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ABSTRACT 

We consider a short-term demand forecasting problem for semiconductor supply chains. In addition to 
observed demand quantities, order entry information is available. We compute a combinational forecast 
based on an exponential smoothing technique, a long short-term memory network, and the order entry 
information. The weights for the different forecast sources and parameters for exponential smoothing are 
computed using a genetic algorithm. Computational experiments based on a rich data set from a 

semiconductor manufacturer are conducted. The results demonstrate that the best forecast performance is 
obtained if all the different forecasts are combined. 

1 INTRODUCTION 

Demand planning is an important function in semiconductor supply chains (Mönch et al. 2018a, 2018b). It 
is complicated since short product life cycles limit the amount of data that can be collected and to which 
statistical forecast approaches can be applied. Moreover, certain products in a company's portfolio may be 

substitutes, while other products may be complementary, for instance, a particular CPU and its associated 
chipset. The long fabrication cycle times observed in semiconductor supply chains resulting in long lead 
times, often require demand forecasts to be made well in advance of demand realization. This leads to 
increasing forecast uncertainty. The same chip may be sold in markets with different characteristics 
resulting in a different set of demand drivers for each market. The prices of most semiconductor devices 
decrease significantly over their life cycle (Uzsoy et al. 2018).  

The results of demand planning are a crucial input for strategic network planning, capacity planning, 
master planning, and demand fulfillment models in semiconductor supply chains (Mönch et al. 2013). 
Hence, it is desirable to design, implement, and test advanced forecasting models for semiconductor supply 
chains.  

It seems possible to apply methods based on statistical learning and data analytics for specific demand 
forecasting problems that are more short-term by nature taking advantage of specific leading indicators 

(Uzsoy et al. 2018). Some initial steps for short-term demand forecasting in the semiconductor industry are 
reported by Habla et al. (2007) where order entry information is used as leading indicator. There is some 
evidence from the literature that using advance order information in forecasting algorithms is beneficial for 
many forecasting problems (see, for instance, Kekre et al. 1990; Haberleitner et al. 2010). In the present 
paper, we are interested in generalizing the forecasting method of Habla et al. (2007). We propose an 
optimization-based forecasting technique relying on forecast and leading indicator combinations. Moti-

vated by the survey paper of Wang et al. (2023), we are especially interested in combining statistical 
forecasts, forecasts from machine learning (ML) techniques, and leading indicators. We will apply the 
proposed framework to a dataset from a large semiconductor manufacturer.  

The paper is organized as follows. In the next section, we describe the demand forecasting problem at 
hand, discuss related work, and state research questions. The different forecast approaches including a 
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hybrid of statistical forecasting and ML are discussed in Section 3. Results of computational experiments 
are reported in Section 4. Finally, conclusions and future research directions are provided in Section 5.  

2 PROBLEM SETTING AND ANALYSIS 

2.1 Forecasting Problem 

The forecasting problem to be solved, a generalization of the problem considered by Habla et al. (2007), is 
based on the following data: 
 
1. We assume that observed demand 𝐷𝑄𝑡−𝑗, 𝑗 = 0,… , 𝐷 is available  where 𝐷 > 0,  i.e., we have 

demand information for 𝐷 + 1 previous periods. 

2. Moreover, we have 𝐾 ≥ 1  forecast sources labeled by 𝑘 = 1,… , 𝐾.  We assume that we have or 
alternatively can compute the historical forecast quantities 𝐹𝐶𝑘,𝑡−𝑗, 𝑗 = 0,… , 𝐷, 𝑘 = 1,… , 𝐾 of the 
different sources for 𝐷 + 1 previous periods. 

3. In addition, we assume that we have 𝐿 leading indicators labeled by 𝑙 = 1,… , 𝐿 . The quantities 
𝐼𝑙,𝑡−𝑗, 𝑗 = 0,… , 𝐷, 𝑙 = 1,… , 𝐿 form the historical leading indicator values. 

4. Finally, we have the 𝐾  values for the different forecast sources and the 𝐿  values for the leading 

indicator values for the current period 𝑡 + 1 , i.e., we know 𝐹𝐶𝑘,𝑡+1, 𝑘 = 1,… , 𝐾  and 𝐼𝑙,𝑡+1. 𝑙 =
1,… , 𝐿. 

