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ABSTRACT

Digital twinning is becoming increasingly prevalent and is creating significant value for organizations.
When creating a digital twin, there are many modeling formalisms and levels of detail to choose from.
However, designing, running, and deploying these models all consume energy. This paper examines
the trade-offs between energy consumption and accuracy across different modeling formalisms, using an
autoclave as a case study. We created a high-fidelity model of an autoclave, and from this model, several
approximations were developed, including a 2D model and neural networks. The energy consumption of
these models—as well as energy-intensive steps such as training the neural network—was measured and
compared. This provides insights into the trade-offs between energy usage and accuracy for the selected
modeling formalisms.

1 INTRODUCTION

Sustainable development focuses on development with three dimensions in mind: (a) Economic, (b) Social
and (c) Environmental (Purvis et al. 2018). Sustainable development is defined as the development
that fulfills today’s needs without compromising future generations’ needs. However, human emission of
greenhouse gases and aerosols creates an imbalance in the Earth’s energy system (Allan et al. 2021).
Consequently, we see an increase in the earth’s temperature, melting polar caps and permafrost regions.
Computing as an industry is currently responsible for 2% to 6% of the emissions of greenhouse gases
globally, with a predicted share of 6% - 22% in 2030 (Copenhagen Centre on Energy Efficiency 2020).

One of the key transformational technologies for the industry is the digital twin. Several definitions
of a digital twin exist in the literature; as such, we will only state one: “A set of virtual information
constructs that mimics the structure, context and behavior of an individual / unique physical asset, or a
group of physical assets, is dynamically updated with data from its physical twin throughout its life cycle
and informs decisions that realize value.” (AIAA Digital Engineering Integration Committee 2020). Digital
twins create value for companies by integrating the physical and digital world to address complexities and
high demands from the market (Liu et al. 2021).

Digital twins have multiple functionalities and can be used to accomplish several goals. Applications
include but are not limited to real-time monitoring, system optimization, quality control and waste man-
agement (Barricelli et al. 2019; Huang et al. 2021; Matta and Lugaresi 2024). Digital twins are applied
in all industrial sectors like aeronautics, medical, smart city, and manufacturing.

While digital twins help in sustainable development’s social and economic dimensions by optimizing
system usage, the design of twins largely ignores its impact on electricity consumption. Digital twin
implementations heavily rely on computing and networking infrastructure to monitor, predict, and optimize
their analog counterparts. One of the pivotal choices in the design of a digital twin is which modeling
formalism is going to be used. There are many options, from classical PDE models to machine learning
models. Each of these modeling formalisms has its own benefits and drawbacks.

When choosing a modeling formalism, the value proposition of the digital twin for the user should be
taken into account. This value proposition dictates the allowable uncertainty that the model can have. We
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could always go for a complex model that has high validity with the real world, but these kinds of models
are often very energy intensive. If the allowable uncertainty permits, we can use more approximate models.
These models can be generated separately or, if it is available, a high validity model can be approximated
to create surrogate models. While the modeling formalism can be very different in their execution, they
will play the same role in the digital twin. To reason about the energy consumption of the resulting digital
twin we introduced a simple additive model, as shown in equation 1, in a previous paper (Bellis and Denil
2022):

Etotal = Edesign +Elocal +Enetworking +Ecloud +Eupdate. (1)

Where:

• Edesign is the energy consumed for creating the twin. Building a simulation model for a twin might
not have a large impact on this factor. However, this term might have a significant impact when
using data-driven methods.

• Elocal is the energy consumption at the analog side of the system (e.g., by storing the data,
preprocessing the data, and executing a part of the twin model locally).

• Enetworking is the system’s energy consumption by sending and receiving messages on the network.
• Ecloud is the energy consumption by executing the twin in the cloud environment.
• Eupdate is the energy necessary to redesign and update the model during the system’s life-cycle.

Knowing and predicting the different energy usage for different modeling formalisms with different
levels of abstraction and approximation will help us choose the most energy efficient modeling formalisms
for a particular digital twin. In this paper, we are going to look at the Edesign and the Elocal for different
modeling formalisms to get a better overview of the cost/benefit of different modeling formalisms.

For this, we use the running example of a small autoclave. Using the COMSOL software, a complex
model of this autoclave was made. From this model, several other models were approximated. The energy
usage of these different models was measured in the design and deployment phase. Then, the results of
these simulations were also compared to give a good overview of the cost/benefit relation for each model.

