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ABSTRACT

We consider a short-term demand forecasting problem for semiconductor supply chains. In addition to
observed demand quantities, order entry information is available. We compute a combinational forecast
based on an exponential smoothing technique, a long short-term memory network, and the order entry
information. The weights for the different forecast sources and parameters for exponential smoothing are
computed using a genetic algorithm. Computational experiments based on a rich data set from a
semiconductor manufacturer are conducted. The results demonstrate that the best forecast performance is
obtained if all the different forecasts are combined.

1 INTRODUCTION

Demand planning is an important function in semiconductor supply chains (Mdnch et al. 2018a, 2018b). It
is complicated since short product life cycles limit the amount of data that can be collected and to which
statistical forecast approaches can be applied. Moreover, certain products in a company's portfolio may be
substitutes, while other products may be complementary, for instance, a particular CPU and its associated
chipset. The long fabrication cycle times observed in semiconductor supply chains resulting in long lead
times, often require demand forecasts to be made well in advance of demand realization. This leads to
increasing forecast uncertainty. The same chip may be sold in markets with different characteristics
resulting in a different set of demand drivers for each market. The prices of most semiconductor devices
decrease significantly over their life cycle (Uzsoy et al. 2018).

The results of demand planning are a crucial input for strategic network planning, capacity planning,
master planning, and demand fulfillment models in semiconductor supply chains (Monch et al. 2013).
Hence, it is desirable to design, implement, and test advanced forecasting models for semiconductor supply
chains.

It seems possible to apply methods based on statistical learning and data analytics for specific demand
forecasting problems that are more short-term by nature taking advantage of specific leading indicators
(Uzsoy et al. 2018). Some initial steps for short-term demand forecasting in the semiconductor industry are
reported by Habla et al. (2007) where order entry information is used as leading indicator. There is some
evidence from the literature that using advance order information in forecasting algorithms is beneficial for
many forecasting problems (see, for instance, Kekre et al. 1990; Haberleitner et al. 2010). In the present
paper, we are interested in generalizing the forecasting method of Habla et al. (2007). We propose an
optimization-based forecasting technique relying on forecast and leading indicator combinations. Moti-
vated by the survey paper of Wang et al. (2023), we are especially interested in combining statistical
forecasts, forecasts from machine learning (ML) techniques, and leading indicators. We will apply the
proposed framework to a dataset from a large semiconductor manufacturer.

The paper is organized as follows. In the next section, we describe the demand forecasting problem at
hand, discuss related work, and state research questions. The different forecast approaches including a
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hybrid of statistical forecasting and ML are discussed in Section 3. Results of computational experiments
are reported in Section 4. Finally, conclusions and future research directions are provided in Section 5.

2 PROBLEM SETTING AND ANALYSIS

2.1 Forecasting Problem

The forecasting problem to be solved, a generalization of the problem considered by Habla et al. (2007), is
based on the following data:

1.  We assume that observed demand DQ;_j,j =0,...,D is available where D >0, i.e., we have
demand information for D + 1 previous periods.

2.  Moreover, we have K > 1 forecast sources labeled by k =1, ..., K. We assume that we have or
alternatively can compute the historical forecast quantities FCy;_j j = 0,..,D,k =1,...,K of the
different sources for D + 1 previous periods.

3. In addition, we assume that we have L leading indicators labeled by [ =1, ...,L. The quantities
Lit—j,j=0,.., D,l =1, ..., L form the historical leading indicator values.

4. Finally, we have the K values for the different forecast sources and the L values for the leading

indicator values for the current period t + 1, i.e., we know FCy¢yq k=1,..,K and [;14q.1 =
1,..,L.

We are interested in computing a 1-step ahead forecast:
FCii1 = Yko1 kFCrprr + Xica Buliesrs (1)

for appropriately selected weighting parameters ay, k = 1, ..., K and 5,1 = 1, ..., L. Note that we do not
know DQ;,1. An example for the available data is shown in Table 1.