 
We are interested in computing a 1-step ahead forecast: 

 
       𝐹𝐶̂𝑡+1 ≔ ∑ 𝛼𝑘𝐹𝐶𝑘,𝑡+1

𝐾
𝑘=1 + ∑ 𝛽𝑙𝐼𝑙,𝑡+1

𝐿
𝑙=1 ,        (1) 

 
for appropriately selected weighting parameters 𝛼𝑘, 𝑘 = 1,… , 𝐾 and 𝛽𝑙, 𝑙 = 1,… , 𝐿. Note that we do not 
know 𝐷𝑄𝑡+1. An example for the available data is shown in Table 1. 
 

Table 1: Exampled data for the forecasting problem at hand. 

Period FC1 …. FCK I1 … IL Forecast 𝐹𝐶̂ 𝑫𝑸  

t-D 100 200 150 20 90 60 120 130 

… 120 210 130 20 100 70 100 90 

t-1 55 180 100 40 80 70 90 120 

t 90 90 80 20 70 90 105 100 

t+1 25 100 90 10 90 60 to be calculated - 

 

2.2 Discussion of Related Work and Research Questions 

Methods for short-term demand forecasting are reviewed by Elias et al. (2006). However, methods based 
on a combination of leading indicator values such as advance order information with more conventional 
forecasting methods are not discussed in this paper. Habla et al (2007) propose such a method for a short-
term demand forecasting problem arising in semiconductor manufacturing. Exponential smoothing 

techniques are combined with order entry information which can be considered as advance demand 
information. The two forecast sources are combined by appropriate weight values which are chosen together 
with parameters for the exponential smoothing scheme by nonlinear optimization. Only a 1-step-ahead 
forecast is computed. Habla et al. (2008) extends this approach towards a h-step-ahead forecasting method. 
In both papers, a commercial nonlinear solver is used. 
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A forecasting algorithm that takes into account advance order information is proposed by Haberleitner 
et al. (2010) based on earlier work by Kekre et al. (1990). The approach is imbedded into a demand planning 
system for a make-to-order manufacturer. The system is also able to select the optimal forecasting model 

type and the level of integration of advance demand information based on the patterns of a particular time 
series. The approaches by Habla et al. (2007) and Habla et al. (2008) can be considered as special forecast 
combination approaches. Based on the survey paper Wang et al. (2023) it seems beneficial to incorporate 
ML methods in forecast combination approaches.  

Therefore, the following two research questions (RQs) are addressed in the present paper: 
 

RQ1: Can we improve the results obtained by Habla et al (2007) by including state-of-the-art ML 
approaches as additional forecast sources in forecast combination approaches? 

RQ2: Is it possible to replace the commercial nonlinear solver by a genetic algorithm? 

3 SOLUTION APPROACHES 

3.1 Forecasting Framework 

The forecast quantities 𝐹𝐶𝑘,𝑡−𝑗, 𝑗 = 0,… , 𝐷, 𝑘 = 1,… , 𝐾 are either available or can be computed based on 

the observed demand quantities 𝐷𝑄𝑡−𝑗, 𝑗 = 0,… , 𝐷. In the latter case, we may have to choose appropriate 

parameters for a given forecast source. Let us assume that the 𝑛𝑘 ≥ 0 parameters (𝛾𝑘1, … , 𝛾𝑘𝑛𝑘) must be 

selected for forecast source 𝑘. Therefore, we can see the forecast quantities as a function of the parameters 

𝛾𝑘𝑖 , i.e., we have 𝐹𝐶𝑘,𝑡−𝐷+𝑖(𝛾𝑘1, … , 𝛾𝑘𝑛𝑘). Of course, the value of 𝐹𝐶𝑘,𝑡−𝐷+𝑖 typically depends on the 

observed demand quantities. We proposed the following nonlinear optimization formulation for computing 

appropriate parameter values for the forecast value (1) for period 𝑡 + 1. It is based on the following sets 

and indices, parameters, and decision variables. 
 