To give an overview of the paper, in section 2 we go over some related work. In Section 3 we explain
the running example in more detail, and in Section 4 we discuss the different modeling techniques used
and the energy measurement setup. In section 5, we show and discuss the results and lastly, in section 6
we go over some future improvements.

2 RELATED WORK

In sustainable computing, there exist two notions of sustainability: (i) sustainability by IT and (ii) sustain-
ability of IT (Pazienza et al. 2024). The former looks at how IT may positively affect the sustainability
of a solution, while the latter looks at the sustainability of the IT system itself. In sustainable AI research
a similar split exists between AI for sustainability and sustainability of AI (van Wynsberghe 2021).

In the field of digital twins, literature focuses almost solely on digital twins for sustainability (e.g. in
agriculture (Purcell et al. 2023)) and not on the sustainability of digital twins themselves. On the latter
topic, David and Bork (2023) present a 7R taxonomy of digital twin evolution for technical sustainability.
It comprises 7 R-imperatives (the most well-known R-imperative is the 3R of reduce, reuse, recycle)
applicable to a digital twin scenario: re-calibrate, re-model, re-collect, reconcile, re-deploy, re-configure
and reuse. The taxonomy helps identify actions Digital Twin frameworks can take to support evolution in
a sustainable manner. Furthermore, the notion of bipartite sustainability exists, that is, sustainable systems
need to be engineered through sustainable methods to reach true sustainability. In this context, David,
Bork, and Kappel (2024) explicitly mention Digital Twin as one of the methods that requires sustainability
considerations.

To our knowledge, this is the first paper to specifically examine the carbon footprint of different
modeling formalisms used in a digital twin context. As digital twins themselves are computing systems,
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and machine learned models are often used in digital twins, this is a gap in research. Understanding the
impact of modeling choices on energy usage and carbon footprint is essential to design sustainable digital
twins. Where the related work which we mention next focuses on quantifying the energy consumption
in the broader context of computing, this work goes further by reflecting back our findings to formulate
guidelines for digital twin developers.

2.1 Carbon Footprint of Computing

Even with the tremendous advances in the energy efficiency of computing systems (Muralidhar et al. 2022),
computing makes up a large part of a scientist’s carbon footprint, especially when using supercomputers (Allen
2022). The key to reducing one’s carbon footprint is the carbon intensity (g CO2/kWh) of the energy mix
that is used. Computing during periods of high renewable energy generation reduces the carbon intensity.
Consequently, the carbon footprint of the supercomputer or datacenter shifts from operational expenses
(hardware operation) to capital expenses (hardware production) (Gupta et al. 2021). As a user, we can then
focus on strategically scheduling our algorithms. Additionally, optimizing algorithms to be more efficient
also impacts their carbon footprint(Allen 2022; Gupta et al. 2021).

Different tools exist to aid users in this regard. Green Algorithms (Green Algorithms 2025) is an online
tool that estimates a computer program’s carbon footprint based on the hardware and the location of the
server (Lannelongue et al. 2021). Another way of expressing the carbon emissions is the Green Software
Foundation’s Software Carbon Intensity (SCI) specification. The SCI represents the rate of carbon emission
of a software system (Green Software Foundation 2025a) and is formalized in the ISO/IEC 21031:2024
standard. To help users with scheduling the execution of their software, the Carbon Aware SDK (Green
Software Foundation 2025b) or other similar API’s such as WattTime (WattTime 2025), Electricity Maps
(Electricitymaps 2025) and Climatiq (Climatiq 2025) can make the application carbon-aware.

2.2 Carbon Footprint of Machine Learning

In machine learning, the carbon footprint of training and inference is also a growing concern. The Machine
Learning Emissions Calculator (ML CO2 Impact 2025) is a calculator that estimates the carbon footprint
of training a machine learning model (Lacoste et al. 2019). The Experiment Impact Tracker (Henderson
et al. 2020) is a framework that incorporates with Python code to track the carbon impact of a computer
system. Similarly Carbontracker (Anthony et al. 2020) tracks and predicts energy use at runtime. Dodge
et al. (Dodge et al. 2022) present a framework for estimating the carbon impact of GPU computation on
cloud instances using the SCI metric. All of these frameworks share the same end goal: quantifying the
carbon footprint of ML applications and raising awareness about its impact.

