needed to ensure robust public health protection.

Agent-based models (ABMs) are increasingly employed to simulate the complex interplay between
behavioral norms and social networks (Will, Groeneveld, Frank, and Miiller 2020). These models define
autonomous agents that interact within a network structure, allowing researchers to observe how norms
emerge from local interactions, spread through the network via mechanisms such as conformity and imitation,
and influence individual behavior. This individual-centric approach, with its capacity to model heterogeneous
agents and dynamic network interactions, offers significant advantages over discrete event simulations (DES)
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for capturing complex social phenomena. Unlike DES, which primarily models the flow of entities through
predefined processes, ABMs are uniquely suited to represent emergent properties, feedback loops, and the
adaptive nature of social systems driven by individual decision-making and evolving relationships, all crucial
for understanding social norm dynamics. ABMs can also incorporate agent heterogeneity and environmental
influences to provide a nuanced understanding of how norms are established and maintained (Matthews
et al. 2007; Bianchi and Squazzoni 2015). Beyond public health, ABMs explore the dynamics of social
norms in contexts such as technological diffusion, environmental actions, consumer behavior, and political
engagement. These models typically represent norms via adoption thresholds, social learning, or rules
for updating opinions within networks, illustrating how collective behaviors and norms evolve from local
interactions (Macy and Flache 2009; Martin-Lapoirie, d’Onofrio, McColl, and Raude 2023).

In this study, we incorporate social norms that affect vaccination behavior into COVASIM, an agent-
based infectious disease simulation model designed to analyze the dynamics and control of the COVID-19
pandemic (Kerr et al. 2021). Network interactions influence the perceived social norms of agents, and we
explore how these norms impact vaccine uptake and disease transmission. Integrating empirical data on
perceived norms with the ABM capabilities of COVASIM, the proposed approach allows us to examine the
effectiveness of various public health interventions aimed at correcting misperceptions about vaccination
and promoting higher vaccination rates.

2 AGENT-BASED MODELING OF SOCIAL NORMS AND VACCINE ACCEPTANCE

In this section, we outline the methodologies employed to model the influence of social norms on individual
vaccine acceptance in the context of a simulated COVID-19 pandemic. We begin by reviewing the existing
literature that underscores the significant role of perceived social norms in shaping health behaviors,
particularly the acceptance of vaccines. We then describe the survey data utilized to empirically assess
the relationship between perceived social norms and vaccine acceptance. Finally, we detail the ABM,
COVASIM, which serves as the platform for our simulations, and explain how we integrate the insights
from our survey analysis to model the dynamic impact of social norms on vaccination behavior.

2.1 Social Norms and Vaccine Acceptance

The perceived social norms of friends and family strongly impact an individual’s vaccination intentions,
with this influence declining as social distance and group heterogeneity increase (Rabb et al. 2022; Lin
et al. 2022). This is consistent with the findings that individuals are more likely to accept vaccines endorsed
by their "in-group” (Cruwys et al. 2021) and when they believe that their friends and family support it
(Tunggeng et al. 2021). Therefore, effective interventions should leverage trust within small communities
rather than rely solely on broad messaging.

Misconceptions about community vaccination acceptance, particularly the tendency to underestimate
actual uptake, can negatively influence individual decisions and hinder overall vaccination efforts (Sinclair
and Agerstrom 2023). Moehring et al. (2023) observed that providing normative information increased the
fraction of people that respondents estimated would accept a vaccine, suggesting that these underestimations
in vaccination acceptance can be corrected. Hence, interventions that accurately portray vaccine acceptance
through trusted networks and public health messaging can effectively increase uptake (Tayloe 2021).

To further understand these dynamics, our study leverages data from a comprehensive survey conducted
by the Massachusetts Institute of Technology (MIT) in collaboration with researchers from Johns Hopkins
University, the World Health Organization, and the Global Outbreak Alert and Response Network (Collis
et al. 2022). This rich dataset, which includes 66,045 responses from the United States collected between
October 28, 2020, and March 29, 2021, offers insights into beliefs, behaviors, and social norms surrounding
the COVID-19 pandemic. The survey specifically explored topics such as masking, vaccinations, individ-
ual willingness to get vaccinated, estimates of community acceptance, and factors that influence future
vaccination decisions, including recommendations from friends, family, and health officials.