Sets and indices: 
𝑘 = 1,… , 𝐾: index of the 𝑘th forecast source 
𝑙 = 1,… , 𝐿: index of the 𝑙th leading indicator 
𝑠𝑘 = 1,… , 𝑆𝑘:  index of the 𝑠𝑘 th constraint for the parameters of the forecast approach for 𝑘th 

forecast source  

𝑡 − D,… , 𝑡: periods in the past 
𝑡 + 1: current period 

 
Parameters: 

𝐷𝑄𝑡−𝑗: observed demand for 𝑗 = 0,… , 𝐷 

𝐹𝐶𝑘,𝑡−𝑗 : historical forecast for period 𝑡 − 𝑗, 𝑗 = 0,… , 𝐷, and forecast source 𝑘 = 1,… , 𝐾 

𝐼𝑙,𝑡−𝑗: historical leading indicator value for period 𝑡 − 𝑗, 𝑗 = 0,… , 𝐷, and leading 

indicator 𝑙 = 1,… , 𝐿 
 
Decision variables: 

𝛼𝑘: weight for forecast value of the 𝑘th forecast source  

𝛽𝑙: weight for the value of the lth leading indicator 

𝛾𝑘𝑗: 𝑗th parameter to be chosen for the forecast approach of the 𝑘th forecast source. 

 
The optimization formulation is stated as follows: 
 

min ∑ {∑ 𝛼𝑘𝐹𝐶𝑘,𝑡−𝐷+𝑖(𝛾𝑘1, … , 𝛾𝑘𝑛𝑘)
𝐾
𝑘=1 +∑ 𝛽𝑙𝐼𝑙,𝑡−𝐷+𝑖

𝐿
𝑙=1 − 𝐷𝑄𝑡−𝐷+𝑖}

2𝐷
𝑖=0   (2) 
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subject to 
 

 

∑ 𝛼𝑘 +
𝐾
𝑘=1  ∑ 𝛽𝑙 ≤ 1

𝐿
𝑙=1  (3) 

𝑓𝑘𝑠𝑘(𝛾𝑘1, … , 𝛾𝑘𝑛𝑘) = 0, 𝑘 = 1,… , 𝐾, 𝑠𝑘 = 1,… , 𝑆𝑘 (4) 

𝛼𝑘 ≥ 0 , 𝛽𝑙 ≥ 0, 𝛾𝑘𝑖𝑘 ∈ 𝐷𝑖𝑘, 𝑘 = 1,… , 𝐾, 𝑙 = 1,… , 𝐿, 𝑖𝑘 = 1,… , 𝑛𝑘. (5) 

The nonlinear objective function to be minimized, i.e. 𝐹(𝛼1, … , 𝛼𝐾 , 𝛽1, … , 𝛽𝐿 , 𝛾11, … , 𝛾𝐾𝑛𝐾) ≔

∑ (∑ 𝛼𝑘𝐹𝐶𝑘,𝑡−𝐷+𝑖(𝛾𝑘1, … , 𝛾𝑘𝑛𝑘)
𝐾
𝑘=1 + ∑ 𝛽𝑙𝐼𝑙,𝑡−𝐷+𝑖

𝐿
𝑙=1 − 𝐷𝑄𝑡−𝐷+𝑖)

𝐷
𝑖=0

2
, can be found in (2). It is the sum 

of the difference of the weighted combined forecast and leading indicator value for period 𝑡 − 𝐷 + 𝑖 and 

the corresponding observed demand quantity. (3) is a constraint for the weighting parameters for different 

forecast sources and leading indicators. Constraints for possible parameters of the different forecast 

approaches are modeled by constraint set (4). Here, 𝑓𝑘𝑠𝑘: ℝ
𝑛𝑘 → ℝ  are smooth functions. The non-

negativity constraints for the decision variables 𝛼𝑘 and  𝛽𝑙 and the domains 𝐷𝑖𝑘  for the decision variables 

𝛾𝑘𝑖𝑘  are expressed by (5).  

3.2 Exponential Smoothing 

Exponential smoothing is a widely used statistical forecast approach (Elias et al. 2006; Bisgaard and 
Kulahci 2011) to compute forecasts based on observed demand. For the sake of simplicity, we suppress the 
index of the forecast source in the following description. A possible forecast source is given by an 
exponential smoothing approach with two parameters to be selected. We start from the expression  

 
           (1 − 𝛾2) ⋅ 𝛾1 + 𝛾2 ⋅ 𝐷𝑄𝑡−𝐷,        (6) 
 

where 𝛾1 is the initial value for the first period in the past and 𝛾2 ∈ [0,1] is the smoothing parameter of the 

scheme. After repeating this recursive relationship 𝑖 times, we obtain the following explicit expression: 
 

  𝐹𝐾𝑡−𝐷+𝑖(𝛾1, 𝛾2):= 𝛾1 ⋅ (1 − 𝛾2)
𝑖+1 + 𝛾2 ⋅ ∑ (1 − 𝛾2)

𝑖−𝑗 ⋅ 𝐷𝑄𝑡−𝐷+𝑗
𝑖
𝑗=0 , 𝑖 = 0,… , 𝐷.   (7) 

 

3.3 Long Short-term Memory-based Approach 

A long short-term memory (LSTM) network is a specialized type of recurrent neural network (RNN) trained 
by using backpropagation through time (BPTT). It is specifically designed to overcome the vanishing 

gradient problem which often hinders the training of traditional RNNs (Bengio et al. 1994). For a more 
detailed explanation of how an LSTM model is used for time series analysis, we refer to Song et al. (2020). 

