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ABSTRACT

We introduce the first fully automated fixed-sample-size procedure (FIRQUEST) for computing confidence
intervals (CIs) for steady-state quantiles based on independent replications. The user provides a dataset
from a number of independent replications of arbitrary size and specifies the required quantile and nominal
coverage probability of the anticipated CI. The proposed method is based on the simulation analysis
methods of batching, standardized time series (STS), and sectioning. Preliminary experimentation with the
waiting-time process in an M/M/1 queueing system showed that FIRQUEST performed well by appropriately
handling initialization effects and delivering CIs with estimated coverage probability close to the nominal
level.

1 INTRODUCTION

Steady-state simulations are an important tool for the design and performance evaluation of complex
production and service systems (Law 2015). Quantiles of the marginal steady-state distribution of an output
process are standard measures of risk (Glasserman 2004). Steady-state quantile estimation is a challenging
problem due to (i) the potential presence of initialization bias; (ii) substantial serial correlation in the
simulation output process; (iii) departures from normality; (iv) inherent bias of point estimators; and (v)
the challenging nature of the marginal distribution such as nonexistence of a probability density function
(p.d.f.) including discontinuities and multimodalities with sharp peaks (Alexopoulos et al. 2018).

In their recent work, Alexopoulos et al. (2019) and Lolos et al. (2022, 2024) introduced Sequest
and SQSTS, respectively, two automated sequential methods for steady-state quantile estimation. However,
users often (i) use simulation models not integrated with the underlying sequential method or (ii) encounter
datasets that are limited due to budget constraints.

To address these issues, Lolos et al. (2023, 2025) developed FQUEST, an automated fixed-sample-size
procedure for steady-state quantile estimation based on a single run. FQUEST stands out due to its following
unique characteristics in which the procedure: (i) utilizes the STS methodology; (ii) handles effectively
the simulation initialization problem; and (iii) provides a warning when the provided dataset is insufficient
and, subject to the user’s approval, delivers a heuristic CI.

Steady-state analysis methods based on a single simulation replication are convenient in the sense that
only data from the onset of the run may have to be eliminated to diminish the effects of initialization bias.
Unfortunately, the potential of pronounced autocorrelation in the underlying output process may require
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excessively large sample sizes to attenuate this correlation effect and yield reliable CIs for the performance
measure of interest. On the other hand, steady-state estimation methods based on independent replications
are convenient and reduce the correlation problems. For practical purposes, the need for replications is
further enhanced by the fact that the replications can be executed simultaneously on different cores/threads
within a single computer or on different computers on a network, provided that the software being used for
simulation supports this (Law 2015). On the negative side, independent replications can induce systematic
bias if insufficient truncation is applied at the onset of each replication (Alexopoulos and Goldsman 2004,
Fishman 2001). Further, for fixed-sample-size procedures, one has to decide on the number of replications
and the run length within each replication.

In this paper, we introduce FIRQUEST, the first fully automated, fixed-sample-size method for estimating
steady-state quantiles based on independent replications. FIRQUEST is essentially an extension of the
FQUEST procedure of Lolos et al. (2025) with adjustments to handle replicated sample paths and more
aggressive steps for removing potential warm-up effects that can induce a systematic bias across replicate
estimates (Alexopoulos and Goldsman 2004).

FIRQUEST provides a CI and a point estimate for a selected steady-state quantile, with a user-specified
error probability. The user feeds FIRQUEST with datasets of the same size produced by an arbitrary
number of independent replications. The theory on which the CIs used in FIRQUEST are based can be
found in Alexopoulos et al. (2020, 2025) and in Lolos et al. (2024).

In Section 2, we outline the notation, main assumptions, and theoretical background of FIRQUEST.
In Section 3, we present the algorithm. In Section 4, we conduct a preliminary performance evaluation of
FIRQUEST based on the waiting-time process in an M/M/1 system. Section 5 contains a summary of our
work and discussions about future research directions.

2 FOUNDATIONS

In this section, we outline the notation, assumptions, and core results that form the basis of FIRQUEST.