Table 1: Exampled data for the forecasting problem at hand.

Period | FC; | ... | FCk I I, Forecast FC DQ
t-D 100 | 200 | 150 20 90 60 120 130
120 | 210 | 130 20 100 70 100 90
t-1 55 180 | 100 40 80 70 90 120

t 90 | 90 80 20 70 90 105 100
t+1 25 (100 | 90 10 90 60 to be calculated -

2.2 Discussion of Related Work and Research Questions

Methods for short-term demand forecasting are reviewed by Elias et al. (2006). However, methods based
on a combination of leading indicator values such as advance order information with more conventional
forecasting methods are not discussed in this paper. Habla et al (2007) propose such a method for a short-
term demand forecasting problem arising in semiconductor manufacturing. Exponential smoothing
techniques are combined with order entry information which can be considered as advance demand
information. The two forecast sources are combined by appropriate weight values which are chosen together
with parameters for the exponential smoothing scheme by nonlinear optimization. Only a 1-step-ahead
forecast is computed. Habla et al. (2008) extends this approach towards a h-step-ahead forecasting method.
In both papers, a commercial nonlinear solver is used.
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A forecasting algorithm that takes into account advance order information is proposed by Haberleitner
etal. (2010) based on earlier work by Kekre et al. (1990). The approach is imbedded into a demand planning
system for a make-to-order manufacturer. The system is also able to select the optimal forecasting model
type and the level of integration of advance demand information based on the patterns of a particular time
series. The approaches by Habla et al. (2007) and Habla et al. (2008) can be considered as special forecast
combination approaches. Based on the survey paper Wang et al. (2023) it seems beneficial to incorporate
ML methods in forecast combination approaches.

Therefore, the following two research questions (RQs) are addressed in the present paper:

RQ1: Can we improve the results obtained by Habla et al (2007) by including state-of-the-art ML
approaches as additional forecast sources in forecast combination approaches?
RQ2: Is it possible to replace the commercial nonlinear solver by a genetic algorithm?

3 SOLUTION APPROACHES

3.1 Forecasting Framework

The forecast quantities FC, j,j=0,..,D, k =1, ..., K are either available or can be computed based on
the observed demand quantities DQ;_j,j = 0, ..., D. In the latter case, we may have to choose appropriate
parameters for a given forecast source. Let us assume that the nj,, = 0 parameters (yk1, s ank) must be
selected for forecast source k. Therefore, we can see the forecast quantities as a function of the parameters
Yki» 1.€., we have FCk_t_DH(ykl, ---;ank)- Of course, the value of FCy ¢_p4; typically depends on the
observed demand quantities. We proposed the following nonlinear optimization formulation for computing
appropriate parameter values for the forecast value (1) for period t + 1. It is based on the following sets
and indices, parameters, and decision variables.

Sets and indices:

k=1,..K: index of the kth forecast source
l=1,..,L: index of the Ith leading indicator
Sk =1,..., 8 index of the s, th constraint for the parameters of the forecast approach for kth
forecast source
t-D,..,t: periods in the past
t+1: current period
Parameters:
DQ;-j: observed demand forj =0, ..., D
FCyy_j: historical forecast for period t — j,j = 0, ..., D, and forecast source k = 1, ..., K
I—j: historical leading indicator value for period t —j,j =0,...,D, and leading

indicator l =1, ...,L

Decision variables:

ag: weight for forecast value of the kth forecast source
B weight for the value of the /th leading indicator
Yij: jth parameter to be chosen for the forecast approach of the kth forecast source.