Within the AI community, there is also a movement towards Green AI, that is, AI models that takes into
account the computational cost of the AI besides the traditional performance metrics like accuracy (Schwartz
et al. 2020). At the current pace, the computational burden of deep learning is becoming technically and
economically prohibitive (Thompson et al. 2020), making techniques that make machine learning more
efficient even more important (Thompson et al. 2020; Mehlin et al. 2023).

3 RUNNING EXAMPLE

The running example that we use in this paper is a small autoclave. The autoclave consists of a wooden
box with three horizontal copper plates at equidistant heights. The plates are connected to two opposing
walls of the box and have an air gap on the two remaining sides. This air gap helps convection distribute
the heat around the autoclave. On one of the sides with the air gap, there is a heating element that heats
up the autoclave. On top of the copper plates, the objects that need to be sterilized are placed. We abstract
the objects as plates that lay on top of the copper plates. The autoclave is shown in figure 1. There are two
changeable parameters in this model: the heating rate of the heating element and the specific heat capacity
of the objects in the autoclave.
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Figure 1: a) The geometry of the 3D COMSOL model. b) Temperature plot of the 3D COMSOL model.

The goal of the autoclave model is to sterilize the objects by heating them up to a temperature of
100°C. We use the model to predict when this will happen, so that we can stop the autoclave at the right
time and conserve energy.

We modeled the autoclave in three dimensions using COMSOL. In this model, we included heat transfer
by conduction, convection, and radiation. We use this model of the autoclave as a baseline and presume it
to be the ground truth. We then approximated other models from this COMSOL model. We measured the
energy consumption during the design and deployment of all the approximate models to see the cost/benefit
for all the different approximate models.

4 SETUP OF EXPERIMENT

In this section, we discuss the setup of our experiments. First, we provide more information about the
different approximate models we created. Then, we explain how we validate these models. Lastly, we
describe the setup with which we measured the energy consumption of the different models.

4.1 2D COMSOL Model

As mentioned before, we approximate the model in several other approximate modeling formalisms. The
first approximation we use is also a COMSOL model. We create a 2D model of the autoclave using
COMSOL. We use the inherent symmetry of the autoclave and take a center 2D slice of the model. In this
model, we also include heat transfer via conduction, convection, and radiation.

4.2 Lumped Parameter Model

The second approximate model we create is a lumped parameter model using Simulink. For this model,
we define several thermal zones (as shown in Figure 2). In each thermal zone, we assume the temperature
is uniform. These thermal zones interact with each other and the surroundings. The modeled heat transfers
in this lumped parameter model are conduction and convection.

For conduction, the influence of thermal zone j on thermal zone i is given by equation 2.

1
Ci

Ii j(Tj −Ti) (2)

Here, Ii j is a constant that we tune to model the conduction between thermal zones of type i and
j. Ti and Tj represent the temperatures of the respective thermal zones, and Ci is the heat capacity of
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Figure 2: Overview of the lumped parameter model.

thermal zone i. We define three constants for the conduction between thermal zones: Iair-plate, Iair-object, and
Iobject-plate, representing conduction between air and plate zones, air and object zones, and object and plate
zones, respectively.

Additionally, we introduce two constants for conduction with the surroundings: Iheat and Iside. Iheat
models the conduction between the heat pad and interacting thermal zones, while Iside models the conduction
between the air thermal zones on the sides and the wooden box. For conduction with the heat pad, the
constant is multiplied by the heat rate of the heat pad rather than a temperature difference. For conduction
to the sides, the constant is multiplied by the length of the contacting surface (which differs for different
thermal zones) and the temperature difference between the thermal zone and room temperature (20◦C).

For convection, the air flow is fixed and follows a set path: from thermal zone air left to thermal zone
air middle 1, then to thermal zone air right. Here, the flow splits towards thermal zones air middle 2, 3, and
4. From there, the different flows return to thermal zone air left. The effect of heat transfer via convection
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from thermal zone j to thermal zone i is modeled by (3).

1
Ci

Fi(Tj −Ti), (3)

Where Fi represents the flow rate from zone j to zone i. We assume incompressible air, so we only need
to calibrate three flow rates: the flow from thermal zone air right to thermal zones air middle 2, 3, and 4.
The remaining flow rates are derived from these.

We calibrate the Simulink model using the simulation trace from the 3D COMSOL model with a
heat rate of 250 W and an object-specific heat capacity of 700 ( J

kgK ). For calibration, we use the built-in
parameter estimator in Simulink with the cost function defined as the sum of squared errors.

