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ABSTRACT

The Unrelated Parallel Machine Scheduling Problem (UPMSP) with release dates, setups, and eligibil-
ity constraints presents a significant multi-objective challenge. Traditional methods struggle to balance
minimizing Total Weighted Tardiness (TWT) and Total Setup Time (TST). This paper proposes a Deep
Reinforcement Learning framework using Proximal Policy Optimization (PPO) and a Graph Neural Net-
work (GNN). The GNN effectively represents the complex state of jobs, machines, and setups, allowing
the PPO agent to learn a direct scheduling policy. Guided by a multi-objective reward function, the agent
simultaneously minimizes TWT and TST. Experimental results on benchmark instances demonstrate that
our PPO-GNN agent significantly outperforms a standard dispatching rule and a metaheuristic, achieving
a superior trade-off between both objectives. This provides a robust and scalable solution for complex
manufacturing scheduling.

1 INTRODUCTION

Advanced manufacturing environments operate under intense pressure to improve efficiency, reduce op-
erational costs, and maintain responsiveness to dynamic market demands (Davis et al. 2012). The
implementation of efficient production scheduling is crucial for achieving these goals. It involves finding
the best way to allocate constrained resources, such as machines and personnel, to competing tasks or jobs
over a specific timeframe. Optimal scheduling decisions directly impact key performance indicators (KPIs),
including production throughput, resource utilization, adherence to delivery deadlines, and overall system
productivity. Consequently, developing adaptive scheduling methodologies is important for maintaining
competitiveness in today’s globalized industrial landscape (Mourtzis 2022).

A fundamental class of scheduling problems encountered in various industrial settings is the Parallel
Machine Scheduling Problem (PMSP). In this context, a set of jobs must be processed on a set of available
machines. This paper focuses on a particularly challenging variant known as the Unrelated Parallel Machine
Scheduling Problem (UPMSP). In the UPMSP, the processing time required for a specific job depends not
only on the job itself but also distinctly on the machine assigned to process it. This scenario accurately reflects
real-world situations where machines, even if performing similar functions, may differ in age, capability,
or specialization. Such problems are prevalent in diverse sectors, including semiconductor manufacturing
(Bitar et al. 2016), textile production (Li et al. 2021), where heterogeneity among processing units is
common.

Real-world UPMSP applications are further complicated by several interacting constraints addressed
in this research. These include job-specific release dates, machine eligibility restrictions, and setup
times that depend on both the sequence of jobs and the specific machine. Handling these complexities
simultaneously significantly increases the difficulty of finding optimal or near-optimal schedules. In addition,
effective scheduling must often balance conflicting objectives, such as minimizing total weighted tardiness
(TWT) to meet deadlines and minimizing total setup time (TST) for operational efficiency. The inherent
conflict—where prioritizing one objective negatively impacts the other—makes finding high-performing
solutions challenging. Given the NP-hard nature of this multi-objective UPMSP (Fleszar and Hindi 2018),
traditional approaches face limitations in effectively managing this trade-off.
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In this paper, we propose a novel method based on Deep Reinforcement Learning (DRL) in order to
address the limitations of existing methods and tackle the complexities of the multi-objective UPMSP. DRL
agents learn decision-making policies through interaction with an environment, making them well-suited
for sequential decision problems like scheduling. We specifically use Graph Neural Networks (GNNs) to
handle the intricate structure and variable nature of the scheduling state. GNNs can effectively process
graph-based representations, capturing the relationships between jobs, machines, eligibility constraints,
and setup dependencies. Our framework utilizes a heterogeneous GNN representation designed to encode
the rich information inherent in the UPMSP state, including distinct node types for jobs, machines, and
potential setup configurations, connected by meaningful edge types. This GNN acts as a powerful feature
extractor, feeding state information to a DRL agent trained using the Proximal Policy Optimization (PPO)
algorithm. PPO is chosen for its stability and proven effectiveness in complex control tasks, enabling the
agent to learn a policy that directly selects which job to assign to which machine at each decision step.

The main contributions of this research are threefold. First, we propose and evaluate the application
of the PPO algorithm for learning a direct scheduling policy for the complex UPMSP variant, moving
beyond heuristic selection or simpler scheduling scenarios often addressed by DRL. Second, we design
and implement a heterogeneous GNN state representation tailored to the UPMSP, explicitly modeling jobs,
machines, setup states, and their complex interrelations to facilitate more effective learning. Third, we
develop and analyze an explicit multi-objective reward function within the PPO framework, specifically
designed to guide the agent in learning policies that effectively balance the conflicting objectives.