The optimization formulation is stated as follows:

. 2
min ZiD=O{ZII§=1 akFCk,t—DH'(Ykl' Ty YRnk) + 21L=1 Bulit-p+i — DQt—D+i} @)

1737



Herding and Mdnch

subject to

Yhoro + i B <1 3)
fksk(ykll ---'ank) S 0, k= 1, ...,K, Sk = 1, ...,Sk (4)
(047 >0 'ﬁl = 0, ykik € Dik’ k= 1, ...,K,l = 1, ...,L,ik = 1,...,nk. (5)

The nonlinear objective function to be minimized, i.e. F(al,...,aK,Bl,...,ﬁL,yll, ...,yKnK) =

Peo(Zk=1 aFCrp—pai Wicts - Yieny) + 2iz1 Bilye—pai — DQt—D+i)2r can be found in (2). It is the sum
of the difference of the weighted combined forecast and leading indicator value for period t — D + i and
the corresponding observed demand quantity. (3) is a constraint for the weighting parameters for different
forecast sources and leading indicators. Constraints for possible parameters of the different forecast
approaches are modeled by constraint set (4). Here, fi,, :R™ — R are smooth functions. The non-

negativity constraints for the decision variables a and B; and the domains D;, for the decision variables
Yki, are expressed by (5).

3.2  Exponential Smoothing

Exponential smoothing is a widely used statistical forecast approach (Elias et al. 2006; Bisgaard and
Kulahci 2011) to compute forecasts based on observed demand. For the sake of simplicity, we suppress the
index of the forecast source in the following description. A possible forecast source is given by an
exponential smoothing approach with two parameters to be selected. We start from the expression

(1=7v2)v1+v2 DQp, (6)

where y; is the initial value for the first period in the past and y, € [0,1] is the smoothing parameter of the
scheme. After repeating this recursive relationship i times, we obtain the following explicit expression:

FKe p+i(ri,v2):=v1- (1= v2)" 41, 'Z;":o(l ) DQ¢-p+j,1=0,...,D. (7

3.3  Long Short-term Memory-based Approach

A long short-term memory (LSTM) network is a specialized type of recurrent neural network (RNN) trained
by using backpropagation through time (BPTT). It is specifically designed to overcome the vanishing
gradient problem which often hinders the training of traditional RNNs (Bengio et al. 1994). For a more
detailed explanation of how an LSTM model is used for time series analysis, we refer to Song et al. (2020).

LSTM networks are well-suited for regression tasks, particularly when the input data has a sequential
structure because they are designed to capture dependencies and patterns over time. Their internal memory
cells and gating mechanisms allow them to retain relevant information from previous time steps, which is
crucial for predicting continuous values that depend on a historical context. This makes LSTMs highly
effective for tasks such as time series forecasting, where the current prediction is influenced by past
trends/patterns and values. The architecture of the used LSTM model is shown in Figure 1.

The number of influencing factors of the demand forecasting prediction determines the dimension of
the input layer. In the present situation, the product and the observed, i.e. historical, demand are used as
input data which results in a two-dimensional input layer. The LSTM layer is embedded to memorize and
extract containing information from input data, where the Adam optimizer (Kingma and Ba 2015) is used
to update the weights and bias. The mean squared error is used as fitness function. A fully connected layer
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provides the final output. Since we are only interested in predicting a single forecast value, we only require

one dimension in the output layer.
Output CF
|

LSTM
layer

60
o
Q

Input
layer

Figure 1: LSTM network architecture.

The number of neurons in the LSTM layer as well as the number of previously observed demand points
that influence the prediction of the next demand forecast, have to be determined in the process of
constructing the LSTM model. For determining suitable values for these two quantities, we use a simple
grid search during the training of the LSTM model.

The proposed LSTM model is used to search for the forecast of a certain product where the observed
demand as well as the product of the demand are used as input and the 1-step-ahead forecast of the next
period as output. Therefore, if the product is given, the forecast can be predicted by the model. The
following three steps must be performed to use the LSTM approach for the short-term demand forecasting
problem at hand.