LSTM networks are well-suited for regression tasks, particularly when the input data has a sequential 
structure because they are designed to capture dependencies and patterns over time. Their internal memory 
cells and gating mechanisms allow them to retain relevant information from previous time steps, which is 
crucial for predicting continuous values that depend on a historical context. This makes LSTMs highly 

effective for tasks such as time series forecasting, where the current prediction is influenced by past 
trends/patterns and values. The architecture of the used LSTM model is shown in Figure 1. 

The number of influencing factors of the demand forecasting prediction determines the dimension of 
the input layer. In the present situation, the product and the observed, i.e. historical, demand are used as 
input data which results in a two-dimensional input layer. The LSTM layer is embedded to memorize and 
extract containing information from input data, where the Adam optimizer (Kingma and Ba 2015) is used 

to update the weights and bias. The mean squared error is used as fitness function. A fully connected layer 
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provides the final output. Since we are only interested in predicting a single forecast value, we only require 
one dimension in the output layer. 

 

Figure 1: LSTM network architecture. 
 
The number of neurons in the LSTM layer as well as the number of previously observed demand points 

that influence the prediction of the next demand forecast, have to be determined in the process of 
constructing the LSTM model. For determining suitable values for these two quantities, we use a simple 
grid search during the training of the LSTM model. 

The proposed LSTM model is used to search for the forecast of a certain product where the observed 

demand as well as the product of the demand are used as input and the 1-step-ahead forecast of the next 
period as output. Therefore, if the product is given, the forecast can be predicted by the model. The 
following three steps must be performed to use the LSTM approach for the short-term demand forecasting 
problem at hand. 

 
Step 1: Data-Preprocessing 

 
Since we do not have any missing data in the data set, we can immediately normalize the data to the 

interval [0,1] to avoid model parameters being dominated by a large or small data range since the LSTM 
network is sensitive to the scale of the input data. The normalization function is given by 
 

           𝑥𝑛𝑒𝑤 =
𝑥𝑜𝑙𝑑−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
,           (8) 

 

where 𝑥𝑛𝑒𝑤 represents the normalized data points inserted in the training process, while 𝑥𝑜𝑙𝑑, 𝑥𝑚𝑖𝑛, and 

𝑥𝑚𝑎𝑥 are the original value of the sample data and values for lower and upper bounds, respectively. Based 

on the characteristics of demand forecasting and the LSTM network, the model can be described as 

 

     𝐹𝐶(𝑝, 𝑡 + 1) = 𝐹𝐶(𝑝, 𝐷𝑄𝑝(𝑡), 𝐷𝑄𝑝(𝑡 − 1),… , 𝐷𝑄𝑝(𝑡 − 𝑛)) ,     (9) 

 

where 𝐹𝐶(𝑝, 𝑡 + 1) is the forecast value of product 𝑝 for period 𝑡 + 1. The quantities 𝐷𝑄𝑝(𝑡 − 𝑘), 𝑘 =

0,… , 𝑛  describes the previously observed demand values belonging to the product 𝑝, and 𝑛 is the used time 
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window size (time lag). Typically, the more recent the observed demand is, the more it influences the 

forecast. To model this behavior the time lag is used to limit the number of past observed demand values.  

Expression (10) shows an example input matrix where 𝑛 = 2  is used for the sake of simplicity:  

 

          Input      Output 

     

(

 

𝑝 𝐷𝑄𝑝(1) 𝐷𝑄𝑝(2) 𝐷𝑄𝑝(3)

𝑝 𝐷𝑄𝑝(2) 𝐷𝑄𝑝(3) 𝐷𝑄𝑝(4)
… … … …
𝑝 𝐷𝑄𝑝(𝑡 − 2) 𝐷𝑄𝑝(𝑡 − 1) 𝐷𝑄𝑝(𝑡))

 

⏞                            

(

𝐹𝐶(𝑝, 4)
𝐹𝐶(𝑝, 5)
…

𝐹𝐶(𝑝, 𝑡 + 1)

)

⏞          

 .  (10) 

 

Note that for each product 𝑝 ∈ 𝑃 a separate matrix of the same structure exists. 
 