The remainder of this paper is organized as follows. Section 2 provides a review of relevant literature
on UPMSP, DRL in scheduling, and GNN applications. Section 3 formally defines the target UPMSP and
its objectives. Section 4 details the proposed PPO-GNN framework, including the MDP formulation, GNN
architecture, and reward function design. Section 5 describes the experimental setup, instance generation,
baseline methods, and evaluation metrics. Section 6 presents and discusses the computational results and
comparative analysis. Finally, Section 7 concludes the paper and outlines directions for future research.

2 RELATED WORK
2.1 Parallel Machine Scheduling Problem (PMSP)

The PMSP encompasses a broad category of scheduling challenges where multiple jobs need to be
processed using a set of available machines operating in parallel. Research in PMSP branches into several
classifications based on machine characteristics: identical machines (where processing times are job-
dependent only), uniform machines (where machines have different speeds but maintain relative processing
time proportions), and unrelated machines (where processing time depends arbitrarily on both the job and
the machine) (Mokotoff 2001). This work focuses on the UPMSP, which poses significant combinatorial
challenges due to the machine-dependent nature of processing times.

The complexity of UPMSP grows significantly when incorporating realistic industrial constraints. A
substantial body of literature addresses UPMSP variants that include sequence-dependent setup times,
where the time to prepare a machine depends on the previous job processed (Vallada and Ruiz 2011),
machine-dependent setup times inherent to the unrelated nature (Avalos-Rosales et al. 2015), distinct
release dates for jobs (Li et al. 2022), and machine eligibility restrictions limiting which machines can
process certain jobs (Afzalirad and Shafipour 2018). Common objectives studied include minimizing the
makespan (Cpax), total completion time (Y. C)), total tardiness (}_7;), and TWT (L w;T;) (Mokotoff 2001).
Recent research also increasingly considers setup time minimization as a critical objective due to its impact
on resource utilization and efficiency. This paper addresses the UPMSP with release dates, sequence- and
machine-dependent setup times, and machine eligibility, aiming to simultaneously minimize TWT and TST.

Due to the inherent NP-hard computational complexity of most UPMSP variants, heuristics and
dispatching rules are widely employed, particularly in dynamic environments requiring rapid decision-
making (Rabadi et al. 2006). These methods prioritize jobs waiting for processing based on specific rules,
such as Shortest Processing Time (SPT), Earliest Due Date (EDD), or Critical Ratio (CR). For more complex
scenarios involving setup times and tardiness objectives, composite rules like the Apparent Tardiness Cost
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(ATC) rule and its derivatives, such as Apparent Tardiness Cost with Setups (ATCS), have been developed
(Lee et al. 1997). Variations like Apparent Tardiness Cost with Setups and Ready Times (ATCSR) explicitly
incorporate release dates and setup times (Lin and Hsieh 2014). While computationally efficient, these
rules typically make greedy, myopic decisions based on local information. Their performance can degrade
significantly when faced with the intricate interactions present in UPMSP with sequence-dependent setups
and multiple objectives, often leading to suboptimal solutions (Rabadi et al. 2006).

In order to overcome the limitations of simple heuristics, various metaheuristic and exact approaches
have been proposed. Metaheuristics such as Genetic Algorithms (GA) (Vallada and Ruiz 2011), Tabu
Search (TS) (Lee et al. 2013), Simulated Annealing (SA) (Kim et al. 2022), or Ant Colony Optimization
(ACO) (Afzalirad and Rezaeian 2016) explore the solution space more broadly and can yield higher-quality
solutions compared to simple heuristics. However, they typically require considerable problem-specific
parameter tuning, can be computationally intensive, provide no guarantee of optimality, and their iterative
nature may limit their applicability in highly dynamic or real-time decision-making scenarios (Moser et al.
2022). Exact methods such as Mixed-Integer Programming (MIP) (Sara¢ and Tutumlu 2022), Constraint
Programming (CP) (Gedik et al. 2018), or specialized Dynamic Programming (DP) algorithms can guarantee
optimal solutions (Pfund et al. 2004). Unfortunately, due to the combinatorial complexity of the problem,
these methods suffer from the "curse of dimensionality". As a result, they are typically only practical to
compute for very small problem sizes, making them unsuitable for application at realistic industrial scales
(Pei et al. 2020). These limitations highlight the need for alternative approaches that can effectively handle
the scale and complexity of the target problem while learning to navigate the intricate trade-offs between
multiple objectives.

