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ABSTRACT

Production planning for wafer fabs often relies on linear programming. Exogenous lead time estimates or
workload-dependent lead times by means of clearing functions are taken into account in common planning
formulations. For realistic performance assessment purposes, the process uncertainty is captured by
simulating the execution of the resulting release schedules, i.e. expected values for profit or costs are
considered. In the present paper, we take a more direct approach using simulation-based optimization. The
capacity constraints and the lead time representation are indirectly respected by executing release schedules
in a simulation model of a large-scaled wafer fab. Variable neighborhood search (VNS) is used to compute
release schedules. We show by designed experiments that the proposed approach is able to outperform the
allocated clearing function (ACF) formulation for production planning under many experimental
conditions.

1 INTRODUCTION

Production planning is an important planning function in semiconductor supply chains. It deals with
deciding which amount of a certain product should be released into a single semiconductor wafer fabrication
facility (wafer fab) over time to optimize some performance measure of interest, such as cost or profit to
meet demand based on output from master planning (Monch et al. 2018).

Production planning formulations are often based on deterministic data for capacity and process flows
derived from data found in manufacturing execution systems. Since cycle times (CTs), the time span
between releasing work and its emergence as final product, is of the order of ten weeks in most wafer fabs,
lead time (LT) information as estimates of the CT must be incorporated into production planning
formulations for wafer fabs (Leachman 2000). Exogenous LTs are distinguished from workload-dependent
LTs. The CTs are determined by the release decisions of the planning formulation. Therefore, LT
information is an output of the planning formulation rather than an input parameter. Planning formulations
based on exogenous LTs are often outperformed by planning models with workload-dependent LTs when
the production plans are executed in a stochastic environment (Kacar et al. 2013; Kacar et al. 2016).

Nonlinear clearing functions (CFs) model the expected throughput of a production resource as a
function of its planned workload. CF-based planning models have yielded promising results when used in
production planning models if the CFs are correctly parameterized. The resulting formulations after
piecewise linearization of the CF-related constraints are large-scaled linear programs (LPs) which can be
solved efficiently by commercial solver software. Recent approaches apply also non-linear optimization
techniques such as conic programming and avoid a linearization of the original non-linear formulations (cf.,
for instance, Gopalswamy and Uzsoy 2020).

The situation changes drastically when building a deterministic planning model from shop-floor and
environmental data is difficult or when integer-valued decision variables have to be included into planning
models. These modeling and solution difficulties can be avoided to some extent when discrete-event
simulation is used to represent the base system of a wafer fab and its environment within a simulation-based
optimization approach. While it is likely that such an approach will work in principle, it is not clear whether

979-8-3315-8726-0/25/$31.00 ©2025 IEEE 1601



Sekiya and Monch

the computational burden of simulating large-scale wafer fabs is a barrier for the simulation-based
optimization approach or not. Therefore, in the present paper we will design and test a simulation-based
optimization approach for a stylized planning problem for a large-sized wafer fab.

The paper is organized as follows. In the next section, we describe the production planning problem at
hand, discuss related work, and derive research questions. The different production planning approaches,
namely the ACF formulation and the VNS scheme, are discussed in Section 3. Implementation aspects are
discussed in Section 4. The results of computational experiments are reported in Section 5. Finally,
conclusions and future research directions are provided in Section 6.

2 PROBLEM SETTING AND ANALYSIS

2.1 Production Planning Problem

Production planning involves the allocation of available capacity among the operations of the products to
match supply with given demand in some near-optimal manner. Release decisions are made for a wafer fab.
However, it is known from queuing theory, discrete-event simulation, and industrial observations that the
mean and the variance of the CT increase nonlinearly with resource utilization, which, in turn, is determined
by the release decisions made by the production planning function. This circularity implies that CTs are an
output of production planning rather than an input. Hence, CTs are variables to be controlled in planning
models, rather than exogenous parameters that must be estimated.