2.1 Notation

The set of real numbers is denoted by R = (—o0, 00) while the set of integers is denoted by Z = {0, +1,+2,...}.
For p € (0,1), the p-quantile of a random variable (r.v.) Y with cumulative distribution function (c.d.f.)
F(y)isdefinedasy, =F ~I(p)=inf{y: F(y) > p}. Let {Y) : k > 0} be a discrete-time stationary simulation
output process with marginal c.d.f. F(-). Our goal is to compute a point estimate and a CI for the quantile
yp based on a finite sample {Y; : k=1,...,n} that is free of initialization bias. Let ¥(;) <--- <Y, be the
respective order statistics. The classical point estimator of y,, is ¥, (n) = Y([p1) (the empirical p-quantile),
where [-] denotes the ceiling function.

For all k > 1 and y € R, we define the indicator r.v. I (y) =1 if Y3 <y, and I;(y) = 0 otherwise;
hence E[Ix(y,)] = p. We let I,(y) = n‘lZzzllk(y), for n > 1; and for each € € Z, we let Prey) () =
Corr[1x(y), Ix+¢|(y)] denote the autocorrelation function of the indicator process {Ix(y) : k > 0} at lag ¢.
Throughout the paper we use the following notation as well: Z denotes an r.v. having the standard normal

R . T
distribution, N (0, 1); for each integer v > 1, Z, = [Zl, .. .,ZV] denotes a v x 1 vector whose components

are independent and identically distributed (i.i.d.) N(0, 1) .v.’s; x2 denotes a chi-squared r.v. with v degrees
of freedom (d.f.); #,, denotes an r.v. having Student’s ¢-distribution with v d.f.; and for each 6 € (0,1), 5.,
denotes the d-quantile of ¢,,.

The basic (unadjusted) 100(1 —a)% CIs for y, have the form

ip (l’l) tl-a/2,v 6-?,, /‘/ﬁ,

where 8; is an estimator of the (quantile) variance parameter a% = lim,, o, nVar [ip(n)], the d.f. v is
P

determineil by the underlying quantile-estimation method, and a € (0, 1) is selected by the user (Asmussen
and Glynn 2007).
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2.2 Assumptions
This subsection contains the main assumptions for the processes {Yj : k > 0} and {Ix(y,) : k > 0}.

Geometric-Moment Contraction (GMC) Condition (Wu 2005). The process {Y% : k > 0} is defined by
a function &(-) of a sequence of i.i.d. r.v.’s {g; : j € Z} such that Y = &(...,&x_1,&x) for kK > 0. Moreover,
there exist constants ¥ > 0, Cy, > 0, and ry € (0,1) such that for two independent sequences {&; : j € Z}
and {s;. : J € Z} each consisting of i.i.d. variables distributed like &y, we have

E[|§(...,8_1,80,8],...,8k)—f(...,8/_1,86,8],...,8k)|¢] < erfz, for k > 0.

The GMC condition holds for a wide range of random processes (Shao and Wu 2007; Alexopoulos
et al. 2019). Alexopoulos et al. (2025) and Dingec¢ et al. (2025) elaborate on the applicability of the
GMC condition compared to several alternatives. Recently, Dingeg et al. (2022) showed that the customer
waiting-time processes in an M/M/1 queueing system and a G/G/1 system with non-heavy-tailed service-time
distributions satisfy the GMC condition.

Density-Regularity (DR) Condition. The p.d.f. f(-) is bounded on R and continuous almost everywhere
(a.e.) on R; moreover, at the quantile of interest y,, we have f(y,) > 0, and the derivative f’(y,) exists.

Short-Range Dependence (SRD) of the Indicator Process. The indicator process {/x(y) : kK > 0} has the
SRD property so that for all y € R,

EDWARGED YA GIEES
leZ

ez

Thus the variance parameters associated with the random processes {7, (y p)} and {y,(n)}, respectively,
satisfy the relations

073y = Jim nVar[Tu(yp)] = p(1=p) ) oy, (0) € [0.0).