4.3 Neural Networks

For this paper, we train two types of neural networks. The first type is the simulation neural network.
These networks take the current simulation step as input and predict the difference to the next simulation
step. For this paper, the current simulation step consists of the time, the heat rate, the specific heat capacity
of the object, and the temperature at the center of each object placed on the top, middle, and bottom plates.
The output of the neural network will be the difference in the temperature at the center of each object
in 0.5 s. We only track the temperatures of the objects, as we found this yields more accurate results.
Using these neural networks, we can simulate the autoclave dynamics. To study the effect of the amount
of training data, we train two simulation neural networks: one using the full training dataset and one using
only half of the training data.

The second type is the end-time neural network. This network takes the heat rate and object-specific
heat capacity as inputs and outputs the time when all objects reach 100◦C.

For neural network training, we chose to use smaller fully connected neural networks. There are many
architectures and changes that could be tried for the neural networks. But we use these fully connected
neural networks as a starting point. we use TensorFlow to implement the neural networks. We perform
hyperparameter tuning for three parameters: the learning rate, the number of nodes per layer, and the
number of layers. The learning rate is sampled logarithmically between 10−5 to 0.1. The number of nodes
per layer is sampled from 16 to 96 with a step size of 16. The number of layers ranges from 4 to 6 for the
simulation neural networks, and from 2 to 4 for the end-time neural network. The activation function for
the neural networks is ReLU. Hyperparameter tuning is performed using the Hyperband algorithm, with a
max epochs of 80 and a learning factor of 3.

Table 1: Found hyperparameters for the neural networks.

Model Amount of
nodes

Amount of
hidden layers Learning rate

Big simulation NN 96 6 0.0003267294024466933
Small simulation NN 80 4 0.00017768967038033528
End time NN 96 2 0.04485067855198114

The hyperparameters we found for all neural networks are summarized in table 1. The test loss for
the big and small simulation neural network are 2.35×10−6 and 1.97×10−6 respectively. The test loss
for the end time neural network is 15.41.

4.4 Validation Setup

All the models were validated across several combinations of heat rate and object-specific heat capacity.
These combinations were sampled from a 10x10 grid, with heat rates ranging from 200 W to 300 W, and
object-specific heat capacities ranging from 500 J

kgK to 900 J
kgK . Additionally, the centers of every four
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points in this grid were sampled to create an additional 9x9 grid of combinations. In total, this results in
181 different combinations.

All models were simulated for each of these combinations, and the simulations were stopped once all
objects reached a temperature of 100◦C. For training and testing the simulation neural networks, simulation
traces were generated using the 3D COMSOL model. The points from the 10x10 grid were split into
training and test datasets. The training dataset included the same number of points as the 9x9 grid. The
remaining points from the 10x10 grid were assigned to the test dataset. The big simulation neural network
was trained on the combined points from the training dataset of the 10x10 grid and the full dataset of the
9x9 grid. The small simulation neural network was trained only on the training dataset derived from the
10x10 grid. For the end time NN the training dataset contains 145 data points and the test dataset contains
36 data points.

4.5 Energy Measurement Setup

Energy measurements were conducted on a standalone computer equipped with a Intel Core i9-14900K CPU
and a MSI GeForce RTX 4080 GPU. For measuring energy usage, we employed powerstat to record the
energy usage of the processor package, DRAM controller, CPU core and graphics uncore. Powerstat uses
the Intel RAPL interface to measure the energy consumption (King, Colin 2025). GPU energy consumption
was recorded using nvidia-smi. Measurements were taken at a frequency of once per second.

The energy consumption was recorded for running all the models, as well as during hyperparameter
tuning, training of all the neural networks, and the calibration of the lumped parameter model constants.
Each complete set of measurements was repeated 34 times, with the order of the experiments randomized in
each run to account for the potential variability in system performance. The computer was also disconnected
from screens, keyboards, Wi-Fi and Bluetooth appliances to reduce the variance in the energy measurements.

5 RESULTS AND DISCUSSION

In this section we discuss the results of the experiments and draw some conclusions from them. We start
with the results of the validation experiments followed by the results of the energy measurements. We
combine these results to draw conclusions about the efficiency of the different models in function of the
number of simulations. Finally, we discuss other impacting factors on the energy efficiency.