Step 1: Data-Preprocessing

Since we do not have any missing data in the data set, we can immediately normalize the data to the
interval [0,1] to avoid model parameters being dominated by a large or small data range since the LSTM
network is sensitive to the scale of the input data. The normalization function is given by

Xold—Xmin
X == 8
new Xmax—Xmin’ ( )

where x,,,, represents the normalized data points inserted in the training process, while x,;4, X;nin, and
Xmax are the original value of the sample data and values for lower and upper bounds, respectively. Based
on the characteristics of demand forecasting and the LSTM network, the model can be described as

FC(p,t +1) = FC(p, DQy(t), DQy(t — 1), ..., DQp(t — 1)), )

where FC(p,t + 1) is the forecast value of product p for period t + 1. The quantities DQ,(t — k), k =
0, ...,n describes the previously observed demand values belonging to the product p, and n is the used time
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window size (time lag). Typically, the more recent the observed demand is, the more it influences the
forecast. To model this behavior the time lag is used to limit the number of past observed demand values.
Expression (10) shows an example input matrix where n = 2 is used for the sake of simplicity:

Input Output
/p DQ,(1) DQy(2)  DQy(3) FC(p,4)
p  DQy(2) DQy(3)  DQp(4) FC®,5) | (10)

p DQp(t—2) DQuy(t—1) DQu(t)/ \FC(p,t+1)
Note that for each product p € P a separate matrix of the same structure exists.
Step 2: Training of the LSTM model

The reframed and normalized data is split into two parts. In typical regression tasks, this is commonly
carried out using cross-validation. However, in time series analysis, preserving the order of the time series
is crucial. Therefore, a more appropriate approach involves splitting the dataset chronologically into
training and testing subsets is used.

A simple strategy is to allocate a fixed percentage of the earliest observations for training and reserve
the remaining portion for testing purposes. In our experiments, the first 80% is taken as a training set and
the last 20% as a testing set.

The LSTM model is fed by the training set during which appropriate values of the time window size
and number of neurons of the LSTM layer are determined by a grid search. We use #neurons € {1, ...,50},
and for the time window size we use n € {1, ...,28} as a grid for the LSTM layer. It is useful to align the
size of the time window with the number of data points of the time series.

Step 3: Forecasting with the LSTM model
To forecast demand during the inference phase, the testing set obtained in Step 2 contains the future
forecast information. In the present paper, we are only interested in a 1-step-ahead forecast. An example

input matrix for p = p1 and n = 2 is shown next:

Input Ouput
(r1 DQ(t—2) DQI—1) DQ®)(FC(pl,t+1)). (11)

Before we can obtain the final forecast, we have to denormalize the output data FC(p1,t + 1). For
measuring the performance, the denormalized forecast can be compared with the observed demand DQ (t +
1) extracted from the testing set of Step 2.

3.4  Order Entry as Leading Indicator and Simple Reference Approaches

Firm orders FO are given for the periods t — D, ..., t + 1. Firm orders for period t + 1 are determined in
period t + 1 — k by sum up all the order entry quantities with a planned completion time in period t + 1
that are arrived before or within period ¢ + 1 — k. The quantity k is given by lead time considerations. In
our experiments we use k = 1 period.

The first reference approach is the firm order scheme. We simply consider the quantity of the firm
orders for the current period as forecast. The procedure to compute a forecast for period t can then be
described as follows:
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FCpi1:=FO¢y1, (12)

where FO,, 1 denotes the order entry for period t + 1. This procedure is clearly memoryless because it does
not consider any observed demand information. We denote this approach by order entry (OE).

The second approach is based on the idea that the ratio of the demand and the firm order quantities of
the current period is equal to the same ratio for the corresponding quantities of the previous period for a
given product. We obtain:

FOpiq .

— ——DQ,,ifFO, >0

FCess =={Fof Cuitl0: >0 (13)
FO;, 4, otherwise

where DQ; denotes the observed demand value for a certain product in period t. We refer to this method as
book-to-bill (BB) procedure (cf. Habla et al. 2007).