(el

T 5,)

2 . ~ Yp
o= = lim nVar|y,(n)| = =———= € [0, ).

s = Sl =

Functional Central Limit Theorem (FCLT) for the Indicator Process. Let D = D0, 1] denote the space
of real-valued functions on [0, 1] that are right continuous with left-hand limits; let ‘W denote a standard
Brownian motion on [0, 1]; and let .=, denote weak convergence as n — oo (Billingsley 1999). Also,

let | -] denote the floor function. We define the following sequence of random functions {7, : n > 1} in D,

nt| -
ﬁ[llnﬂ()’p)—p], for € [0,1] and n > 1,

I(yp)

In(1) = In(t;yp) =

We assume that this random-function sequence satisfies the FCLT, i.e., 7, =3 W.
The literature contains sound theoretical and empirical evidence of the mutual compatibility of the

GMC, DR, SRD, and FCLT conditions (Whitt 2002; Dinge¢ et al. 2025).
2.3 Asymptotic Properties Based on Nonoverlapping Batches

FIRQUEST is based on nonoverlapping batches. Given a fixed batch count b > 2, for j =1,...,b the jth
nonoverlapping batch of size m > 1 consists of the subsequence {Y(;_1)m+1,...,¥jm}, where we assume

n = bm. The batch mean of the indicatorr.v.’s associated with the jth batchis Tj,m(y) =m 1y, IG-ymee(Y)-
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Similarly to the full-sample case, we define the order statistics Y; (1) < -+- <Y} (,,) corresponding to the
Jjth batch. Then the jth batched quantile estimator (BQE) of y, is ¥, (j,m) =Y; ({mp7)- Alexopoulos et al.
(2019) establish that

- —~ T
ml/z[yp(l,m)—yp,...,yp(b,m)—yp] = o0- Z,.

m — oo Yp

2.4 Confidence Intervals for Quantiles

FIRQUEST utilizes CIs computed from STSs based on nonoverlapping batches, the BQEs y,(j,m), and
the full-sample empirical quantile y,,(n). We define the full-sample STS process for quantile estimation as

T,(t) = %[ip(n)—ip(l_mj)], forn>1andte€|0,1],

where y, (|nt]) is the empirical p-quantile (i.e., the [p|nz]]-th order statistic) computed from the partial
sample {Yk tk=1,..., Lntj}. Further, Alexopoulos et al. (2025) show that if {Yy : k > 1} satisfies the
assumptions of Theorem 1 therein, then

[0 2T () =yp) Ta] =2, o5 (W), 8],

where B(t) = W(t) —tW (1) for ¢t € [0,1] is a standard Brownian bridge process that is independent of
“W(1). Hence, the full-sample r.v. n'/? (y,(n)—y,) is asymptotically independent of 7, as n — .

The full-sample STS area estimator of the variance parameter o:y% is A%,(w;n), where:
2l

Ap(win)=n""! Zw(k/n)Tn(k/n), forn> 1,
k=1

and w(-) is a deterministic weight function that is bounded and continuous a.e. on [0, 1]; and the r.v.

1
Z(w) = /O w()B(t)dt ~ N(0,1). (1)

The r.v. Z(w) is the signed, weighted area bounded by the random function w(¢)B(¢) for ¢t € [0, 1] and
the horizontal axis so that Z(w) is normally distributed. Moreover, Alexopoulos et al. (2025) show that
the STS area estimators {A,(w;n) :n > 1} for a'yg satisfy the following weak-convergence results:

)2

. 2, . 2 2
Ap(win) = O'%Z(w) and A, (w;n) = a2 X

Several weight functions satisfy condition (1) including the constant wq () = V12 (Schruben 1983), the
quadratic wo () = V840(3¢> -3t +1/2) (Goldsman et al. 1990), and the orthonormal family {w.os, j(1) =

V8rjcos(2mjt): j=1,2,...} (Foley and Goldsman 1999). Since none of the latter weight functions have
provably yielded less-biased estimators (based on STS) than wy(-) (Lolos et al. 2024), we will use the
constant weight wq(-) for the performance evaluation.