2.2 Deep Reinforcement Learning in Scheduling

Recently, DRL has become known as an effective technique for tackling complex sequential decision-
making problems, including combinatorial optimization problems such as scheduling (Mazyavkina et al.
2021). Unlike traditional optimization methods that often search through a vast solution space, DRL aims
to learn a policy—a mapping from the current system state to an optimal or near-optimal action—through
trial-and-error interactions with an environment (often a simulation model) (Soykan and Rabadi 2023). The
integration of deep neural networks allows DRL agents to handle high-dimensional state spaces and learn
complex patterns, making them suitable for capturing the dynamics of intricate scheduling environments
(Cunha et al. 2020).

DRL has been successfully applied to various classical scheduling problems. For the Job Shop
Scheduling Problem (JSSP), significant research has focused on learning dispatching policies (Soykan and
Rabadi 2024). Early work often involved using DRL to select from a predefined set of dispatching rules
(Zhangetal. 2020). More recent approaches utilize advanced state representations, such as disjunctive graphs
processed by GNNs, enabling agents to learn end-to-end policies that directly select the next operation
to schedule (Park et al. 2021). Similar advancements have been made for the Flow Shop Scheduling
Problem (FSPP), including permutation flow shops (Cho et al. 2022) and flexible flow shops (Kwon et al.
2021), often employing sequence-to-sequence models or GNNs to handle job dependencies and routing
decisions. Objectives commonly tackled include makespan minimization and tardiness reduction. These
studies demonstrate the potential of DRL to learn high-quality, adaptive scheduling strategies directly from
simulated experience.

PPO (Schulman et al. 2017) is a state-of-the-art policy gradient DRL algorithm known for its stability,
reliability, and strong practical performance across a wide range of challenging tasks, including continuous
control and combinatorial optimization problems. Compared to simpler policy gradient methods like
REINFORCE or actor-critic methods like A2C/A3C, PPO incorporates a clipping mechanism in the
objective function or an adaptive Kullback-Leibler (KL) penalty to constrain policy updates, preventing
excessively large changes that can destabilize training. This makes it attractive for scheduling problems
where the state-action space is large and finding a good policy requires careful exploration. Its balance
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between sample efficiency, ease of implementation, and robust performance motivates its selection as the
core learning algorithm in our proposed framework for the multi-objective UPMSP.

2.3 Graph Neural Networks in Combinatorial Optimization

GNNs have emerged as a highly effective deep learning architecture for combinatorial optimization problems,
many of which naturally lend themselves to graph representations where nodes signify entities and edges
capture relationships or dependencies (Huang et al. 2019). GNNs utilize message-passing mechanisms to
iteratively aggregate information from node neighborhoods, learning powerful embeddings that encode both
node features and the graph’s topology, making them adept at handling variable-sized inputs common in
combinatorial optimization (Chung et al. 2025). Their success, often in conjunction with DRL, is evident
across various combinatorial optimization domains, including routing problems, where GNN encoders
generate representations for sequence-constructing decoders (Kool, Wouter and Van Hoof, Herke and
Welling, Max 2018), and other fundamental problems like SAT and MaxCut (Huang et al. 2019). Given
that scheduling problems can frequently be modeled as graphs (e.g., disjunctive graphs for JSSP), GNNs
are increasingly central to modern DRL-based scheduling approaches for JSSP (Zhang et al. 2020) and
FSPP (Kwon et al. 2021). For PMSP, Cho et al. specifically utilized a GNN to represent the state
(including machine-job pair nodes and machine nodes) for solving the UPMSP with setups, release dates,
and eligibility, focusing on minimizing TWT using the REINFORCE algorithm (Cho et al. ). Norman et
al. also employed a GNN in a scheduling context, but used it primarily as a feature extractor to inform
a DRL agent that tuned parameters within a predefined dispatching rule, rather than performing direct
scheduling (Norman et al. 2024). These works underscore the GNN’s ability to effectively encode the
complex relational information present in scheduling environments.

While previous research has demonstrated the potential of DRL and GNNs for various scheduling
problems, several gaps remain, particularly concerning the complex, multi-objective UPMSP variant ad-
dressed here. Existing DRL approaches for UPMSP often focus on single objectives like TWT (Cho
et al. ), select from predefined heuristics rather than learning direct policies (Nam et al. 2024), or tune
parameters of existing rules (Norman et al. 2024). Also, while GNNs have been used, the design of graph
representations tailored to capture the information needed to effectively balance TWT minimization against
TST minimization in UPMSP requires further investigation.