5.1 Validation Results

For model validation, we simulated 181 combinations of heat rate and the specific heat capacity of the
object. The 2D COMSOL model, however, failed to converge for two of these combinations, so only 179
simulation traces were used in its evaluation. We recorded the time at which the objects reached 100◦C in
each simulation and compared these times to the corresponding values from the 3D COMSOL model. We
also computed the maximum absolute difference in end times between each model and the 3D COMSOL
model. These results are presented in Table 2.

We use the maximum end time difference as a safety margin for each model. To estimate the additional
energy cost associated with this safety margin, we multiplied it by the heat rate. The mean extra energy
cost is reported in table 2 as well.

We observe that the 2D COMSOL model has the largest mean absolute end time difference among
all models. This is likely because it was the only model not calibrated or tuned using data from the 3D
COMSOL simulations. The discrepancy between the 2D and 3D COMSOL models likely stems from the
2D model’s omission of heat loss through the sides of the autoclave, which causes a quicker heat up.

The lumped-parameter model shows a mean absolute end time difference of 90.22 seconds, which can
be attributed to the simplifying assumptions made during its construction.

The neural network models demonstrate high accuracy overall. The most accurate is the big simulation
neural network, likely due to its training on the largest dataset. Next in accuracy is the small simulation
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Table 2: Validation results of the various models.

Model Mean absolute
end time difference

Max absolute
end time difference

Mean extra
energy cost

2D COMSOL model 212.84 s 291.5 s 72875 J
Lumped parameter model 90.22 s 133.0 s 33250 J
Big simulation NN 0.92 s 3.0 s 750 J
Small simulation NN 3.58 s 9.5 s 2375 J
End time NN 2.38 s 16.4 s 4100 J

neural network, followed by the end time neural network. Despite being trained on only 145 data points,
the end time NN still outperforms both the 2D COMSOL and lumped-parameter models.

5.2 Energy Measurement Results

This section discusses the energy measurement results.. The mean energy usage for all the experiments
with the standard error, is shown in figure 3.

Figure 3: Energy measurements for the various models.

The experiments with the highest energy usage were the 3D COMSOL model, the big simulation NN
hyperparameter tuning, and the small simulation NN hyperparameter tuning. This result is expected, as
both 3D simulations and hyperparameter tuning are computationally expensive processes.

In contrast, the end time NN hyperparameter tuning, training, and simulation consumed significantly
less energy than the simulation NN experiments. This is because the simulation NNs were trained on
190091 and 95046 data points respectively, whereas the end time NN was trained on only 145 data points.
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5.3 Discussion

Our results demonstrate that energy consumption varies significantly across different modeling formalisms,
with distinct trade-offs between design-time and runtime. Specifically, the 3D COMSOL model and neural
network hyperparameter tuning are the most energy-intensive during the design phase, whereas operational
energy consumption is primarily driven by physics-based simulation executions. These findings emphasize
that modeling decisions made early in the design process have lasting impacts on total energy consumption
throughout the digital twin’s life cycle.

Accuracy also varies notably across modeling approaches. The 2D COMSOL model exhibits the lowest
accuracy, with a mean absolute end-time difference of 212.84 s, while the big neural network achieves
the highest accuracy, with just a 0.92 s deviation. These accuracy disparities directly influence energy
consumption through the mean extra energy cost metric, which quantifies the additional energy required to
maintain safety margins that compensate for model inaccuracies. For example, the 2D COMSOL model
requires an average of 72,875 J in extra energy, while the neural network demands only 750 J. This illustrates
a key insight: greater accuracy reduces the need for conservative safety margins, thereby lowering energy
use during operation.

Using this information, we calculate total energy cost using an adapted additive energy model (4).

Etotal = Edesign +S∗Elocal (4)

Where Etotal is the total energy usage, Edesign is the design energy cost, Elocal is the local operational energy
cost and S is the number of simulations with the model.

Figure 4 illustrates how total energy varies with the number of simulations. The results reveal a distinct

Figure 4: Total energy measurements in function of the number of simulations.

energy-accuracy trade-off pattern. For scenarios involving a limited number of simulations, classical models
like the 2D COMSOL and lumped parameter models are the most energy-efficient, despite their lower
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accuracy. Notably, the 2D COMSOL model is optimal for the first four simulations, after which the lumped
parameter model becomes more efficient. However, as the number of simulations grows, the operational
energy savings and superior accuracy of neural networks eventually compensate for their high training
costs. In our study, the small neural network becomes the most energy-efficient option after approximately
792 simulations. The big neural network becomes the most energy-efficient option after approximately
11961 simulations. These crossover points mark critical decision thresholds for digital twin deployment
strategies.