747



Mulutzie, Rodriguez-Cartes, Mayorga, Ozaltin, and Swann

To identify key drivers of vaccine acceptance, in previous work, we analyzed a subset of these
responses using a random forest model, examining the influence of demographic characteristics, individual
risk perceptions, trust in news sources, past vaccination behavior, and perceived social norms among other
factors (Mulutzie et al. 2025). Our analysis revealed that perceived social norms were a significant predictor
of the acceptance of the COVID-19 vaccine, alongside other important factors such as recommendations
from trusted health authorities. Three survey questions relevant to this study are presented in Table 1.

Table 1: Survey Questions and Response Options.

Survey Question Response Categories

If a vaccine for COVID-19 becomes available, would you choose to get vaccinated? | yes, no, or don’t know.

Out of 100 people in your community, how many do you think would take the | integer values between 0 and
COVID-19 vaccine if it were available? 100

Would you be more or less likely to take a vaccine against COVID-19 infection | more likely, less likely, no
if it were made available and recommended to you by each of the following: | impact

friends and family, local health workers, World Health Organization, government
health officials, and politicians?

2.2 Agent-Based Simulation Model

COVASIM, is an open-source ABM developed in Python that simulates the complex dynamics of the
COVID-19 pandemic and the impact of interventions (Kerr et al. 2021). Each agent in COVASIM has
unique demographic and epidemiological characteristics, such as age and susceptibility to infection. Agents
are embedded within a multi-layered contact network, representing their social interactions across different
contexts. These layers include households (representing close and frequent contacts), schools (for relevant
age groups), workplaces (for working adults), and communities (representing broader, casual interactions
such as those in public spaces, transit, or social gatherings). The contacts within these layers define the
potential pathways for disease transmission. By incorporating stochasticity in transmission and disease
progression, COVASIM allows realistic simulations of epidemic spread and assessing key epidemiological
outcomes. The strength of the model lies in its ability to simulate various interventions, such as social
distancing, mask-wearing, testing, and vaccination campaigns, offering a valuable tool for public health
research and response. COVASIM has been used to answer policy and research questions about COVID-19
in several countries, including the United Kingdom (Panovska-Griffiths et al. 2020), Vietnam (Pham et al.
2021), and Australia (Scott et al. 2021).

Within COVASIM, infections within the model occur daily. Here, ¢ represents time, with each ¢
equivalent to one day. When a susceptible agent comes into contact with an infectious agent, the probability
of infection is calculated based on the transmission rate (f3), modified by factors such as the agents’
susceptibility and infectiousness levels. Every agent has a probability of being vaccinated. In our study,
this vaccination probability is based on the agent’s age and changes weekly based on historical vaccination
uptake. When an agent is vaccinated, this reduces their susceptibility to infection. The logic governing
these daily infection and vaccination processes within COVASIM is further detailed in Figure 2. This
agent-based approach, modeling both infection and vaccination at the individual level, allows for studying
how individual behaviors and interventions at the contact-layer level influence overall epidemic dynamics.

2.3 Quantifying the Social Norm for Vaccination

We quantified the social norm for vaccination, referred to as vaccination norm, for each agent j at time
t based on the perceived vaccination status of neighboring agents i = 1,...,k;. These neighbors represent
agents with whom agent j has direct social contact or interaction within the model’s network structure.
For agent j, its perception of agent i's vaccination status was represented as a binary variable V;, (where
Vie = 1 if agent j perceives agent i as vaccinated, and V;; = 0 otherwise). Note that the number of neighbors
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k; is different for each agent, but we drop the subscript j for simplicity, and use k to represent the number
of neighbors of any agent.

At the start of the simulation, agents have an initial perception of vaccine uptake within their network,
reflecting who they believed will get vaccinated when it becomes available. Building on existing research
that highlights the underestimation of actual vaccination uptake (Moehring et al. 2023), we initialized each
agent’s overall perceived uptake percentage to be, on average, 10% lower than the historical vaccination
uptake in North Carolina during the time period modeled (46%). Specifically, each agent’s overall perceived
uptake percentage was drawn from a normal distribution with a mean of 36% and a standard deviation
of 4%, a value adopted to represent a plausible range of individual perceptions in the absence of more
precise, literature-supported empirical data regarding this variability. For each agent j, its drawn overall
perceived uptake percentage was then used to assign the binary perceived vaccination status (Vj;) for a
corresponding proportion of its neighbors i. For example, if agent j's perceived uptake was 36%, then 36%
of its neighbors were assigned V;; = 1, and the remaining 64% were assigned V;; = 0. This individualized
initial perception then serves as the basis for calculating the agent’s baseline value of the vaccination norm
(VNj;). Crucially, in the absence of other influences (such as the intervention described later), this baseline
perception of vaccination status remains static for each agent’s neighbors.