Conventional production planning models described in the literature are based on exogenous LTs, fixed
parameters independent of the congestion of the wafer fab. This approach leads to computationally tractable
LP models, but fails to represent the congestion of the wafer fab correctly. There is research that explicitly
addresses this circularity by modeling workload-dependent LTs in production planning models. Iterative
methods combine LP models with exogenous LTs with simulation, queuing, or scheduling models to update
LTs (Missbauer and Uzsoy 2020). But the convergence behavior of these methods is unclear (Missbauer
2020). Nonlinear optimization models based on queueing concepts to represent the cost of congestion form
another class of approaches. Among them CF-based models are popular. A CF estimates the average output
of a work center in a planning period as a function of its available workload in that period. While early CF-
based models had difficulties to deal with multiple products, the ACF formulation by Asmundsson et al.
(2009) addresses this situation. One limitation of CF-based production planning approaches is that yet no
rigorous methodology for estimating CFs from data is known. This can be seen as a large barrier to their
widespread adoption in planning models (Gopalswamy and Uzsoy 2019). Another class of production
planning models are data-driven (DD) formulations (cf., for instance, Volker and Mdnch 2023) which are
based on a set of system states representing the congestion behavior of a wafer fab with work in progress
(WIP) and resulting output levels. DD formulations can be seen as an alternative to CF-based production
planning formulations (Missbauer and Uzsoy 2020). Large-sized mixed-integer linear programming
(MILP) formulations are the result of the need to choose system states.

However, the approaches discussed so far implicitly assume that a deterministic model can be built that
anticipates the behavior of the base system, i.e. the shop floor, and the external environment of a wafer fab,
correctly. This assumption is not always valid. Another problem are integer-valued decision variables in
planning formulation which make the formulations computationally intractable. For instance, Ziarnetzky et
al. (2017) propose a production planning model for wafer fabs where the installation of renewable energy
sources such as wind turbines (WTs) or photovoltaic panels (PVs) is considered. Both the energy
consumption of the machines on the shop floor and the energy provided by wind and sun are difficult to
model without simulation. Moreover, the amount of WTs and PVs must be modeled by integer-valued
decision variables. Werner et al. (2022) consider a related long-term strategic planning model for
semiconductor supply chains. Again, large-scaled MILP models must be solved. One possible approach to
deal with these problems is simulation-based optimization where the wafer fabs and their environment are
represented by a simulation model which represents important constraints and the process uncertainty from
the shop floor and the environment.
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2.2 Related Work

Next, we discuss known simulation-based optimization approaches for wafer fabs. Liu et al. (2011) use
simulation-based optimization based on the Nondominated Sorting Genetic Algorithm II (NSGA-II) to
determine Pareto-optimal production plans for the expected value and variance of the sum of WIP,
inventory holding, and backlog cost. A simulation model of a scaled-down wafer fab which contains only
11 machines is used. Ziarnetzky and Mdnch (2016) consider a simplified semiconductor supply chain
consisting of a wafer fab and a backend facility. Simulation-based optimization based on simulated
annealing is used to determine the minimum bottleneck utilization in the wafer fab and the amount of
expanded capacity in the BE facility. A simulation model of a large-sized wafer fab with more than 200
machines is used for this design problem. Kacar and Uzsoy (2015) use a gradient-based algorithm to
determine appropriate parameters for the CFs in the ACF formulation by simulation-based optimization.
Moreover, the same technique is used for determining release plans. The production plans obtained by
simulation-based optimization outperforms the ones obtained by the CF-based methods including the one
where the CF are obtained from simulation-based optimization. Zhang et al. (2022) apply simulation-based
optimization to improve CFs in a production planning model. In both papers, the proposed methods are
applied to a simulation model of a scaled-down wafer fab which contains only 11 machines. Overall, we
conclude that most of the simulation-based optimization schemes for production planning of wafer fabs are
based only on scaled-down manufacturing systems. Therefore, in the present paper, we propose a
simulation-based optimization approach for a simulation-model of a large-sized wafer fab.

3 SOLUTION APPROACHES

3.1 ACF Formulation

We assume a planning window of T periods of the same length. For the sake of completeness, we repeat
the ACF model. It is used for benchmarking the simulation-based optimization scheme. Linearized CFs
constrain the achievable output quantity for each work center k in units of time, allocating it to the products
g and operations | € 0(g, k). The formulation is based on the following sets and indices, decision
variables, and parameters.