Below we describe the extension of the aforementioned results for the case of nonoverlapping batches of
sizem. For j=1,...,b, wedefiney, (j, [ mt]) as the empirical p-quantile (i.e., the [ p| mz|]-th order statistic)
computed from the partial sample {Y( j-hmsk sk =1,..., LmtJ}, and the STS-based quantile-estimation
process formed from batch j as

Lm]

Tim(t) = —7
jm (1) ml/2

[5,(jsm) =5, (j, Lme])], forte[0,1] and m > 1.
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Moreover, we define the signed area computed from batch j as

Ap(w;j,m) = m™! Zw(k/m)Tj’m(k/m).
k=1

Lolos et al. (2023, 2025) provide all the established theoretical results that form the basis of the sequential
and fixed-sample-size procedures therein. These results are also utilized by FIRQUEST, with the main
difference that an equal number of batches is formed within each replicate path.

For simplicity, assume that we have generated R i.i.d. stationary sample paths of the process {¥Yx : k > 1},
each of size bm, so that N = Rbm. We split each replicate path in b nonoverlapping batches of size m
each. From each batch we compute the respective empirical quantile and weighted signed area. Also, we
denote the replicate batched quantile estimator (RBQE) as {37,, (j,m):j=1,. ..,Rb} and the (replicate)
signed areas as {A,(w;j,m):j=1,...,Rb}, where the subscript j in y,(j,m) or A,(w;j,m) denotes the
ith RBQE or signed area, respectively, from replication r+ 1 with r = | j/b] and i = j —rb. For example, if
b =20, y,(43,m) is the 3rd RBQE from replication 3. Also, let y,,(N) be the empirical quantile computed
from the entire dataset comprised of the R sample paths.

We define the replicated batched STS area estimator as

Rb
Ap(wWiR,bym) = (RbY™ )" A (wsj,m).
j=1
We also define the average RBQE
Rb

Vp(R.bm) = (RBY™ )" 5, (j,m)
j=1

and the “average” squared deviations of the RBQEs away from the average RBQE 51’ (R,b,m) and the
full-sample quantile estimator y, (N), respectively,

Rb
— —~ . = 2
S2(R.b,m) = (Rb—=1)"" " [5,(j.m) =5, (R,b,m)]" and
J=1
Rb

S2(R.b,m) = (Rb=1)"" " [5,(jom) =5, (W)]".
j=1

Finally, we let

Np(R,b,m)=mS2(R,b,m) and N,(R,b,m)=mS(R,b,m),

and we define the combined estimators of the variance parameter a'y% associated with the quantile process

P

RbA,(w;R,b,m)+(Rb—1)N,(R,b,m)

(VP(W;Rabem)E 2Rb_1
_ RbA,(W;R,b,m)+(Rb—1)N,(R,b,
Vp(W;R,b,m) = o mz)Rb(—l — m)'

Based on the results of Alexopoulos et al. (2025) and Lolos et al. (2025), we can easily show that each
of the (Rb)-dimensional random vectors [jz‘p(l,m), ... ,yp(Rb,m)]T and [Ap (w;1,m),..., Ap(w;Rb,m)]T
converges to a vector of i.i.d. normal r.v.’s as m — oco. Hence, one can readily see that, for fixed R and b,

Ap(WiR,b,m) = o7 xg,/(RD). )

m — oo
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Suppose that R and b are fixed. The asymptotic validity, as m — oo, of the 100(1 —a)% CI in Equation (3)
follows immediately from Equation (2) above. We postulate that the remaining Cls in Equations (3)—(7)
below are also asymptotically valid as m — oo:

o (N) £ 11— aja.rp [ Ap (w; R, b,m) N]', 3)
3 (R bum) £11_ a2, r6 | Ap (w3 R,b,m) /N2, 4)
_ -~ 2
T (N) £ 11-a2.rb1 [Ny (R, b,m) IN]'7, 5)
5 (R,bm) £ 11_ap jp1 [Ny (R,b,m) /N] ', 6)
and _ 12
Yp(N) £t1-g/22rb-1[Vp(WiR,b,m)/N] '~ (7

If the dataset is deemed to be appropriate, FIRQUEST will deliver the CI in Equation (7) above.
Otherwise, subject to the user’s approval, the method also constructs approximate Cls from the RBQEs
{yp(j,m):j=1,...,Rb} and the full-sample estimator y, (N) using an adjustment for residual skewness
in the RBQEs. Since the RBQEs are not computed from a single sample path, we do not employ the
additional adjustment for residual autocorrelation in Alexopoulos et al. (2019) and Lolos et al. (2023).