This paper endeavors to bridge these gaps by introducing a novel framework that uniquely combines
several elements: (i) we employ the robust PPO algorithm to learn a direct scheduling policy for the UPMSP,
offering potential stability advantages over simpler policy gradient methods used in some prior work, (ii) we
tackle the multi-objective nature of the problem explicitly, designing a reward function and learning process
aimed at simultaneously minimizing both TWT and TST, (iii) we introduce an enhanced heterogeneous
GNN structure specifically designed for this multi-objective UPMSP variant, incorporating distinct nodes
for jobs, machines, and potential setups, along with carefully defined edge types to capture eligibility,
processing times, and setup relationships (including transitions). By integrating these components, our
work seeks to advance the state-of-the-art in applying DRL to solve large-scale, complex, multi-objective
scheduling problems encountered in real-world manufacturing.

3 PROBLEM FORMULATION

This section formally defines the UPMSP variant addressed in this paper, including its parameters, decision
variables, constraints, and objectives.

Formal Definition =~ We consider a set of independent jobs J = {J;,Ja,...,J,} that need to be processed
on a set of unrelated parallel machines M = {M,,M,,...,M,,}. The problem parameters are defined as
follows:

* pji: The processing time of job J; € J when processed on machine M € M. The machines are
unrelated, meaning pj; can vary arbitrarily for different machines k and jobs j.
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r;: The release date (or ready time) of job J; € J, representing the earliest time at which processing
of job J; can begin.

dj: The due date of job J; € J, representing the target completion time for the job.

w;: The weight or importance of job J; € J, used in calculating the weighted tardiness objective.
sijk: The sequence-dependent and machine-dependent setup time required on machine My € M to
switch from processing job J; € JU{Jy} to processing job J; € J. Here, Jy represents the initial
idle state of the machine, and s, denotes the initial setup time if job J; is the first job processed
on machine M.

M; C M: The set of eligible machines on which job J; € J can be processed. If My ¢ M;, job J;
cannot be assigned to machine M;.

Decision Variables The primary decisions involved in solving this UPMSP instance are (These
decisions implicitly determine the start time (S;), completion time (Cj), and ultimately the overall
schedule performance based on the defined objectives. Let C; denote the completion time of job J; on the
machine it is assigned to.):

Job Assignment: Determining which eligible machine M; € M; will process each job J; € J.
Job Sequencing: Determining the order (sequence) in which the jobs assigned to each specific
machine M, € M will be processed.

Constraints The scheduling decisions must adhere to the following constraints:

Release Date: Processing for job J; on its assigned machine M cannot start before its release date:
S Jjk >r Iz

Machine Eligibility: Each job J; must be assigned to a machine M from its eligible set: My € M.
Non-preemption: Once the processing of a job starts on a machine, it cannot be interrupted until
it is completed.

Machine Capacity: Each machine M can process at most one job at any given time. If job J;
immediately follows job J; in the sequence on machine M, then the start time of J; must be greater
than or equal to the completion time of J; plus the required setup time: S > Cix + s;jx.

Objective Functions The goal is to find a feasible schedule that simultaneously optimizes two
conflicting objectives:

Minimize Total Weighted Tardiness (TWT) Tardiness for job J; is defined as 7; = max(0,C; —d;).
The objective is to minimize the sum of weighted tardiness over all jobs:

n
w;Tj = ijmaX(O,Cj—dj) (1)
1 j=1

Minimize TWT =

n

J

Minimize Total Setup Time (TST) Let o be the sequence of jobs assigned to machine My, represented
as (Jk(l)yjk(Z)a . ,Jk(nk)), where ny, is the number of jobs assigned to Mj. The TST is the sum of
all setup times incurred across all machines:

m nkfl
Minimize TST = Z <s0k(1)k + Z Sk(l)k(l+1)k> @)
k=1 I=1

where soi(1)x is the setup time for the first job Ji(1) on machine M.

4 METHODOLOGY: PPO-GNN FOR MULTI-OBJECTIVE UPMSP

This section details the proposed DRL framework for solving the multi-objective UPMSP. We use PPO
combined with a tailored GNN architecture.