Sets and indices:
t: period index with planning window T
product index
set of all products g
work center index

set of all work centers

TR T OS

: operation index

0(g): set of all operations of product g

0(g,k): setofall operations of product g that can be performed on machines of work center k
K(g,1): setof work centers that can be used to perform operation [ of product g

n: CF segment index

C(k): set of indices denoting the linear segments used to approximate the CF for work center k

Decision variables:
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Y, expected output of product g in period t at the last operation of its routing

gt
Ly finished goods inventory (FGI) of product g at the end of period ¢
Bg:: backlog of product g at the end of period ¢t
You: quantity of product g completing its operation [ in period t

Xgti: quantity of product g starting operation [ in period t

W, WIP of product g at operation [ at the end of period ¢t

gtl+
Z gtl; fraction of output from work center k allocated to operation [ of product g in period t
Parameters:
hge:  unit FGI holding cost for product g in period ¢
bge:  unit backlog cost for product g in period t
wge: unit WIP cost for product g in period ¢
Dge: demand for product g in period ¢

ag;:  processing time for operation [ of product g
Bi:  slope of segment n of the CF for work center k

up:  intercept of segment n of the CF for work center k.

The ACF model is stated as follows:

T

min Z Z Wt z Wyet +hgelge+bgeBge (1
g€G t=1 1€0(g)
subject to
Wy,t-1,1 + Xger — Ygu = Wy geGt=1,.,T,le0(g) 2)
lge—1+ Yy — Bgt—1+ Byt — Ige = Dye, geGt=1,.,T (3)

¥ < URZSa + BRag(Xgn + Woe—1y), g€Gt=1,..,T,l€0(9) keK(gDneCk) 4)

dea ZlEO(g,k) thz =1, t=1,..,.T keK (5)
Wyer Lge, Byes Xge1 Yger Z = 0, geEGt=1,..,T,1€0(g),k €K(g,D. (6)

The objective function (1) to be minimized is as the sum of WIP, FGI, and backlog costs over all
products, operations, and periods. The WIP balance constraints (2) represent the changes of WIP over time
based on the input and output for product g at operation l. The holding of strategic inventory in the wafer
fab is not possible. After completion, work is immediately transferred to the next operation in its routing,
i.e., wehave Xg¢ = Y, ;1. Demand fulfilment and FGI balance are represented by the constraints (3). The
CF constraints (4) represent the expected output of each work center as a function of the workload. It
consists of the WIP at the beginning and the releases during each period. Output and workload are measured
in units of time to allow for varying processing times between operations at the same work center. The Z g’ftz

decision variables allocate processing capacity to the products and their operations and are limited to a total
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of one by constraint set (5). The non-negativity of the decision variables is ensured by constraints (6). We
refer to Asmundsson et al. (2009) and Missbauer and Uzsoy (2020) for the details of the ACF formulation.

3.2 VNS Scheme

3.2.1 VNS Principles

VNS is a neighborhood search-based metaheuristic (Mladenovic and Hansen 1997; Hansen and Mladenovic
2001). It is based on the idea to enrich a simple neighborhood search-based method to enable it escaping
from local optima. This is carried out by restarting the search for better solution from a randomly chosen
neighbour of the incumbent solution. This restarting step, the so-called shaking, is performed using different
neighborhood structures of increasing sizes. The basic VNS (BVNS) scheme can be summarized in pseudo
code manner as follows:

Initialize: (1) Define k,,,, different neighborhood structures N,,.
(2) Generate an initial solution x.
(3) Initialize k «— 1.
Algorithm:  (4) Repeat until stopping criterion is met
(a) Shaking: choose randomly x" € N.
(b) Local search: Improve x’ by a local search method.
(5) Accept? If x' is better than x, then update x «— x" and k «— 1, otherwise update the
neighborhood structure to be applied by k «— (k mod kg, ) + 1.

Each move in the simulation-based optimization approach for production planning requires at least a
single simulation run which tends to be time-consuming. Therefore, we omit the local search Step 4(b) and
apply only a reduced VNS (RVNS) scheme.