Initially, we calculate the sample skewness of the RBQEs

EA (R bm)= Rb sz yp(jam)_§\p(R’bam) 3
T (Rb-1)(Rb-2) £ Sp(R.b,m) ’
we compute the skewness-adjustment parameter
) Bs, (R.b,m)
~ 6VRb
and define the skewness-adjustment function
G(0) = { if |¢| <0.001,
| eIl e )5 0,001,

for all real £. Then we set

G1 = G(t1-ap o) (Rbm) [(RD), and  Ga = Glta 1)y S3 (R, b,m) [ (RD).
The (asymmetric) skewness-adjusted CI for y,, is given by
[min (¥, (N) = G1,5,(N) = G3) ,max (y,(N) = G1,5,(N) = G1) | . (®)

3 THE FIRQUEST ALGORITHM

In this section we present the FIRQUEST procedure. FIRQUEST uses the same batching scheme in each
replicate path based on b nonoverlapping batches of size m each, with these parameters updated based on
outcomes of statistical tests for independence and normality. At a high level, FIRQUEST is comprised of
four main blocks. Below we provide a synopsis of each block.

The first block consists of Steps [0]-[2] which initialize the experimental parameters. The user provides
the number of independent replications R, the fixed size n of each replication, the probability p corresponding
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to the quantile of interest, and the nominal error probability @ € (0, 1) for the CI for y,,. We also define an
array, denoted by s, of batch counts for Steps [S]-{9] as a function of the number of independent replications
R, and we set g equal to the number of elements in s. The assignment of the elements of s is based on
the following guidelines: (i) start with a total batch count Rb > 16 and keep Rb > 10; (ii) use the same
number of batches from every replication; (iii) use at least one batch from every replication; and (iv) if
R <33, use Rb < 66 total batches.

The second block includes Steps [3]-[5] and deals with the potential transient effects in each replication.
Step [3] consists of a loop that tests the signed areas {A,(w;j,m)} in each replication computed from
the first bm observations for independence (the tail n — bm observations are ignored, but not discarded)
using a two-sided test based on von Neumann’s ratio (von Neumann 1941) with progressively decreasing
significance level By () on iteration £. Every time the randomness test fails, we keep increasing the batch
size m = | n/b] until the updated sample size exceeds n. If the randomness test fails with the largest allowable
batch size | n/b] even within one of the independent replications, FIRQUEST exits Step [3] and moves to
Step [4], where it issues a warning to the user regarding the insufficiency of the length of a replication and
seeks permission to construct a heuristic conservative CI. In Step [S], FIRQUEST calculates mm,x, the
maximum batch size m that was used across the independent replications in Step [3]. Then, it removes the
Mmax first observations from every replication, sets the new run length to n* = n — mp,x, and reindexes the
truncated dataset in each replication.

The third block consists of Steps [6]-[9]. Here, we conduct the von Neumann (1941) test again and
the one-sided test of Shapiro and Wilk (1965) for univariate normality to assess the convergence of each
of the replicate signed areas {A,(w;j,m):j=1,...,Rb} and the RBQEs {y,(j,m):j=1,...,Rb} to
asymptotic independence and normality. Each of the Steps [6]-[9] has a very similar structure. First we
compute the replicate signed areas {A,(w;j,m):j=1,...,Rb} or the RBQEs {y,(j,m):j=1,...,Rb}
and conduct the pertinent statistical test using the fixed significance level of §=0.3. This relatively large
significance level is kept constant to avoid passing a test with an inadequately small batch size leading to
unreliable ClIs. If the pertinent test is passed, FIRQUEST proceeds to the next step; otherwise, the batch
count in each replication decreases to the next element of the array s. Since g is equal to the number of
elements in §, we can have up to g failed attempts to pass any of the statistical tests in Steps [6]-[9]. If at
any point a statistical test fails with v = g, then FIRQUEST skips the remaining statistical tests and moves
to Step [10].