Recognizing that closer social ties exert a more substantial influence on perceived norms, we applied a
weight }/f where the weight depended on the contact layer [ of the neighboring agent i; / can be household,
work, school, or community. This weight determines the contribution of the vaccination status of agent
i to the perceived norm of agent j. The baseline value for the vaccination norm, denoted by VNj;, was
calculated by the following equation:

Zile %Isz

VN'; —
S Y Y

ey

2.4 Modeling the Effect of Vaccination Norm

To model the relationship between the perceived vaccination norm and individual vaccine acceptance (a
binary outcome where 1 indicates willingness to get vaccinated and O indicates non-willingness) we used
a subset of the survey data described in section 2.1 (N = 38,987), which had complete responses for both
relevant questions. The survey elicited the vaccination norm of respondents from responses to the second
question in Table 1, showing an individual’s estimate for the percentage of people in their community
who would get vaccinated. We categorized these percentage responses into ten categories: 1 (0-9%), 2
(10-19%), 3 (20-29%), 4 (30-39%), 5 (40-49%), 6 (50-59%), 7 (60-69%), 8 (70-79%), 9 (80-89%), and
10 (90-100%). We employed a logistic regression model to predict individual vaccine acceptance (a binary
outcome of 0 or 1) based on these perceived vaccination percentages. We selected the 50-59% category
(category 6) as our reference group, as its midpoint closely approximated the survey’s average perceived
vaccination uptake percentage.

The resulting odds ratios of this regression model provided a measure of how much more likely
an individual would be to accept vaccination for each category of the perceived community vaccination
percentage, relative to the reference category. We focused on modeling the potential increase in vaccination
probability due to higher perceived norms. Hence, in the simulation, we did not change the base vaccination
probability of agents whose vaccination norm is less than or equal to the reference vaccination norm category.
Table 2 provides the odds ratios for categories 6-10 with higher vaccination norm values.

Table 2: The odds ratio values from the logistic regression for each category of vaccination norms values
used for the case study.

Vaccination Norm | 50%-59% | 60%-69% | 70%-79% | 80%-89% | 90%-100%
Category (n) 6 7 8 9 10
Odds Ratio 1.0 2.5 33 4.0 53
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Building directly on this survey derived relationship, we incorporated these norms into COVASIM to
dynamically adjust the agents’ vaccination probabilities (V Pj;). For each agent j at time 7, we first converted
their base vaccination probability (baseVacProb ;) into odds using the formula:

baseVacProb j;
1 —baseVacProbj,

oddspuse = )
Next, we multiplied these base odds by the odds ratio (oddsRatio,) corresponding to the category n of the
agent’s perceived vaccination norm value VN, at time ¢ to obtain the adjusted odds:

odds,qj = oddspase ¥ oddsRatio, 3)

Finally, we converted these new odds back into a probability to determine the agent’s adjusted vaccination
probability (VPj):

oddsqj

VP = —
" 1+ oddsaa;

“)

Thus, we have established a baseline mechanism within COVASIM where agents’ perceived vaccination
norms, derived from network interactions and subject to underestimation, influence their vaccination
probability based on the survey-derived odds ratios.

3 CASE STUDY

Building upon this foundation, this section introduces a case study in which targeted interventions are applied
to adjust these perceived norms, exploring their impact on vaccine uptake and disease spread. It details
the framework and implementation of our ABM within COVASIM to explore the influence of vaccination
norms on vaccine uptake. We outline the population characteristics, the integration of empirically derived
norms effects based on survey data and logistic regression, and the design of an intervention to shift these
norms.

