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ABSTRACT

This paper introduces a novel method for simulating complex system behaviors using a specific geometric
space and force fields within that space. The approach considers the system’s performance as a physical
trajectory defined by its performance indicators and environmental attributes, which can be deviated by
force fields representing risks or opportunities within the system. The primary contribution of this work
is the proposal of a method that uses multiple trajectories of a defined system to identify force fields that
accurately represent the system.

1 INTRODUCTION

Today, complex systems, whether biological, technical, organizational or social, pose a major challenge
in terms of modeling and understanding. Their dynamics emerge from nonlinear interactions between a
multitude of variables, often in noncontinuous evolution, and in an uncertain environment. This complexity
makes it difficult to develop robust, generalizable and interpretable predictive models.

In this context, an emerging approach proposes to renew our way of conceiving system dynamics: the
Physics of Decision (POD). Inspired by theoretical physics, POD proposes to model systemic behavior as
trajectories in a multidimensional space, influenced by force fields representing external or internal factors
(such as risks and opportunities) (Benaben et al. 2019). These fields are defined as potential gradients and
act as attractors or repellents on the system’s trajectory. The trajectory of our system depends on its position
in the a multidimensional space (which dimensions typically are Key Performance Indicators (KPIs) of the
system, characteristics of the system’s environment and attributes of the system), and a perturbation of the
system can be seen as a forced displacement of our system in this multidimensional space, resulting in a
different trajectory. Risks and opportunities can be seen as physical forces pushing our system towards or
away from its objectives in its space.

The idea behind POD is to help decision-makers perceive the consequences of risks and opportuni-
ties on the system’s trajectory. One of the strengths of POD lies in its ability to link descriptive and
predictive approaches to performance: on the one hand, it enables us to track and characterize system
trajectories (Bellepeau et al. 2024), and on the other, it opens the way to an understanding of structural
influences that enable us to anticipate the consequences of risks or opportunities.

The paper is structured as follows. Section 2 focuses on the current research for modeling complex
system using several approaches (simulation based, data-driven...) and the POD fundamentals. Section 3
first introduces the POD framework, then tunes the sparse identification of nonlinear dynamics (SINDy)
approach to that and presents the proposition for finding the force fields. Section 4 provides SIR model to
present the work’s significance and the validation of the model. Section 5 proposes a discussion and the
perspectives of the future works.
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2 LITERATURE REVIEW

2.1 Modeling Complex System

Modeling complex systems poses substantial challenges due to their high-dimensional, nonlinear, and
frequently stochastic nature. Various established methodologies have been developed to tackle these
challenges, each offering a balance between flexibility, interpretability anc computational cost.
Simulation-based approaches, such as discrete-event simulation (DES) and system dynamics (SD), are
widely used to investigate emergent phenomena and dynamic interactions without requiring closed-form
analytical models (Ben Rabia and Belladaoui 2022). SD, in particular, enables macro-level modeling via
feedback loops and stock-and-flow structures, making it well-suited for strategic planning (Forrester 1987).
Recent works have extended SD to model cascading disruptions in supply chains (Olivares-Aguila and
El Maraghy 2019). However, these methods often suffer from high computational costs and depend heavily
on expert-driven assumptions to define the model structure, which can hinder its scalability and adaptability
in highly complex, data-rich systems.

Machine learning models, especially deep neural networks, offer powerful tools for capturing complex
nonlinear relationships from high-dimensional data (Abdullahi et al. 2025). Nevertheless their "black-box"
nature raises concerns around transparency and interpretability (Lipton 2018). This lack of transparency
can hinder trust and acceptance among stakeholders, particularly in fields where understanding the rationale
behind decisions is crucial, thereby constraining their applicability to systems necessitating a physical
comprehension (Linka et al. 2022).