Finally, the last block consists of Step [10]: If the statistical tests within the third block are passed,
the procedure delivers the CI in Equation (7) based on the combined variance estimator. Otherwise, it
delivers a conservative CI, subject to the user’s approval. This heuristic CI is wider by construction to meet
the user’s coverage probability requirements even in unfavorable circumstances with inadequate provided
replication sizes.

The formal algorithmic statement of FIRQUEST follows. We present the algorithm for a general weight
function w(-) satisfying Equation (1), but we use wo(r) = V12 for the results in Section 4.

Algorithm FIRQUEST

[0] User-Initialization: A number of R replicate sample paths, each of size n (total sample size Rn),
the probability p corresponding to the desired quantile, and the error probability a € (0, 1).

[1] Parameter-Initialization: Set the number of batches b = 25, the batch size m =500, £ =1, v =1,
and flag = false. Also set 8 =0.30 and
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[5]

[6]
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[14,11,8,5] ifR=2,
[10,8.6,4]  if R=3,
[6,5,4,3] if R=4,

| 15.4.3.2] if5<R <10,

43,211 if10<R <17,
[3.2,1] if 17 <R <23,
[2,1] if 23 < R < 33,
[1] if33 < R.

Further, set ¢ equal to the number of elements in s. Let w(z), t € [0,1], be the weight function
and define the initial significance level for the first hypothesis test in Step [3] as By (€), where
W (€) =exp [—7](5— 1)9], ¢=1,2,..., withn=0.2 and 6 =2.3.
If n<bm:

Set m « |[n/b];
For each replicate path execute the following loop:
Until von Neumann’s test fails to reject randomness or flag = true:

*Compute the signed areas {A,(w;j,m)} from the current replicate path;

* Assess the randomness of the signed areas {A,(w;j,m)} from the current replication using
von Neumann’s two-sided randomness test with significance level Sy (£);

eSet £ — €+1 and m « [[m\/i]];

If n<bmand m # |n/b|:

Set m < |n/b];
Else
Set flag <« true;

Set £ « 1 and m « 500.
If the randomness test in Step [3] failed for any of the independent replications due to insufficient
length, then issue a warning and seek permission from the user to continue with the construction
of a CI. If the user declines, then exit without delivering a CI.
Remove the first my,x observations from each replication, reindex the truncated datasets, and set n*
(= n—mmax) equal to the size of the truncated sample of each replication. Set the number of batches
b < s[v] and calculate the batch size as m « |n*/b]. Ignore the initial n* — bm observations from
each replication.
Until von Neumann’s test fails to reject randomness or v = g+1 (a test has failed with the minimum
allowable number of batches in s):
*Compute the replicate signed areas {A,(w;j,m): j=1,...,Rb} across all replications;
*Assess the randomness of the replicate signed areas {A,(w;j,m):j=1,...,Rb} using von
Neumann’s two-sided randomness test with significance level ;
eSet v« v+1. Update b « s[v] and m < |n*/b]. Ignore the initial n* — bm observations from
each replication.

Until the Shapiro-Wilk test fails to reject normality or v = g+1 (a test has failed with the minimum
allowable number of batches in s):
*Compute the replicate signed areas {A,(w;j,m):j=1,...,Rb};
* Assess the univariate normality of the replicate signed areas {A,(w;j,m):j=1,...,Rb} using
the Shapiro—Wilk test with significance level £;
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eSet v« v+1. Update b « s[v] and m < |n*/b]. Ignore the initial n* — bm observations from
each replication.
[8]  Until von Neumann’s test fails to reject randomness or v =g+ 1 (a test has failed with minimum
allowable number of batches in §):
*Compute the RBQEs {y,(j,m):j=1,...,Rb};
* Assess the randomness of the RBQEs {y,(j,m) : j =1,...,Rb} using von Neumann’s two-sided
randomness test with significance level S;
eSet v« v+1. Update b « s[v] and m « |n*/b]. Ignore the initial n* — bm observations from
each replication.
[9]  Until the Shapiro-Wilk test fails to reject normality or v =g+ 1 (a test has failed with minimum
allowable number of batches in §):
*Compute the RBQEs {y,(j,m):j=1,...,Rb};
* Assess the univariate normality of the BQEs {y, (j,m) : j=1,...,Rb} using the Shapiro-Wilk
test with significance level g;
eSet v« v+1. Update b < s[v] and m « |n*/b]. Ignore the initial n* — bm observations from
each replication.
[10]  Set N* «— Rbm.
If v < g+1 (no statistical test in Steps [6]-[9] failed):
*Compute the combined variance estimator (VP(W;R,b,m), deliver the 100(1 — @)% CI in
Equation (7) for y,, and exit;
Else
eIssue a warning that a statistical test failed due to insufficiency of the dataset and seek permission
from the user to continue with the construction of a CI. If the user declines, then exit without
delivering a CI;
*Compute