3.1 Population

We simulated a population of 100,000 individuals between October 1, 2020 and July 1, 2021. We selected
North Carolina as the state in COVASIM, which creates a synthetic population based on Census 2020
data. No vaccines were available to the general population in North Carolina before December 14, 2020.
Vaccine availability expanded in phases, beginning with healthcare workers and long-term care residents
in December 2020, and expanding to all adults by April 2021, and then to children aged 12-15 years old,
as depicted in Figure 1.

To establish a baseline vaccination probability for agents within our model, we used weekly vaccine
uptake data from the North Carolina Department of Health and Human Services (NC DHHS) from December
14, 2020, to July 1, 2021. We matched the timing of the peak vaccination rates in the simulation with the
end of December 2020 to early January 2021, as observed in the historical data from North Carolina. By
calculating the weekly proportion of the North Carolina population that received vaccinations during this
period by age group, we derived an initial probability of vaccination for the agents by age group in each
week within our model. This approach ensured that our simulation was grounded in actual vaccination
behavior when vaccines were available, before introducing the influence of varying perceived vaccination
norms.

3.2 Interventions to Change Vaccination Norms

Following the baseline implementation of vaccination norms, we introduced an intervention where vaccinated
individuals, belonging to a targeted subset within the model, are encouraged by local health workers to
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March 2021: May 2021:
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Figure 1: Timeline depicting the vaccination availability for different priority groups.

openly share their vaccination status within their household, work, school, and community networks. This
intervention is designed to model the influence of trusted personal communication on vaccination norm
perceptions, as individuals tend to find information more credible from family and friends (Thompson
et al. 2024). We hypothesized that these interactions would correct underestimated vaccination norms,
leading to an increase in perceived uptake, especially within closer social ties which exert a stronger
influence on perceived norms (Rabb et al. 2022) (as modeled by our layer weights: yrousehold — 1,

yromplace _ gachool — () 005, y*O™™MY — 0.001), with these values representing the relative importance
of influence from each respective social layer. This would then subsequently increase the vaccination
probability of agents.

To quantify the effect of this intervention on perceived norms, we used an intervention indicator
I, € {0,1}. If agent i openly shares its vaccination status at time ¢ under the intervention, then [;; = 1,

otherwise [; = 0. The adjusted vaccination norm for agent j at time ¢ is then calculated by:

Z;{:] yfmax{V,-t,Iit}
Yy

In Equation (5), if agent i openly shares its vaccination status, then [; = 1 and agent i's perceived
vacation of agent j is updated allowing the agents to perceive a more accurate vaccination norm. The
intervention is applied to targeted population groups in our simulation. Based on age, these groups are:
18-24 year olds, 25-44 year olds, 45-64 year olds, and 65 years and older. Figure 2 depicts the general
logic of our case study in COVASIM.

Vth = (5)

4 RESULTS

We established a baseline scenario to simulate vaccine uptake under the influence of social norms within
COVASIM as described in section 3.1. Figure 3 illustrates weekly and cumulative vaccinations administered
in our baseline scenario. This scenario was derived from COVASIM’s simulation using a synthetic population
constructed based on North Carolina census data. It achieves a final average vaccination coverage of 46.1%
over all replications, consistent with the historical vaccine uptake of 46% observed in the North Carolina data
during a comparable nine-month period. This alignment was achieved through the inclusion of vaccination
norms within the model, without interventions applied. The subsequent section presents the results of
our experiments. We examine whether the proposed intervention successfully corrects the underestimated
vaccination norms and leads to the hypothesized increase in the perceived vaccination norm, vaccination
probability, and correspondingly, vaccine uptake.

Figure 4 compares the simulated daily new infections in our vaccination norms baseline scenario (orange
line at the top) with scaled historical daily new infections from North Carolina (blue line at the bottom),
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Figure 2: Flowchart depicting the case study logic in COVASIM.
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Figure 3: Vaccinations administered in baseline scenario. COVASIM vaccination norms baseline results
illustrating the weekly number of new vaccination doses administered (top) and the corresponding cumulative
number of people vaccinated (bottom), from October 1, 2020, to July 1, 2021 from a sample replication.

adjusted for our model’s population size of 100,000 from October 2020 to March 2021. The observed

difference, where simulated infections peak approximately 23.11% higher than reported data, likely reflects
significant under-ascertainment in historical records due to incomplete testing and reporting, a phenomenon
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discussed in studies on both US (Pei, Yamana, Kandula, Galanti, and Shaman 2021) and UK data (Colman,
Puspitarani, Enright, and Kao 2023). National studies in the US estimated ascertainment rates between
11.3% (Mar 2020) and 24.5% (Dec 2020) (Pei, Yamana, Kandula, Galanti, and Shaman 2021), highlighting
the limitations of relying solely on reported case numbers for model validation.