Physics-Informed Neural Networks (PINNs) represent a flexible framework that facilitates both data-
driven predictions and the identification of governing equations within intricate systems. By incorporating
physical laws into the learning process, PINNs ensure that the model adheres to known system dynamics
(Li 2025; Ganga and Uddin 2024). While this method is effective for systems where the physical laws
are completely understood, it encounters limitations when dealing with systems whose dynamics are only
partially known or when modeling novel phenomena. An alternative application of PINNs focuses on
uncovering the underlying equations governing the system. By employing symbolic regression methods in
conjunction with neural network architectures, it becomes possible to discern the simplest mathematical
expressions that accurately describe the observed dynamics (Cranmer et al. 2020). Despite its potential,
symbolic regression can be computationally demanding and susceptible to noise, necessitating meticulous
model tuning.

Sparse Identification of Nonlinear Dynamics (SINDy) seeks to identify the governing equations of
dynamical systems directly from data. Proposed by Brunton et al (2016) (Brunton et al. 2016), SINDy
utilizes sparse regression techniques to discover a parsimonious model that captures the dynamics of the
system. By emphasizing sparsity, SINDy effectively identifies the most relevant terms in a library of
candidate functions, allowing for the extraction of interpretable models from high-dimensional data. The
strength of SINDy lies in its ability to bridge the gap between data-driven and physics-based modeling.
By providing interpretable models that retain the essential features of the underlying dynamics, SINDy has
been successfully applied to various applications, including chaotic systems demonstrating its versatility
and effectiveness (Rudy et al. 2017).

2.2 Background of POD framework

In today’s increasing dynamic and uncertain global environments, instability is becoming a structural
feature of decision-making environments (Benaben et al. 2022). Within this context, uncertainties are
conceptualized as potentialities, classified as risks when leading to adverse outcomes, and as opportunities
when associated with beneficial effects (Benaben et al. 2022). This raises the question: could Newtonian
physics provide a conceptual foundation to enhance management science by revealing the underlying
dynamics governing organizational behavior? POD framework responds to this challenge by interpreting
decision-making dynamics as physical forces acting upon an organization’s trajectory in a multidimensional
space (Moradhkani and Benaben 2024; Moradkhani and Benaben 2022).
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The innovative Decision Support System (DSS) proposed by POD employs the principles of physics
to address these quantifiable potentialities that emerge from incomplete information, knowledge gaps, and
experimental data. The fundamental elements of the POD framework following the three crucial phases of
decisions as Simon (1960) described them :

• Intelligence : Understand system performance (KPIs), internal parameters and context (Bellepeau
et al. 2024).

• Design : Analyze vulnerabilities and dynamics using tools like neural networks and clustering.
• Choice : Select optimal actions through heuristic optimization to steer the system effectively.

The proposed methodology has been integrated within the POD framework, which has been investigated
across various domains. These include crisis management scenarios such as the COVID-19 pandemic
(Moradkhani and Benaben 2022) and its impact on air pollution (Bellepeau et al. 2022). Additionally, it
has been applied in operational management contexts such as road traffic management (Moradkhani et al.
2022) and polling place management (Moradkhani et al. 2020). Moreover, the methodology has been
utilized in efficiency management scenarios, specifically project management (Le Duff et al. 2022).

This article is part of the “Design” section of the POD framework. In fact, the aim of this article is to
analyze the trajectories of a complex system in order to find potentials that characterize a multidimensional
space (which dimensions typically are KPIs of the system, characteristics of the system’s environment and
attributes of the system). To effectively model the system dynamics within the POD framework, it is crucial
to derive explicit, interpretable equations that govern system behavior.

3 THEORETICAL FRAMEWORK

3.1 Formal description of the POD framework

3.1.1 Foreword, essential definitions, and notations

The POD framework conceptualizes a system as an object evolving along a trajectory (Figure 1) within
a multidimensional space called the Extended Characterization Space, composed of quantitative KPIs,
system attributes, and environmental characteristics. A KPI reflects system performance over time; an
attribute describes internal properties of the system; and a characteristic pertains to contextual variables
from the system’s environment.