Next, we have to specify which neighborhood structures are applied in which sequence. This is based

on the idea that Y g Zz;l(wgt ieo(g) Wyt +hgtlgt+bgtht) can be decomposed into a timing-related
part, i.e. X geq Z?:l(hgtl gt+bgtht), and a part that reflects the congestion behavior of the shop floor, i.e.,
by Y ge6 Di=1Wgt Lico(g) Wyt = Lgec Lt=1 Wye, Where Wy, is the total WIP quantity of product g in
period t.

3.2.2  Fixed LT-based Neighborhood Structures

We are interested in a neighborhood structure which leads to small changes in the timing-related part of the
total cost. We start from the recursive relation for the stock difference:

Agt = Ag,t—l + Ygt - Dgt = Igt - Bgt't = 1, ,T (7)

for Agg := 0. Let X, = (Xgl, o X  Xgr ) be the component for product g of a solution X € ]RLGlXT of

gt,
the production planning problem. We consider an updated solution component X; := (X 10 Xgt —
Ag,H_Lg, v, X7 ) The output in period t + Ly based on the release in period ¢ is then Yg’,tﬂg = Yg,H_Lg —
Ag s Ly if there is enough capacity on the shop floor. Here, we assume an integer-valued fixed LT (FLT) of
L4 periods for product g, i.e., we have Yg’HLg = Xg¢. Using (7), we obtain Yg,t+Lg - Ag_HLg = Dg_t+Lg -
Ag,t+Lg—1 , 1.e., we have A:q,HLg = Ag,t+Lg—1 + Yg’,HLg — Dg,HLg = 0. This means that the resulting
backlog and inventory holding costs are zero for period t + L if the update quantity is chosen in this way.

1605



Sekiya and Monch

Next, we consider the vector of the stock differences A, = (All, worBgtrry—-1,8geer, T AXge oo, Agr +

Ath) where we must choose AX = —Ag’HLg to obtain Ay ., L, = 0.

If we want to update the releases of product g for two different periods t < s by means of AX,, and

AX s, respectively, then by the same argument, the vector of the updated stock differences of product g is

gs»
(Bg1, s Bgary + DXges s Dgsar, + AXge + AXgg, ., Agr + AXge + AXy, ). (8)

Hence, to have updated stock differences at periods t and s that are both zero, we must choose AXy; =
—Ag et Ly and AXg = — (Ag,s+ L, AX gt). Analogously, considering updating all periods t = 1, ..., T and
choosing the update quantities as AXg, = — (Ag,t+ L, T Yl AXgS) ,t =1,...,T, we obtain the updated

stock differences as (Agl, v Dgp 0, ,0). However, when applying this update procedure to all products

ng’
and time periods it is likely that the capacity is not enough and hence the FLT assumption is violated.

Therefore, we scale the update quantities AXy, using parameters y,4 € [0,1] by:

t—-1
AXye =~y (Agmg + Z 1Ang). ©)
=

Note that we obtain Ay ¢, L, = 0 for y4; = 1, and y4¢ = 0 leads to an unchanged release for product g

in period t. The new solution has lower timing-related cost under the FLT assumption for the remaining
values of the scaling parameters. We define a neighborhood structure N7 for a given set S € [0,1] by
setting

t—-1
NSFLT(X) = {X’ € Rl_leTlX‘ét = th - ygt (Agt+Lg + Z 1AXgT>,ygt € S,g € G,t = 1, ,T} (10)
=

for a given solution X € RLGlXT. Note that the elements of NYLT(X) can be obtained by sampling scaling

- GIXT
parameter matrices y € RI7 from s161<7,

3.2.3  Target Bottleneck Utilization-based Neighborhood Structures

The second class of neighborhood structures deals with reducing WIP cost caused by a solution X € ]lelw
in such a way that the desired target bottleneck utilization level obtained from the demand properties is
reached. If we execute this solution using a simulation model of the wafer fab, we obtain the realized
utilization level of each work center at each period. The utilization level u; of a work center is obtained as
the ratio of the total processing time and the total available time A, within a period. We obtain u; =
Ygec Dieo(g k) Xgi¥qe/Ae for the utilization of the planned bottleneck work center with k* € K.