300

== Historical Scaled ===—=COVASIM

250

200

150

100

Daily New Infections

50

0
10/1/2020 11/1/2020 12/1/2020 1/1/2021 2/1/2021 3/1/2021

Date

Figure 4: Simulated and scaled historical daily new infections. Daily new infections from the vaccination
norms baseline simulation and scaled historical NC data (adjusted for population size) are shown for the
period of October 1, 2020, to March 7, 2021.

To explore the impact of targeted interventions on vaccine uptake across the entire population and
subsequent infection reduction, we implemented our intervention separately for four age groups: 18-25,
26-45, 46-64, and 65 and over. This focus on age was chosen because our random forest model indicated
age as a significantly higher predictor of vaccine acceptance compared to other demographic factors such
as educational level. Within our simulated population of 100,000 individuals, the sizes of these age groups
varied across replications. On average, the groups comprised: 18-25 years (9,310 + 75 adults), 26-45 years
(24,480 = 138 adults), 46-64 years (23,579 £ 139 adults), and 65 and over (16,273 + 109 adults). Each
targeted intervention scenario was run for 100 replications, with the network structure differing for each
random seed. Each targeted age group is encouraged to tell the other agents of all ages in their networks
of their vaccination uptake.

Figure 5(a) illustrates the percentage of the population vaccinated for the baseline (no intervention)
and across the four target age group intervention. Figure 5(b) further details the cumulative additional
vaccinations above baseline (no intervention) over time for with each of the four targeted group interventions.
Notably, cumulative vaccination curves show an earlier increase when targeting the 65+ age group, followed
by the 26-45 and 46-64 age groups.

These results consistently indicate that targeting each age group separately positively impacted vaccine
uptake. The highest impact was observed when targeting the 46-64 age group, resulting in an average
vaccination uptake of 48.5%. This higher impact was likely attributed to these individuals’ earlier eligibility
for vaccination and their proximity to the historical infection peak in the model This allows the older
population to share their vaccination status earlier, potentially preventing infections. It is important to note
that the effects of these interventions are not immediate. Real-world scenarios involve inherent delays in
social network communication and individual vaccination scheduling. Similarly, within the model, daily
agent interactions occur, but vaccination probabilities are adjusted weekly, contributing to a delayed effect
on vaccine uptake from information sharing.

In terms of the impact on infections and deaths, Figure 6 presents the observed percent reductions
across the different intervention groups. For total infections, our interventions led to observed reductions
across all targeted age groups. However, these reductions were not statistically significant across the 100
replications (see Table 3 for detailed statistical results). Despite younger adults’ significant role in social
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Percent of the Population Vaccinated by Intervention Target Group Cumulative Vaccinations Above Baseline by Intervention
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Figure 5: (a) The box plot on the left shows the distribution of final vaccination coverage for both the
baseline without the intervention and the targeted vaccination interventions across multiple simulation
runs. (b) The right figure illustrates the cumulative additional vaccinations above baseline runs with no
intervention over time. Each line represents the results from a single model run where the intervention was
applied to a different targeted group.

networks and disease transmission due to their connectivity and mobility, the timing of the intervention
for these groups in our model did not lead to a substantial or significant reduction. For total deaths, our
interventions resulted in observed reductions across all targeted age groups. However, none of these were
statistically significant (see Table 3). Although a 0.85% mean reduction was observed for the 65+ age
group, its variability and lack of statistical significance suggest a negligible impact on death reduction
within our model.

Percent Reduction in Total Infections by Intervention Target Group Percent Reduction in Total Dealths by Intervention Target Group
M age=18-25 W age=26-45 [ age=46-64 W age=65+ [ age=18-25 WM age=26-45 M age=46-64 [ age=65+
15% 30% =
-]
g
- 0,
5 10% e s
: . z
£ . 5. 10%
5 T .S
SE
5 z g 0%
g " £ £
o =
% 5 -10%
[
g ™ o 20% -
L e o
o = ° °
-10% -30%
Target Group Target Group

Figure 6: (a) The box plot on the left shows the impact of targeted vaccination interventions on total
infections, with the largest average reduction percent observed when applying the intervention to adults
aged 46-64. (b) The box plot on the right shows the impact of targeted vaccination interventions on total
number of deaths, with the largest average reduction percent observed when applying the intervention to
adults ages 46-64 and 65 and older.