We also examined the influence of the safety margin definition on these thresholds. Our primary
analysis used the maximum absolute end-time difference as the safety margin, but if we instead consider
only undershoot errors—those that pose actual safety risks—the transition points shift. The crossover from
2D COMSOL to the lumped parameter model occurs after just three simulations (down from five), while
the big neural network surpasses the lumped parameter model after 58379 simulations. This shift occurs
because the lumped parameter model typically overestimates end times. As a result, additional safety
energy is often unnecessary.

These transition points offer essential guidance for digital twin developers aiming to optimize energy
use under varying deployment scales and accuracy demands. In large-scale deployments, such as factories
with multiple identical systems (e.g., 50 autoclaves), the cumulative number of simulations accelerates
the advantage of neural networks. In such a scenario, the energy-efficiency threshold is met after just 26
simulations per device.

Model selection can also be understood through a formalism transformation graph (Vangheluwe 2000),
which outlines relationships and approximations between modeling approaches. While our analysis empha-
sizes energy consumption and accuracy, comprehensive model selection must consider additional factors:
required precision, deployment context, model validity regions, and acceptable uncertainty levels. For
instance, in our autoclave case study, high accuracy within the operational region is essential to avoid
hazardous outcomes, minimize uncertainty, and reduce the need for costly compensatory heating. However,
applications with higher tolerance for uncertainty may benefit from simpler, less energy-intensive models.

System evolution introduces further complexity. modeling approaches vary in their adaptability to
changes in boundary conditions, physical components, and intended use. Physics-based models typically
require only parameter adjustments when operating conditions shift, whereas data-driven models often
demand complete retraining—an energy-intensive process. In our autoclave scenario, significant changes to
thermal load characteristics would necessitate neural network retraining, potentially erasing their operational
energy advantages. Therefore, classical models may offer more sustainable long-term solutions in dynamic
environments due to their adaptability and lower reconfiguration energy costs.

Based on our findings, we offer several guidelines for selecting energy-efficient modeling approaches:

1. Expected simulation volume is a key determinant, with clear transition points between optimal
models.

2. System evolution frequency should be considered, as frequent changes favor more adaptable
classical models.

3. Accuracy requirements must be balanced against the energy cost of achieving high accuracy.
4. Resource availability during design and operation phases may constrain feasible modeling choices.
5. Deployment scale should factor into total energy cost assessments, especially in replicated systems.

Besides these guidelines, designers should also use common sense and best engineering practices. For
example, when high accuracy is needed, e.g. to properly design a product, it would be best to stick to the
3D COMSOL model. For a digital twin that predicts the duration of a sterilization task, using the most
energy-intensive approach is not useful. Likely the product also lacks the computing capabilities to run it.
For such a case, our results can help with making an appropriate choice between the derived models.

In summary, neural networks are ideal for mass-produced systems with stable conditions and high
simulation counts, while classical models are better suited to low-volume or frequently evolving applications.
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Sustainable digital twin implementation hinges on choosing the right modeling formalism based on a holistic
understanding of energy trade-offs, system dynamics, and operational context.

6 FUTURE WORK AND CONCLUSION

In this paper, we examined the trade-offs between energy consumption and accuracy across different
modeling formalisms, using an autoclave system as a case study. Starting with a high fidelity 3D COMSOL
model, we derived several lower-fidelity approximations, including both classical physics-based and data-
driven neural network models. We measured and compared the energy consumption of each approach, not
only during operational simulation but also accounting for energy-intensive steps such as neural network
hyperparameter tuning and training. This analysis revealed clear trade-offs between model validity, energy
use, and predictive accuracy, as well as the critical thresholds at which it becomes advantageous to switch
from one modeling formalism to another based on deployment scale and accuracy requirements.

While the findings offer valuable insights into the relationship between energy consumption and
modeling accuracy, there are several opportunities for future work. This study focused on a limited set
of modeling formalisms, and extending the analysis to a broader range of classical and machine learning
approaches would help generalize the results. Additionally, the parameter space explored was relatively
narrow, primarily constrained to a small range of heat rates and object-specific heat capacities. Within
this range, the models demonstrated relatively consistent behavior across input variations. Expanding the
parameter space to include more extreme operating conditions could reveal new trade-offs and potentially
shift the cost-benefit dynamics between modeling approaches.
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