Figure 1: Representation of the POD ap-
proach

Figure 2: System trajectory in performance
space

The POD approach adheres to a force-based vision for evaluating system performance. In this framework,
a system is conceptualized as an object, with its trajectory represented within the extended characterization
space. This trajectory may deviate due to internal or contextual disruptions, interpreted as risks and
opportunities, which are analogous to physical forces acting upon the object (Figure 2).
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3.1.2 Notion of force field in the POD framework

System characterization and identification are essential challenges in systems theory. The mathematical
representation of a system lies at the heart of the characterization challenge. The method of representing
time-dependent systems by differential equations is well established in systems theory and applies to a
fairly large class of system, for example the differential equation:

dX
dt

= φ(X)

Our system evolves in a multidimensional space and is influenced by force fields that have a position in
this space. Figure 2 shows an example of any trajectory influenced by 3 fields in the extended characterization
space.

We define a force field with the following characteristics:

• Force field original position:
{

X1,m, X2,m, . . . , Xn,m
}

• Force field laws of physics: Fm→sys
(
r
)

• Force field intensity: Fm→sys
(
r
)
= αm Fm→sys

(
r
)

with m the number of fields, n the number of dimensions and r an Euclidean distance between the
force field and the system.

3.2 Detailled presentation of SINDy-POD

3.2.1 Presentation of the Sparse Identification of Nonlinear Dynamics

SINDy (Sparse Identification of Nonlinear Dynamics) is a data-driven method for discovering the underlying
differential equations of a system directly from time-series data. It operates in three main steps:

(a) Library construction — A set of candidate functions (e.g, polynomials, delays) is assembled into
a feature matrix Θ(X)

(b) Sparse regression — Each state variable’s derivative ẋi is fitted as a sparse combination of these
features using techniques like STLS (Brunton et al. 2016), LASSO (Tibshirani 1996), or modern
optimizers such as ADAM (Siva Viknesh and Younes Tatari and Amirhossein Arzani 2025), keeping
only the most relevant terms.

(c) Model identification — The resulting sparse coefficients define an explicit, interpretable model,
which can be simulated for validation.

SINDy is valued for its transparency, efficiency, and extensibility. By capturing only the dominant
mechanisms, it yields compact models that are physically meaningful and computationally lightweight,
making it a powerful tool for system discovery and analysis.

3.2.2 Presentation of SINDy-POD

The SINDy-POD method extends classical SINDy by modifying the library of candidate functions to rely
on distance-based potentials. Instead of a polynomial library, the candidate functions are based on inverse
distances to reference points in the extended characterization space. This reflects an experimental choice
aimed at preserving physical consistency.

Given a trajectory X(t), we define a set of m reference points yi ∈Rn with n the number of dimensions.
The library is constructed as:

Θ(X) =

{
1

∥X−Yi∥2 + ε

}
where ε is a small regularization term.
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The predicted dynamics are:
Ẋ = Θ(X) ·Ξ (1)

where Ξ contains the learned intensities associated with each potential field.
This formulation captures the influence of "attractive" or "repulsive" zones in the extended charac-

terization space, enabling a physical interpretation aligned with the POD framework. The fields may be
attractive in one dimension and repulsive in another.

The training involves minimizing the loss:

L =
1
|X |∑t

|Ẋpred(t)−
d
dt

X(t)|2 (2)

with reference points yi, and coefficients Ξ.

Algorithm 1 Learning Force Fields with SINDy-POD (Distance–Based Conditional SINDy)
Input: trajectories (X(t), Ẋ(t)); dimension n; number of reference points m; number of training epochs N;

threshold τ; interval k; patience P; learning rate η

Output: coefficients Ξ and reference points yi defining the field Ẋ = f (X)

Initialization sample yi ∼N (0,1)⊂ Rn for i = 1, . . . ,m Ξ← 0m×d
for e← 1 to N do

foreach mini-batch (X , Ẋ) do
Θ(X)←

[
1/(∥X− y1∥2 + ε), . . . , 1/(∥X− ym∥2 + ε)