Finally, we explored the effect of an earlier vaccination rollout, beginning nine weeks ahead of schedule
on October 12th. This accelerated timeline provided a larger window to observe intervention effects during
the initial infection surge, as illustrated in Figure 7. As anticipated, this earlier rollout resulted in a greater
increase in vaccination compared to the baseline than the original schedule (compare Figure 7 (left) to
Figure 5 (left)).

754



Mulutzie, Rodriguez-Cartes, Mayorga, Ozaltin, and Swann

Table 3: Impact of Targeted Interventions on Total Infections and Deaths

Targeted Age Group | Mean % Reduction | 95% Confidence Interval
18-25 years 0.02% +0.005
Infections 26-45 years 0.18% +0.007
46-64 years 0.83% +0.007
65+ years 0.15% +0.005
18-25 years 0.15% +0.013
26-45 years 0.05% +0.017
Deaths 46-64 years 0.47% +0.016
65+ years 0.85% +0.015

In terms of the impact on infections with the earlier vaccination rollout, Figure 7 (right) presents
the observed changes in total infections across the different target intervention groups. On average, the
impact varied by age group: targeting 18-25 years showed an increase of 1.13% (95% CI: £1.6%), while
reductions were observed for 2645 years (1.50%, 95% CI: £2.1%), 46-64 years (0.16%, 95% CI: £2.1%),
and 65+ years (2.45%, 95% CI: £1.6%). Of these observed changes, only the reduction for the 65+ age
group was found to be statistically significant. This suggests that while an earlier start could improve
overall vaccination coverage, its ability to substantially reduce the total infections might be limited without
considering other factors or more targeted strategies.

Percent of the Population Vaccinated by Intervention Target Group Percent Reduction in Total Infections by Intervention Target Group
M nointervention [ age=18-25 W age=26-45 M age=46-64 M age=65+ M age=18-25 M age=26-45 [ age=46-64 M age=65+
56.0% 30%

55.5% + 20% °
10%
0%
-10%
-20% 0] .
®

-30%

54.5% - -
54.0%

53.5%

53.0% +

52.5% +

52.0% . -40%

Percent Vaccinated
Percent Reduction by Intervention

Target Group Target Group

Figure 7: Impact of earlier vaccination rollout on vaccine uptake and total infections by targeted intervention
groups. (a) The box plot on the left shows the distribution of final overall vaccination coverage for both the
baseline without the intervention and for the targeted vaccination interventions across multiple simulation
runs. The box plot shows results for all runs for each targeted intervention group. (b) The box plot on
the left shows the impact of targeted vaccination interventions on total infections, with the largest average
percent reduction observed when applying the intervention to adults aged 26-45 and adults aged 65 and

up.

5 CONCLUSIONS

This study demonstrates the potential of targeted vaccination interventions to shape vaccination norms to
influence vaccine uptake and reduce overall infections. Targeting older adults with our intervention to
correct perceived vaccination norms resulted in the highest vaccination uptake, likely due to the earlier
eligibility of older adults for vaccination and their higher baseline vaccination probability; that is, they are
more likely to spread the news that they did get vaccinated earlier in the model horizon. The timing of
vaccine availability relative to the infection peak also plays a crucial role in the effectiveness of vaccination
interventions.

This study is not without limitations. First, our model primarily examines correcting underestimates
of vaccination norms, not overestimates, and focuses on perceived rather than underlying social norms.
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Real-world interventions may thus need to be more multifaceted. Second, the heterogeneous nature of
the study population might make it difficult to assess the intervention’s true effects on infection. A more
homogeneous population would allow for clearer insights regarding its impact on vaccination uptake and
total infections. Third, the true initial vaccination norms in real-world populations are unknown, potentially
influencing baseline uptake and information response; future studies could explore their impact. Finally,
the model does not account for variants or reinfections, which could alter the effectiveness of targeting
younger age groups under different epidemiological conditions.
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