Step 2: Training of the LSTM model 

 
The reframed and normalized data is split into two parts. In typical regression tasks, this is commonly 

carried out using cross-validation. However, in time series analysis, preserving the order of the time series 
is crucial. Therefore, a more appropriate approach involves splitting the dataset chronologically into 
training and testing subsets is used.  

A simple strategy is to allocate a fixed percentage of the earliest observations for training and reserve 
the remaining portion for testing purposes. In our experiments, the first 80% is taken as a training set and 
the last 20% as a testing set.  

The LSTM model is fed by the training set during which appropriate values of the time window size 
and number of neurons of the LSTM layer are determined by a grid search. We use #𝑛𝑒𝑢𝑟𝑜𝑛𝑠 ∈ {1,… ,50}, 
and for the time window size we use 𝑛 ∈ {1,… ,28} as a grid for the LSTM layer. It is useful to align the 

size of the time window with the number of data points of the time series. 
 

Step 3: Forecasting with the LSTM model 

 
To forecast demand during the inference phase, the testing set obtained in Step 2 contains the future 

forecast information. In the present paper, we are only interested in a 1-step-ahead forecast. An example 

input matrix for 𝑝 = 𝑝1 and 𝑛 = 2 is shown next: 
 
          Input      Ouput 

      (𝑝1 𝐷𝑄(𝑡 − 2) 𝐷𝑄(𝑡 − 1) 𝐷𝑄(𝑡))⏞                        (𝐹𝐶(𝑝1, 𝑡 + 1))⏞          .      (11) 
 

Before we can obtain the final forecast, we have to denormalize the output data 𝐹𝐶(𝑝1, 𝑡 + 1). For 
measuring the performance, the denormalized forecast can be compared with the observed demand 𝐷𝑄(𝑡 +
1) extracted from the testing set of Step 2. 

3.4 Order Entry as Leading Indicator and Simple Reference Approaches 

Firm orders 𝐹𝑂 are given for the periods 𝑡 − 𝐷,… , 𝑡 + 1. Firm orders for period 𝑡 + 1 are determined in 

period 𝑡 + 1 − 𝑘 by sum up all the order entry quantities with a planned completion time in period 𝑡 + 1 

that are arrived before or within period 𝑡 + 1 − 𝑘. The quantity 𝑘 is given by lead time considerations. In 

our experiments we use 𝑘 = 1 period. 
The first reference approach is the firm order scheme. We simply consider the quantity of the firm 

orders for the current period as forecast. The procedure to compute a forecast for period 𝑡 can then be 

described as follows: 
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            𝐹𝐶̂𝑡+1:=𝐹𝑂𝑡+1,         (12) 
 
where 𝐹𝑂𝑡+1 denotes the order entry for period 𝑡 + 1. This procedure is clearly memoryless because it does 

not consider any observed demand information. We denote this approach by order entry (OE).  
The second approach is based on the idea that the ratio of the demand and the firm order quantities of 

the current period is equal to the same ratio for the corresponding quantities of the previous period for a 
given product. We obtain: 

 

           𝐹𝐶̂𝑡+1 ≔ {

𝐹𝑂𝑡+1 

𝐹𝑂𝑡
𝐷𝑄𝑡, if 𝐹𝑂𝑡 > 0

𝐹𝑂𝑡+1, otherwise
 ,      (13) 

 

where 𝐷𝑄𝑡 denotes the observed demand value for a certain product in period 𝑡. We refer to this method as 

book-to-bill (BB) procedure (cf. Habla et al. 2007). 

3.5 Solution Aspects 

We use a genetic algorithm (GA) to implement the optimization-based forecasting framework described in 
Subsection 3.1. GAs have been used extensively for solving hard and large-scale optimization problems, 
especially when the objective function is nonlinear (Gallagher and Sambridge 1994). 

Since the objective function (2) of the optimization formulation (2)-(5) belonging to the forecasting 
framework is nonlinear, a GA seems a promising solution. Such an approach avoids the usage of 

commercial nonlinear solvers based on methods such as, for instance, the generalized reduced gradient 
(GRG2) algorithm (Lasdon et al. 1974; Lasden and Waren 1978) or trust region methods (Conn et al. 2000). 