A, (w;R,b,m) Ny (R, b,m)
ha,R,b,m =Max H_q/2,Rb T,II—Q/Z,Rb—I — N [

Then, construct the following approximate CIs for y, with HL hy g p m:

Vp(N*) £harbwm and 3,(R.b,m)+heRbm, ©)

with the first CI centered around the full-sample point estimator y,,(N*) and the second centered
around the average RBQE ¥ ,(R,b,m) = (Rb)™! Zf:bl yp(j,m);
*Construct the (asymmetric) skewness-adjusted CI

[min (B’Vp(N*) _Glayp(N*) - GZ) ,nax (yp(N*) _Gl’yp (N%) _GZ)] (10)

with G and G, defined in Equation (8);
*Deliver the full-sample point estimator y, (N*) and the smallest interval containing the CIs in
Equations (9) and (10) above, and exit.

4 EXPERIMENTAL RESULTS

In this section we present an initial empirical evaluation of FIRQUEST based on the waiting-time sequence
in an M/M/1 queueing system with arrival rate 4 =0.9, service rate w =1 (traffic intensity p =0.9), and
First In, First Out (FIFO) service discipline. To assess the ability of the FIRQUEST method to deal with
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the transient phase, we initiate the system in the empty-and-idle state. For the experimental results we
used the constant weight function wg(-). Extensive numerical results, comparisons with FQUEST (using
identical total sample sizes), and suggestions for selecting the number of replications R are in Lolos (2023).

Table 1: Experimental results for FIRQUEST with R € {5, 10} replications with regard to point and 95%
CI estimation of y,, for the waiting-time process in an M/M/1 system with traffic intensity 0.9 initialized
in the empty-and-idle state based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
p yp R Size Est. |Bias| CI HL rel. prec. (%) CI cov. (%) m b HL Point
0.5 5878 5 40,000 5.886 0.191 0.671 11.377 96.5 16,125 13.28  0.388 955
10 20,000 5.874 0.195 0.686 11.645 94.6 16,861 12.89  0.409 787
5 100,000 5.883 0.122 0.373 6.330 95.7 37,548 14.78  0.176 957
10 50,000 5.880 0.126 0.375 6.371 94.8 37,382 16.27  0.186 1,094
5 200,000 5.885 0.085 0.249 4.238 95.2 70,601 15.89  0.093 957
10 100,000 5.877 0.085 0.244 4.145 95.7 66,135 19.34  0.100 1,093
0.7 10.986 5 40,000 10.999 0.365 1.296 11.748 95.9 16,284 13.17  0.788 969
10 20,000 10.977 0.368 1.302 11.817 95.1 17,004 12.72  0.817 788
5 100,000 10.990 0.227 0.720 6.546 95.9 37,751 1474 0.364 972
10 50,000 10.988 0.236 0.711 6.467 94.9 37,858 16.03  0.357 1,116
5 200,000 10.996 0.162 0.479 4.355 95.4 72,044 1552  0.186 972
10 100,000 10.982 0.161 0.473 4.301 95.3 68,577 18.62  0.207 1,116
0.9 21972 5 40,000 22.008 0.902 3.493 15.764 94.9 17,318 12.09  2.700 922
10 20,000 21.940 0.888 3.465 15.675 94.7 17,708 11.85  2.642 782
5 100,000 21.982 0.550 1.835 8.335 95.6 40,422 13.54  1.067 924
10 50,000 21.969 0.571 1.856 8.438 94.1 41,260 13.93  1.111 1,049
5 200,000 21.993 0.389 1.183 5.378 94.9 75,094 1493  0.558 924
10 100,000 21.956 0.391 1.194 5.430 94.4 76,012 16.24  0.616 1,049
0.95 28.904 5 40,000 28.964 1.380 6.028 20.616 94.2 17,958 11.51  4.972 890
10 20,000 28.858 1.374 5.889 20.169 94.5 18,335 11.01  4.846 771
5 100,000 28.935 0.844 3.084 10.612 95.3 42,070 12.81 2.124 891
10 50,000 28.898 0.881 3.007 10.383 94.1 43,657 12.57  1.920 1,006
5 200,000 28.940 0.596 1.896 6.546 95.6 79,224 13.99  0.963 891
10 100,000 28.884 0.597 1.905 6.584 95.0 81,555 1449  1.095 1,006
0.99 44.998 5 40,000 45.171 3.349 12.026 25.964 90.8 18,953 10.56  8.621 858
10 20,000 44.920 3.314 11.360 24.650 90.8 19,074 10.16  8.079 773
5 100,000 45.116 2.139 9.051 19.812 92.8 46,531 11.13  6.797 858
10 50,000 44.950 2.138 8.900 19.577 94.2 47,671 10.63  6.387 969
5 200,000 45.083 1.484 6.206 13.669 94.5 90,607 11.66  4.806 858
10 100,000 44.989 1.509 6.102 13.448 94.0 93,956 11.18  4.702 969