2519



Soykan, Mondesire, Rabadi, and Bochenek

The core of our approach is an interaction loop between a DRL agent and a scheduling environment,
implemented as a discrete-event simulator. At specific decision points (e.g., when a machine becomes idle),
the environment provides the current state s, to the agent. The agent, using its learned policy 7, selects
an action a, (assigning a job to a machine or waiting). The environment executes this action, advancing
the simulation time and determining the next state s, and an immediate reward r,. The agent collects
these experiences (s;,a;,77,5:+1) to update its policy and value function parameters via the PPO algorithm,
aiming to maximize the cumulative discounted reward over time. Figure 1 illustrates this interaction loop.

Action a, (job assignment)
]
Agent Environment
(GNN + PPO Policy 7) Reward, (UPMSP Simulator)

f |

State s, (Graph G, +
Global Features)

Figure 1: Overview of the DRL framework for UPMSP scheduling.

4.1 Markov Decision Process (MDP) Formulation

We formulate the UPMSP as a Markov Decision Process (MDP), defined by the tuple (., <7, &, %,7),
where .7 is the state space, .27 is the action space, & is the state transition probability function (implicitly
defined by the simulator), % is the reward function, and 7 is the discount factor.

State Representation (s; € .)  Capturing the complex state of the UPMSP environment effectively
is important for the DRL agent. We propose a composite state representation s; at decision time step ¢,
consisting of a global feature vector and a heterogeneous graph:

Global Feature Vector: Provides a summary of the overall system status, including features: (i) current
number of jobs waiting in the queue (WIP). (ii) number of jobs expected to arrive within a near-future time
horizon. (iii) aggregate performance metrics (e.g., number of currently tardy jobs, average flow time of
completed jobs, TST incurred so far). (iv) overall machine status (e.g., number of idle machines, number of
machines under setup, number of machines undergoing maintenance if applicable). (v) current simulation
time and time elapsed.

Heterogeneous Graph (%;): Represents the detailed relationships between entities in the scheduling
environment. It contains different types of nodes and edges:

Node Types & Features: (i) Job Nodes: One node for each job J; currently waiting or arriving soon.
Features include its weight (w ), remaining processing time estimate (average p j; over eligible machines, or
specific p j if assignment is imminent), due date (d;), release date (r;), and potentially features indicating its
setup requirements. (ii) Machine Nodes: One node for each machine M. Features include its current status
(idle, busy, setup, maintenance), time until available, identifier of the last job processed (J;), current setup
state (e.g., identifier corresponding to J;), and time elapsed in the current state/setup. (iii) Setup Nodes:
Nodes representing distinct and relevant setup configurations (e.g., characterized by job family, required
tooling, or energy level). Features identify the setup type. These nodes allow summarizing information
about jobs requiring a specific setup, even if no machine currently has it.

Edge Types & Features: Edges represent relationships and potential actions. Features encode relevant
costs and properties: (i) Job-Machine Edges: Connect job node J; to machine node M if My € M;. Features
include processing time pj, estimated setup time sy j; (where Jy is the last job on M), eligibility flag
(binary). (ii) Machine-Setup Edges: Connect machine node M; to the setup node representing its current
setup state. Features indicate time spent in this setup. (iii) Job-Setup Edges: Connect job node J; to
the setup node representing the setup required before processing J;. Features indicate job priority (w;).
(iv) Setup-Machine Edges: Connect setup node S to machine node M;. Features represent the estimated
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time/cost to transition machine M} from its current setup to setup S, indicating ’transition ease’ (e.g., small
setup time if only a minor change is needed).

Action Space (a; € /) The action space consists of potential scheduling decisions. The primary
action is the selection of a feasible job-machine pair (J;,My) to be scheduled next. The agent’s policy
7(a;|s;) provides a probability distribution over the feasible actions.

* A pair (Jj,My) is feasible if job J; is available (i.e., r; is met or will be met by the time the machine
is ready), machine M; is eligible for J; (M; € M), and My is currently idle or will become idle.

* The agent’s output (logits from the policy network) corresponds to all possible job-machine pairs.
An action masking mechanism is applied to ensure only feasible actions have non-zero selection
probability. Infeasible actions (e.g., assigning to an ineligible machine, assigning a job that is not
released) are masked out (given zero or highly negative log-probability).