A GA is a population-based approach (Michalewicz 1996). A single iteration is called a generation. 
The individuals of the new generation are obtained from the individuals of the previous one by applying 
genetic operators such as crossover and mutation. We use the one-point crossover for reproduction as well 
as the swap mutator as mutation procedure.  

We are interested in optimizing the set of decision variables 𝛼𝑘  , 𝛽𝑙  , 𝛾𝑘𝑗  from the forecasting 
framework. Therefore, an array with real numbers as entries is used as representation in the GA. The array 
is divided into three sections where each section represents one of the three sets of decision variables. Figure 
2 shows the structure of the array for encoding the optimization problem (2)-(5). The two red lines are used 
as visual separators of the three sections. Clearly, we see from (5) that the length of the encoding array is 
𝐾 + 𝐿 + ∑ 𝑛𝑘

𝐾
𝑘=1 .  

 

 
Figure 2: Representation used in the GA. 

 
We need to evaluate the fitness of each of individual, i.e. chromosome, of the current population where 

only the fittest individuals are selected for the next population. We use the objective function (2) of the 
forecasting framework as fitness function. Since the GA is not capable to ensure the feasibility of the 
constrains used in the optimization formulation (2)-(5), we have to reformulate the fitness function. We use 

 

𝐹(𝛼1, … , 𝛼𝐾 , 𝛽1, … , 𝛽𝐿, 𝛾11, … , 𝛾𝐾𝑛𝐾) ≔ ∑ (∑ 𝛼𝑘𝐹𝐶𝑘,𝑡−𝐷+𝑖(𝛾𝑘1, … , 𝛾𝑘𝑛𝑘)
𝐾
𝑘=1 + ∑ 𝛽𝑙𝐼𝑙,𝑡−𝐷+𝑖

𝐿
𝑙=1 −𝐷

𝑖=0

                                                                         𝐷𝑄𝑡−𝐷+𝑖)
2
+ξ ∙ {(∑ 𝛼𝑘 + ∑ 𝛽𝑙 − 1

𝐿
𝑙=1

𝐾
𝑘=1 )

+
}
2
,   (14)  
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where we introduce the penalty value ξ ≥ 0  to enforce that the constraint ∑ 𝛼𝑘 +
𝐾
𝑘=1 ∑ 𝛽

𝑙
≤ 1𝐿

𝑙=1  is 

fulfilled. Here, we abbreviate 𝑥+ ≔ max(𝑥, 0). Additional penalty values may be required to ensure that 

the constraint set (4) is fulfilled. 

4 COMPUTATIONAL EXPERIMENTS 

4.1 Design of Experiments 

To evaluate the performance of the different forecasting schemes, real-world historical data of a large 
semiconductor company is applied. The data contains demand and firm order information for 1189 products 

from 28 months. Based on the different forecast approaches discussed in Section 3, we are interested in 
investigating the following five scenarios: 
 
1. LSTM: In this scenario, we only use the LSTM approach as forecast source. 
2. ES-OE-GA: This scenario consists of the exponential smoothing forecast source and the order entry 

as leading indicator value. We combine them using the GA as described in Subsection 3.5.  

3. OE-LSTM-GA: The third scenario again uses the order entry as leading indicator value as well as the 
LSTM forecast source. We combine them by using the GA. 

4. LSTM-ES-GA: In this scenario, we apply the exponential smoothing forecast source and the LSTM 
forecast source. We again combine them by using the GA. 

5. LSTM-ES-OE-GA: In this last scenario, we use the two forecast sources and the leading indicator. 
We again combine them using the GA. 

 
Note that the ES-OE-GA is exactly the approach proposed by Habla et al. (2007), although a 

commercial nonlinear solver based on the GRG2 algorithm is applied there. 
We use the symmetric mean absolute percentage error (SMAPE) as performance measure. The SMAPE 

value is defined as 

 

      𝑆𝑀𝐴𝑃𝐸:= 100% ∙ (1 −
∑ |𝐹𝐶̂𝑡−𝐷𝑄𝑡|
𝑇
𝑡=1

∑ (𝐹𝐶̂𝑡+𝐷𝑄𝑡)
𝑇
𝑡=1

),       (15) 

 

where 𝐹𝐶̂𝑡 is the total forecast for period 𝑡 and 𝐷𝑄𝑡 defines the corresponding total observed demand for 

period 𝑡 of the planning horizon 𝑇. We use equation (1) for 𝐷 = 8 periods to calculate 𝐹𝐶̂𝑡. The SMAPE 

produces performance values between 0 (worst) and 100 (best). Periods with large demand have a larger 

influence on the accuracy than periods with small demand. The SMAPE is widely used to measure the 

performance in demand forecasting. 