Table 1 above displays the experimental results. For the evaluation we used three total sample sizes
N € {200,000, 500,000, 1,000,000}, two replication counts R € {5,10}, and the nominal 95% (a = 0.05)
CI coverage probability. All entries were computed from 1,000 independent trials. In particular, column
1 contains selected values of p, while column 2 displays the exact value of the respective quantile y,,
which was computed by inverting the c.d.f. in Equation (36) of Alexopoulos et al. (2019). Columns 3
and 4 contain the number of independent replications R and the replication size n, respectively (n = N/R).
Column 5 displays y,(n*), the average value of the point estimate. Column 6 lists the average value of
the absolute error |y, (n*) —yp|. In Columns 7-9, we provide the average value of the half-length (HL) of
the 95% CI for y,,, the average value of the CI’s relative precision (CI HL over absolute value of the point
estimate) as a percentage, and the estimated coverage of the CI (as a percentage), respectively. Columns
10 and 11 contain the average final batch size (72) and average final batch count (b), respectively. Finally,
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Columns 12 and 13 display the standard deviation of the CI HL and the average number of truncated
observations (from each replication), respectively.

An examination of Table 1 reveals that FIRQUEST performed well for p < 0.95 with respect to average
CI relative precision and coverage probability. For example, for p = 0.9 and replication length n = 40,000
(R =5), FIRQUEST reported a CI coverage probability of 94.9%. However, for the extreme value of
p =0.99, FIRQUEST exhibited slight undercoverage when the total sample size was less than 500,000,
as it reported estimated CI coverage probabilities lower than the nominal value of 95%. For example, for
p =0.99 FIRQUEST reported an estimated CI coverage probability of 90.8%. Notably, such small sample
sizes are inadequate for computing reliable Cls for this extreme quantile (Lolos et al. 2024, Section 4.3).
Overall, we believe that FIRQUEST handled this challenging process effectively.

5 CONCLUSIONS

In this paper, we presented FIRQUEST, a fully automated fixed-sample-size procedure for computing point
estimators and Cls for steady-state quantiles based on independent replications. Initial experimentation
with successive customer waiting times in an M/M/1 system showed that FIRQUEST met the CI coverage
probability requirements even when it was provided with relatively small total sample sizes. Topics of
future work are (i) performance evaluation of FIRQUEST with additional test processes, (ii) estimation of
multiple quantiles, and (iii) expansion of the framework for estimating the conditional value at risk.
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