Reward Function (r, = % (s;,a,,s.+1)) Designing the reward function r, is critical for steering the
DRL agent to effectively balance the conflicting objectives of minimizing TWT and TST. We explored several
structures to achieve this balance, including dense, event-based rewards calculated after each assignment
a; = (J;,My) (e.g., r; = —0o.-ATWT; — B -4 jx), hybrid approaches combining immediate penalties for setup
time with sparser rewards reflecting overall episode performance on both TWT and TST, and constraint-
focused designs incorporating penalties for auxiliary KPI violations. The specific formulation and the
relative weighting of components (via factors like a, 8) significantly influence the learned policy’s trade-off
behavior and require careful empirical tuning to achieve the desired multi-objective performance.

State Transition (& (s;+1|s;,a;)) The state transition dynamics are implicitly defined by the discrete-
event simulation environment. Given the current state s, and the agent’s chosen action «,, the simulator
advances time, updates machine statuses, calculates job completion times (including processing and setup),
handles new job arrivals based on their release dates, and determines the resulting next state s,y;. The
DRL agent interacts with this simulator without needing an explicit model of the transition probabilities.

5 EXPERIMENTAL SETUP

This section details the experimental methodology employed to evaluate the performance of our PPO-GNN
framework. We describe the generation of problem instances, the baseline methods selected for comparison,
the configuration of the DRL agent’s training process, and the metrics used for performance evaluation.

Instance Generation We generated a diverse set of UPMSP instances following methodologies
adapted from established literature, particularly (Cho et al. ). Problem instances were constructed by
systematically varying parameters known to influence scheduling complexity. Specifically, we considered
job set sizes n € {20,50,100} and machine set sizes m € {5,10,15}. Processing times p i for each job-
machine pair were independently drawn from a discrete uniform distribution DU(1,100), guaranteeing
machine unrelatedness. An overall average processing time p was calculated across all potential job-
machine pairings for reference in generating other parameters. Job release dates r; were sampled from
DU(0,A - p), where the arrival intensity factor was set to A = 0.5. Due dates d; were determined using
standard tightness (7) and range (R) parameters, relative to the job’s release date and its average processing
time across eligible machines (p;), according to d; ~ DU(rj+ p;(1 —©—R/2),rj+ p;j(1 —T+R/2)).
We utilized combinations of 7 € {0.2,0.4,0.6} and R € {0.2,0.6,1.0}. Job importance weights w; were
sampled from DU (1,10). Sequence-dependent and machine-dependent setup times s;;, were drawn from
DU (0, - p) using setup ratios 3 € {0.1,0.25}, applied randomly without imposing specific job family
structures. Machine eligibility was controlled via a density parameter § € {0.75,1.0}; each job J; was
randomly assigned to [8 - m| machines from M, ensuring J; was eligible for at least one machine. For each
distinct combination of parameters (n,m,T,R, 3,0), 50 unique instances were generated to ensure robust
statistical analysis.

Baseline Methods In order to assess the performance of our PPO-GNN approach, we compared it
against representative algorithms from different scheduling methodology classes:
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(i) Dispatching Rule We implemented a well-regarded composite dispatching rule designed for parallel
machine environments with setups and due dates: the ATCSR_Rm rule (Lin and Hsieh 2014). This adaptation
of the ATC rule explicitly accounts for setup times and release dates and serves as a strong heuristic baseline
due to its demonstrated performance in related UPMSP contexts.

(ii) Metaheuristic Algorithm We implemented a Genetic Algorithm (GA) tailored for the multi-
objective UPMSP, drawing inspiration from approaches like (Vallada and Ruiz 2011). The GA employed a
chromosome representation encoding job sequences for each machine and utilized standard genetic operators
(selection, crossover, mutation). Its fitness function aimed to minimize a weighted sum of normalized
objectives: o - TWTopm + (1 — @) - TSTyorm. Normalization was performed by dividing the objective
values by those obtained from a fast run of the ATCSR_Rm heuristic (TW T,y = TWT /TW Tprcsr,
TSTyorm = TST /T STyrcsg)- We used a representative weight @ = 0.5 to balance the objectives. The GA
was executed with a fixed computational time limit per instance, set to be comparable to the inference time
required by the trained DRL agent during evaluation, ensuring a fair comparison of solution quality within
similar time constraints. GA parameters (population size, mutation rate, etc.) were tuned via preliminary
experiments.