4.2 Implementation Issues and Parameter Setting 

The LSTM network is implemented on the basis of Keras (cf. Keras 2025), a deep learning library using 

Tensorflow as backend. The entire workflow is coded using the Python 3.11 programming language and is 
executed on a PC with Intel ® Core™ i7-14700 3.60GHz CPU and 32 GB of RAM. The forecasting 
framework is coded in the Python programming language. The experiments are carried out on a computer 
with an Intel ® Core™ i7-14700 3.60GHz CPU and 32 GB of RAM. We use the GALib framework (Wall 
1999) to implement the GA. 

For the GA, we apply 250 generations, each consisting of 30 individuals. The crossover probability is 

set to 0.9 while the mutation probability is chosen as 0.1 A replacement rate of 0.55 is used in the GA with 

overlapping populations. These settings are determined based on preliminary experiments in combination 

with a trial and error strategy. We use a very large positive number for the penalty value 𝜉. 
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4.3 Results 

We show the results of the performed computational experiments in Table 1. Note that the entries in this 

table are percentage values due to the definition of the SMAPE measure. The best performing scenario is 

marked bold. 

 

Table 1: Computational results. 

Scenario SMAPE 

LSTM 64.19% 

ES-OE-GA 56.37% 

OE-LSTM-GA 76.84% 

BB 52.79% 

OE 49.31% 

LSTM-ES-GA 73.60% 

LSTM-ES-OE-GA 86.28% 

 

 

The results found in Table 1 are visualized in Figure 3. 

 

 

Figure 3: SMAPE values (in %) depending on the scenario. 

We can see that the combination of the different forecast sources and the order entry, i.e. the scenario 
LSTM-ES-OE-GA, leads to the largest SMAPE value. Using only exponential smoothing and the order 
entry results in a fairly small SMAPE value. This approach only outperforms the two simple reference 
schemes. We also observe that the LSTM approach alone leads to a fairly large SMAPE value. This is 
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reasonable since the LSTM approach works well for recognizing patterns in time series. This assumption 
is also supported by the fact that all scenarios where the LSTM is involved lead to fairly large SMAPE 
values.  

We also observe that the parameter optimization in general helps to increase the SMAPE values. 
Whenever the GA is applied, we find large SMAPE values. This is reasonable since the GA optimizes the 
algorithm parameters of the exponential smoothing as well as the weights of the different forecast sources 
and the involved indicator value. 

On the one hand, including the hyperparameters of the LSTM approach into the GA-based optimization 
does not lead to any further SMAPE improvements. On the other hand, the overall computing time of the 

optimization increases dramatically since the GA has to evaluate thousands of potential solutions where for 
each solution a complete retaining of the LSTM has to be performed. It turns out that a proactive upfront 
training of the LSTM approach including a grid search for hyperparameter tuning as described in Subsection 
3.3 leads to similar SMAPE values while the computing time is much smaller.  

5 CONCLUSIONS AND FUTURE WORK 

We presented a framework for a short-term forecasting problem in semiconductor manufacturing based on 

forecast combinations including statistical forecast methods and ML approaches. A GA was used to select 
parameters for the forecast sources and for weighting the different forecast sources and leading indicators. 
A hybrid approach including exponential smoothing, LSTM, and order entry information performed best 
among the different possible combinations of forecast sources and leading indicators. 

There are several directions for future research. First of all, we believe that it is possible to extend the 
optimization model in such a way that h-step-ahead forecasting is possible. Time series with trend and 

seasonality should be considered too. This can be carried out, for instance, by replacing the exponential 
smoothing approach used in in the present paper by the Holt-Winters method. Moreover, it would be 
interesting to consider larger time series, in this paper, we use only 28 data points per time series. Another 
direction is considering more leading indicator values. Appropriate examples can be found, for instance, in 
Elias et al. (2008). Finally, we are interested in replacing the grid search approach to determine 
hyperparameters of the LSTM model by a metaheuristic approach (cf., for instance, Song et al. 2020). 
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