3.5 Solution Aspects

We use a genetic algorithm (GA) to implement the optimization-based forecasting framework described in
Subsection 3.1. GAs have been used extensively for solving hard and large-scale optimization problems,
especially when the objective function is nonlinear (Gallagher and Sambridge 1994).

Since the objective function (2) of the optimization formulation (2)-(5) belonging to the forecasting
framework is nonlinear, a GA seems a promising solution. Such an approach avoids the usage of
commercial nonlinear solvers based on methods such as, for instance, the generalized reduced gradient
(GRQG2) algorithm (Lasdon et al. 1974; Lasden and Waren 1978) or trust region methods (Conn et al. 2000).

A GA is a population-based approach (Michalewicz 1996). A single iteration is called a generation.
The individuals of the new generation are obtained from the individuals of the previous one by applying
genetic operators such as crossover and mutation. We use the one-point crossover for reproduction as well
as the swap mutator as mutation procedure.

We are interested in optimizing the set of decision variables ay ,pB;,yy; from the forecasting
framework. Therefore, an array with real numbers as entries is used as representation in the GA. The array
is divided into three sections where each section represents one of the three sets of decision variables. Figure
2 shows the structure of the array for encoding the optimization problem (2)-(5). The two red lines are used
as visual separators of the three sections. Clearly, we see from (5) that the length of the encoding array is
K+L+Y8_ ng.

ay ay b1 B Y11 Yeng

Figure 2: Representation used in the GA.

We need to evaluate the fitness of each of individual, i.e. chromosome, of the current population where
only the fittest individuals are selected for the next population. We use the objective function (2) of the
forecasting framework as fitness function. Since the GA is not capable to ensure the feasibility of the
constrains used in the optimization formulation (2)-(5), we have to reformulate the fitness function. We use

F(ap e O, By s B V11 ---;an,() = Z?:o(Z’é:l aFCyt—p+i (Vi1 ---:ank) + ZlL=1 Bilye—p+i —
2 2
DQe-psi) +& {(Thoyan +Zhap— 1)}, (14)
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where we introduce the penalty value £ > 0 to enforce that the constraint Ya_; @) + Y 8 S 1is

fulfilled. Here, we abbreviate x* := max(x, 0). Additional penalty values may be required to ensure that
the constraint set (4) is fulfilled.

4 COMPUTATIONAL EXPERIMENTS

4.1 Design of Experiments

To evaluate the performance of the different forecasting schemes, real-world historical data of a large
semiconductor company is applied. The data contains demand and firm order information for 1189 products
from 28 months. Based on the different forecast approaches discussed in Section 3, we are interested in
investigating the following five scenarios:

1. LSTM: In this scenario, we only use the LSTM approach as forecast source.

2. ES-OE-GA: This scenario consists of the exponential smoothing forecast source and the order entry
as leading indicator value. We combine them using the GA as described in Subsection 3.5.

3.  OE-LSTM-GA: The third scenario again uses the order entry as leading indicator value as well as the
LSTM forecast source. We combine them by using the GA.

4. LSTM-ES-GA: In this scenario, we apply the exponential smoothing forecast source and the LSTM
forecast source. We again combine them by using the GA.

5. LSTM-ES-OE-GA: In this last scenario, we use the two forecast sources and the leading indicator.
We again combine them using the GA.

Note that the ES-OE-GA is exactly the approach proposed by Habla et al. (2007), although a
commercial nonlinear solver based on the GRG2 algorithm is applied there.

We use the symmetric mean absolute percentage error (SMAPE) as performance measure. The SMAPE
value is defined as

Zt=1|1 Ct DQt|)
P e 0/ - — == - <l 5
SMA E— 100/0 (1 ZTLL:l(FACt DQt) B (1 )

where FC, is the total forecast for period t and DQ, defines the corresponding total observed demand for
period t of the planning horizon T. We use equation (1) for D = 8 periods to calculate FC,. The SMAPE
produces performance values between 0 (worst) and 100 (best). Periods with large demand have a larger
influence on the accuracy than periods with small demand. The SMAPE is widely used to measure the
performance in demand forecasting.