Training Configuration The PPO agent, including the GNN feature extractor and MLP policy/value
heads, was implemented using PyTorch (Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer,
Adam and Bradbury, James and Chanan, Gregory and Killeen, Trevor and Lin, Zeming and Gimelshein,
Natalia and Antiga, Luca and others 2019) and the Stable Baselines3 library (Raffin et al. 2021). The GNN
architecture comprised 4 layers of the GATv2 message-passing scheme (Brody, Alon, and Yahav 2021)
with a hidden dimension of 128 and ReLU activation functions. The actor and critic networks shared the
GNN encoder and subsequently utilized separate MLPs, each having 2 hidden layers with 256 neurons and
ReLU activations. Key PPO hyperparameters were refined through preliminary tuning: the learning rate
1 was initialized at 1 x 10~* with linear decay over training, the discount factor y = 0.99, Generalized
Advantage Estimation lambda Agsg = 0.95, PPO clipping parameter € = 0.2, number of optimization
epochs per data collection phase set to 10, and a mini-batch size of 64. Training was conducted for 10°
total environment steps, accelerated using multiple parallel actors interacting with simulator instances. All
training and evaluation experiments were executed on a system equipped with an Intel Core i9 CPU and
an NVIDIA RTX 3090 GPU.

Evaluation Metrics The performance of the trained PPO-GNN agent and all baseline methods was
evaluated on a dedicated set of test instances, kept separate from those used during training or hyperparameter
tuning. The primary evaluation metrics directly reflect the multi-objective nature of the problem: (i) Average
TWT: The mean TWT value, as defined in Eq. 1, (ii) Average TST: The mean TST, as defined in Eq. 2.
Both are calculated across all instances in the test set for each evaluated method. As a secondary metric
reflecting practical usability, we report the Average Computational Time (inference/run time) required by
each algorithm to produce a schedule for a single test instance during the evaluation phase. We employ
Pareto Front visualizations, plotting the (Avg TST, Avg TWT) pairs achieved by the different methods to
facilitate the analysis of trade-offs between the primary objectives. Statistical significance of the performance
differences between our proposed PPO-GNN method and the baselines was assessed using paired t-tests.

6 RESULTS AND DISCUSSION

This section presents and discusses the computational results obtained by evaluating the proposed PPO-GNN
agent against the baseline methods (ATCSR_Rm and GA) across varying problem sizes. The performance
comparison focuses on the primary objectives of minimizing Average TWT (Avg TWT) and Average TST
(Avg TST), as well as the evaluation-phase computational efficiency. All results are summarized in Table 1
and visualized in Figure 2.

The results show the superior performance of the proposed PPO-GNN approach in optimizing both
primary objectives. As shown in the top row of Figure 2 and detailed in Table 1, the PPO-GNN agent
consistently achieved the lowest Avg TWT and the lowest Avg TST across all tested problem sizes (n=20/m=5,
n=50/m=10, n=100/m=15). Compared to the ATCSR_Rm dispatching rule, PPO-GNN yielded substantial
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reductions in both metrics. While the GA baseline improved upon ATCSR_Rm, it was consistently
outperformed by PPO-GNN. For instance, on the largest instances (n=100, m=15), PPO-GNN achieved an
Avg TWT of 420.0 compared to 475.0 for GA and 610.0 for ATCSR_Rm, while simultaneously achieving
an Avg TST of 225.0 compared to 255.0 for GA and 290.0 for ATCSR_Rm. The bolded values in Table 1
highlight the best performance achieved for each metric and size, corresponding to the PPO-GNN method.
Statistical significance tests (paired t-tests, multiple runs per instance) was performed to confirm these
observed differences (p < 0.01).
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Figure 2: Comparison of scheduling methods across different problem sizes (n jobs, m machines).

Table 1: Performance Comparison of PPO-GNN against Baselines

Size Method Avg TWT Avg TST Avg Comp Time (s)
n=20, m=5 ATCSR_Rm 150.0 75.0 61.29
n=20, m=5 GA 120.0 70.0 0.10
n=20, m=5 PPO-GNN 110.0 65.0 0.52
n=50, m=10  ATCSR_Rm 355.0 190.0 59.17
n=50, m=10 GA 300.0 165.0 0.11
n=50, m=10  PPO-GNN 260.0 140.0 0.92
n=100, m=15 ATCSR_Rm 610.0 290.0 61.29
n=100, m=15 GA 475.0 255.0 0.12
n=100, m=15 PPO-GNN 420.0 225.0 1.57
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The evaluation-phase computational time, presented in Table 1 and visualized in the bottom-left panel
of Figure 2 (note the logarithmic scale on the Y-axis required to effectively display the range), reveals
significant differences in efficiency. As expected, the simple ATCSR_Rm heuristic is the fastest, executing
almost instantaneously. The proposed PPO-GNN agent, while requiring neural network computations,
also demonstrates high efficiency with inference times remaining under 1.6 seconds even for the largest
problems. In contrast, the GA method requires significantly more time (around 60 seconds) during evaluation
to perform its iterative search process. This highlights a crucial practical advantage of the trained DRL
agent: its ability to generate high-quality scheduling decisions rapidly upon deployment, making it suitable
for dynamic environments where fast responses are often necessary.