]
Ẋpred←Θ(X)Ξ

L ← 1
|X |∑

∥Ẋpred− Ẋ∥2

(yi,Ξ)← (yi,Ξ)−η ∇L // gradient descent

end
if e mod k = 0 then

Ξ|Ξ|<τ ← 0 // sequential thresholding

end
compute validation loss Lval
if no improvement for P epochs then

break // early stopping
end

end
return Ξ, y1, . . . ,ym and f (X) = Θ(X)Ξ

3.3 Description of the proposition

The objective of this study is to discover the force fields governing system behavior within the POD
framework. To achieve this, we propose a three-step methodology.
First, we collect a diverse set of trajectories from the system of interest representing a broad range of
differents scenarios.
Second, we apply the SINDy-POD to this trajectory dataset. By leveraging distance-based functions within
the extended characterization space, the method learns both the location and intensity of the underlying
force fields. These force fields represent the key influences that shape the system’s evolution over time.
Finally, we visualize and analyze the resulting force fields and predicted trajectories to interpret the
physical behavior of the system. This step allows us to identify regions of attraction or repulsion in the
multidimensional space and to evalute the model’s ability to generalize across different initial conditions
and parameter configurations.
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4 EXPERIMENTAL RESULTS AND VALIDATION

4.1 Use Case: SIR Model for Epidemic Dynamics

To demonstrate the accuracy of the model we applied SINDy to a well-known nonlinear dynamical system,
the SIR epidemic model (Kermack and McKendrick 1927).

Ṡ =−α SI, İ = α SI−β I, Ṙ = β I

where S, I,R ∈ [0,1] denote the fractions of susceptible, infectious and recovered individuals, α is the
transmission rate (probability to be infected) and β the recovery rate (inverse of disease duration). Based
on the previous section, we can consider S, I, R as KPIs of the system, α as a characteristic of the system
and β as an attribute of the system. Because the true right–hand side is explicitly known, the SIR system
provides an ideal test-bed for assessing the accuracy and robustness of sparse identification.

Synthetic data set. We generated 100 independent trajectories of the SIR model by randomly
sampling the parameters within the following ranges: the transmission rate α ∈ [0.1, 0.6], capturing a wide
spectrum of infectious diseases, and the recovery rate β ∈ [0.1, 0.3], corresponding to disease durations
ranging from 1 to 10 days. The initial conditions were fixed for all simulations, with the initial susceptible,
infectious, and recovered population fractions set to S0 = 0.95, I0 = 0.04, and R0 = 0.01, respectively.
Each trajectory was numerically integrated over a total simulation time of T = 20s and sampled at n = 200
uniformly spaced time steps. This setting yields a moderately coarse resolution that realistically reflects
typical experimental data quality and granularity.

Protocol.

1. Trajectory pool — generate 100 independent SIR realizations with a combination of α,β in the
above-mentioned intervals. Each trajectory is sampled at p = 200 uniformly spaced instants. The
100 trajectories are shown in different dimensions in Figure 3.

2. Inverse problem — feed the state matrix X = [SI R,α,β ] to SINDy with a library enriched by
inverse-square distance θ j(r) = 1/r 2

j . The sparse regression returns:
• the locations yi of the force field,
• the coefficients ci such that the total forcing term reads F(x) = ∑i ci/(x− yi)

2.
3. Out-of-sample test — integrate the identified model under new parameter pairs (α⋆,β ⋆) drawn in

the same intervals and compare the simulated trajectories against ground-truth SIR solutions.

This three–step protocol allows us to (i) quantify POD-SINDy’s ability to retrieve both the epidemio-
logical bilinear terms and the hidden 1/r2 interaction, and (ii) assess generalization by predicting dynamics
for unseen transmission and recovery rates.

(a) (b)

Figure 3: (a) Trajectory of S, I and R. (b) Trajectory of S, α and β

Given the Figure 1, we observe the various trajectory of a system from different perspectives, depending
on the observed dimensions (for our model: S, I, R, α , and β ). Figure 3 a) illustrates the evolution of
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the system’s KPI, where each trajectory reflects distinct behaviors driven by different transmission and
recovery rates. In constrat, Figure 3 b) represents the system’s evolution in a space defined by the number
of susceptible individuals (considered a KPI), the transmission rate (a characteristic), and the recovery rate
(an attribute). For a given set of initial conditions, S0, I0, R0, α , and β , the system follows a specific
trajectory within this space. The next section presents the training of our model on 100 such trajectories to
characterize the space defined by S, I, R, α , and β , enabling decision-makers to anticipate disease dynamics
under given scenarios.