4.2  Implementation Issues and Parameter Setting

The LSTM network is implemented on the basis of Keras (cf. Keras 2025), a deep learning library using
Tensorflow as backend. The entire workflow is coded using the Python 3.11 programming language and is
executed on a PC with Intel ® Core™ i7-14700 3.60GHz CPU and 32 GB of RAM. The forecasting
framework is coded in the Python programming language. The experiments are carried out on a computer
with an Intel ® Core™ 17-14700 3.60GHz CPU and 32 GB of RAM. We use the GALib framework (Wall
1999) to implement the GA.

For the GA, we apply 250 generations, each consisting of 30 individuals. The crossover probability is
set to 0.9 while the mutation probability is chosen as 0.1 A replacement rate of 0.55 is used in the GA with
overlapping populations. These settings are determined based on preliminary experiments in combination
with a trial and error strategy. We use a very large positive number for the penalty value §.
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4.3 Results

We show the results of the performed computational experiments in Table 1. Note that the entries in this
table are percentage values due to the definition of the SMAPE measure. The best performing scenario is

marked bold.

Table 1: Computational results.

Scenario SMAPE
LSTM 64.19%
ES-OE-GA 56.37%
OE-LSTM-GA 76.84%
BB 52.79%

OE 49.31%
LSTM-ES-GA 73.60%
LSTM-ES-OE-GA 86.28%

The results found in Table 1 are visualized in Figure 3.

Result Overview
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Figure 3: SMAPE values (in %) depending on the scenario.

We can see that the combination of the different forecast sources and the order entry, i.e. the scenario
LSTM-ES-OE-GA, leads to the largest SMAPE value. Using only exponential smoothing and the order
entry results in a fairly small SMAPE value. This approach only outperforms the two simple reference
schemes. We also observe that the LSTM approach alone leads to a fairly large SMAPE value. This is
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reasonable since the LSTM approach works well for recognizing patterns in time series. This assumption
is also supported by the fact that all scenarios where the LSTM is involved lead to fairly large SMAPE
values.

We also observe that the parameter optimization in general helps to increase the SMAPE values.
Whenever the GA is applied, we find large SMAPE values. This is reasonable since the GA optimizes the
algorithm parameters of the exponential smoothing as well as the weights of the different forecast sources
and the involved indicator value.

On the one hand, including the hyperparameters of the LSTM approach into the GA-based optimization
does not lead to any further SMAPE improvements. On the other hand, the overall computing time of the
optimization increases dramatically since the GA has to evaluate thousands of potential solutions where for
each solution a complete retaining of the LSTM has to be performed. It turns out that a proactive upfront
training of the LSTM approach including a grid search for hyperparameter tuning as described in Subsection
3.3 leads to similar SMAPE values while the computing time is much smaller.

5 CONCLUSIONS AND FUTURE WORK

We presented a framework for a short-term forecasting problem in semiconductor manufacturing based on
forecast combinations including statistical forecast methods and ML approaches. A GA was used to select
parameters for the forecast sources and for weighting the different forecast sources and leading indicators.
A hybrid approach including exponential smoothing, LSTM, and order entry information performed best
among the different possible combinations of forecast sources and leading indicators.

There are several directions for future research. First of all, we believe that it is possible to extend the
optimization model in such a way that h-step-ahead forecasting is possible. Time series with trend and
seasonality should be considered too. This can be carried out, for instance, by replacing the exponential
smoothing approach used in in the present paper by the Holt-Winters method. Moreover, it would be
interesting to consider larger time series, in this paper, we use only 28 data points per time series. Another
direction is considering more leading indicator values. Appropriate examples can be found, for instance, in
Elias et al. (2008). Finally, we are interested in replacing the grid search approach to determine
hyperparameters of the LSTM model by a metaheuristic approach (cf., for instance, Song et al. 2020).
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