The performance of the GA is highly dependent on its parameter settings and the computational time
allowed for its search. The GA implemented here was tuned through preliminary experiments to serve
as a representative and strong baseline. While further extensive tuning or a significantly longer run time
might yield improved results for the GA, this would also underscore a key practical advantage of our
DRL approach. The PPO-GNN agent requires a one-time, offline training cost, but its inference during
evaluation is exceptionally fast. In contrast, the GA requires a significant computational budget for every
new problem instance it solves. Regarding the performance across individual instances, our results in
Table 1 and Figure 2 present the average performance, where the PPO-GNN agent is consistently superior.
While the performance gap may vary on an instance-by-instance basis, the PPO-GNN method demonstrated
strictly better performance on average across all tested problem sizes and configurations. This indicates
a robust and generalizable policy rather than a trade-off where one method excels on some instances and
not others.

The multi-objective trade-off between minimizing Avg TST and Avg TWT, averaged across all problem
sizes, is visualized in the bottom-right panel of Figure 2. The axes are oriented such that the ideal
performance lies in the bottom-left corner (minimum TST and minimum TWT). The plot shows that the
point representing the PPO-GNN agent dominates the points for both GA and ATCSR_Rm. This means that,
on average, PPO-GNN achieves strictly better performance on both objectives simultaneously compared
to the baselines. It doesn’t merely represent a different trade-off point on the Pareto front; rather, it pushes
the achieved performance envelope closer to the ideal objective vector. This strong result suggests that the
PPO-GNN agent effectively learns complex scheduling strategies that inherently reduce both setup times
and tardiness concurrently, likely by making more globally informed decisions facilitated by the GNN’s
structural awareness.

As expected, both Avg TWT and Avg TST tend to increase for all methods as the problem size (number
of jobs 'n’ and machines 'm’) grows, reflecting the increased complexity and load. However, the relative
advantage of the PPO-GNN agent appears consistent or even slightly increasing across the tested sizes.
This suggests that the learned policy generalizes reasonably well to larger problems within the scope of
the training distribution.

The performance of the PPO-GNN framework can be attributed to several factors inherent in its design.
The GNN’s ability to process the complex graph representation allows it to capture the intricate dependencies
between jobs, machines, eligibility, and potential setups more effectively than simpler rule-based logic
(ATCSR_Rm) or population encodings (GA). The PPO algorithm effectively utilizes these rich features to
learn a sophisticated policy capable of navigating the complex state space and balancing the conflicting
objectives, guided by the carefully designed multi-objective reward signal. Unlike the myopic nature of
dispatching rules or the potentially time-consuming search of metaheuristics, the learned DRL policy offers
a powerful blend of high-quality decision-making and fast execution speed during deployment.

7 CONCLUSION AND FUTURE WORK

In this paper, we addressed the multi-objective UPMSP incorporating release dates, sequence- and machine-
dependent setup times, and machine eligibility constraints. Recognizing the limitations of traditional
heuristics and the computational demands of exact methods and metaheuristics, we proposed a novel DRL
framework. Our approach leverages PPO combined with an enhanced heterogeneous GNN designed to
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effectively capture the intricate state information of the scheduling environment, including job, machine,
and setup characteristics. We developed a multi-objective reward function explicitly aimed at guiding
the agent to simultaneously minimize TWT and TST. Simulations on a range of generated benchmark
instances demonstrated the superiority of the proposed PPO-GNN agent. It outperformed both a dispatching
rule (ATCSR_Rm) and a GA baseline, achieving lower Avg TWT and Avg TST across various problem
scales, thereby showcasing its ability to effectively learn high-quality policies for complex, multi-objective
scheduling scenarios. The primary contributions of this work include: (i) the successful application of
PPO for learning a direct scheduling policy in the challenging multi-objective UPMSP context; (ii) the
design of a heterogeneous GNN state representation tailored for capturing UPMSP complexities relevant
to balancing tardiness and setup objectives; and (iii) the demonstration that a DRL agent can effectively
learn to manage conflicting objectives through an appropriately designed reward structure.
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