4.2 Identification of the force field and physics interpretation

To train the model, we used the dataset generated according to the parameter ranges specified in previous
section. The training process was conducted using a set of predefined hyperparameter explained in the
Algorithm 1, including a learning rate η = 10−3, a total of N = 5000 epochs, a patience threshold of
P = 300 for early stopping, a sparsity threshold τ = 10−5, and an update interval k = 10 for sequential
thresholding. We consider here the number of force fields (m) equal to 5.

Figure 4 shows the evolution of a disease for an initial population of S0 = 0.95, I0 = 0.04, R0 = 0.01
and two scenarios: first scenario with α = 0.40 et β = 0.15 and second scenario with α = 0.55 et β = 0.20.

(a) with α = 0.40 and β = 0.15 (b) with α = 0.55 and β = 0.20

Figure 4: Trajectory of S, I and R

To evaluate the generalization of the capability of the learned force field, we generated 50 new trajectories
by randomly sampling the transmission rates (α ∼ U (0.1,0.6)) and recovery rates (β ∼ U (0.1,0.3)).
Figure 5 illustrates how the POD-SINDy model captures the overall dynamics of the system, even for these
previously unseen configurations. This suggests that the model has identified dominant force fields acting
as attractors or repellents within the extended characterization space.

From a decision-making standpoint, Figure 5 b) provides a practical tool for anticipating the evolution
of the susceptible population (S) based on transmission (α) and recovery (β ) parameters. By locating a
scenario in this space, one can forecast epidemic trajectories and support strategic decisions such as targeted
interventions or resource allocation.

(a) (b)

Figure 5: (a) Trajectory of S, I and R. (b) Trajectory of de S, α et β
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Figure 5 illustrates that the extended characterization space has been explored across a wide range of
disease families, with varying transmission rates and disease durations. By enforcing five fixed force fields,
we obtain a representation based on the concept of force fields, capturing the dynamic of this entire class
of disease families.

5 DISCUSSION AND PERSPECTIVES

Discussion. The work presented introduces a novel approach to modeling complex systems by drawing
an analogy with classical mechanics through the POD framework. Systems are represented as dynamic
points in a multidimensional space, subject to perturbations modeled as force fields. This analogy with
Newtonian mechanics aims to address the interpretability limitations often associated with neural network
models while enhancing predictive accuracy by embedding strong physical constraints into the modeling
process. This representation allows for anticipating system responses, such as a population’s competence
in facing disease outbreaks, without relying on traditional simulations. By coupling a SIR model with
POD-SINDy, dominant force fields governing behavior can be identified. These fields offer actionable
insights, paving the way for an interpretable and exploitable decision-support tool grounded in physically
inspired dynamics.
Nevertheless, several unresolved questions remain. First, the choice of the physical law governing these
forces must be further explored. In this study, we adopted an inverse-square law, akin to gravitational or
electromagnetic forces, but this choice warrants critical examination in future research. Additionally, the
optimal number of force fields required to characterize a given system family remains an open question.
This issue is closely tied to the interpretability of the model, central to POD’s goal of empowering decision-
makers. Understanding the intensity and direction of force fields provides insights into the system’s
trajectory within the space, including zones of attraction or repulsion.

Perspectives. Future research directions should focus on identifying organizational conservation laws,
which may reveal invariant quantities in system evolution. Another critical avenue is the integration with
Agent-Based Models (ABM) to enrich macro-dynamics with micro-level interactions. Furthermore, deeper
exploration of latent space topologies, such as attractors, bifurcations, and decisions-relevant regions, is
essential to enhance interpretability and visualization, providing more intuitive decision-support tools for
decision-makers.

Conclusion. As complexity continues to reshape the landscapes of science, industry, and society, the
POD framework stands as beacon for new era of modeling, one where understanding precedes prediction,
and insight powers action. Through the development and validation of SINDy-POD approach applied to
epidemiological dynamics, this study demonstrates the potential of uncovering hidden force fields that
govern system behavior. By revealing the invisible structures steering system evolution, this approach
aspires not merely to forecast the future, but to illuminate the pathways by which it can be shaped.
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