Next, we update the release quantity Xy, by AXy;. This updates the output quantity approximately to
Yoo + AXg, for all L € O(g, k™). The resulting updated bottleneck utilization u; can be then approximated
by

U = U + AXy, Z ag/E(Ae), (11)
1€0(g,k")
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where E(A;) is the expected available time of operation [ of product g in period t. We set agt =
Yieo(g.k*) @g1/ E(A¢) for abbreviation. From (11), we directly obtain the update quantity:

(12)

AXge = (u — ut)/agt;
where u; can be seen as the target bottleneck utilization to be reached after the update. Recall that u, is the
realized utilization level. We define another neighborhood structure NJUfor a given S € [0,1] by setting

NIV = (X € RET|Xg, = Koo +vge (uf —ue)/age Vge €S, €Gt=1,..,T}  (13)

for a given solution X € ]lelﬂ. Note that the elements of NJV(X) again can be obtained by sampling
scaling parameter matrices y € RLGlXT from S16XT,

3.24 Overall Scheme

Initial solutions for the RVNS scheme are computed based on releasing Xy := Dg¢. Two RVNS variants
are considered. The first one, denoted as RVNS-S, performs only a single simulation run to calculate the
total cost value (1), whereas the second variant, abbreviated by RVNS-M, performs multiple independent
simulation replications if an improvement of the total cost value is observed for the first replication. The
average total cost value is computed based on m = 5 independent simulation runs. Appropriate L, values
are determined by simulation experiments (cf. Kacar et al. 2013) assuming a given target bottleneck
utilization that is compatible with the given demand.

The entries of the scaling matrices y are derived as follows. For a given interval Sy, k = 1, ..., kjnax
we generate ug, ~ U[Sy], where Ula, b] is a continuous uniform distribution over the interval [a, b].
Moreover, let by be a realization of a Bernoulli distributed random variable with success probability py.
We then choose yg4¢ = by - ug:. Note that the success probability of the Bernoulli distributed random
variable controls how often y,, > 0 is, i.e., an update of a release quantity occurs. A total of 16 pairs
(pr, Sk) is applied, but we show in Table 1 only eight pairs since we have (p,y, Sox): = (P2x—1,S2x—1) for
k=1,..8.

Table 1. Parameters (py, Sy ) for neighborhood structures.

k 1 3 5 7 9 11 13 15
pe | 0.1 1.0 0.25 0.25 0.5 0.5 1.0 0.25
S | [0.5,1.0] | [0.1,0.3] | [0.0,0.5] | [0.5,0.75] | [0.25,0.5] | [0.5,1.0] | [0.0,0.5] | [—0.25,1.25]

The neighborhood structures are defined for k = 1, ..., 16 as follows:

NgT, if k =1 (mod 2)
Nk = NTU . _ (14)
S if k =0 (mod 2).

The NSFkLT — and NSTkU —type neighborhood structures are different and one is not a special case of the

other due to the different intervals Sj . Therefore, they are not nested. Moreover, the sizes of the
neighborhoods are not increasing.
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4 IMPLEMENTATION ASPECTS

4.1 Infrastructure for Simulation-based Optimization

The RVNS scheme is coded using the C# programming language. AutoSched AP 11.03 is used as
simulation engine. It is a framework based on the C++ programming language. The steering system
AutoSched AP calls the executable code of the RVNS scheme. The C# program and AutoSched AP
communicate via files. The ACF formulation is coded using again the C++ language, the resulting LPs are
solved using the commercial solver ILOG CPLEX 12.7.1. The simulation infrastructure described by Kacar
et al. (2013) is reused to execute the production plans from the LP runs. The specified number of lots is
released uniformly over the respective periods. All the computational experiments are conducted on a 12th
Gen Intel ® Core™ i7-12700 CPU 2.1 GHz PC with 32 GB RAM.

4.2 Simulation Model

The computational experiments are based on the MIMAC I simulation model (Fowler and Robinson 1995)
which represents a large-scale wafer fab with more than 200 machines organized in 69 work centers. The
steppers of the lithography area serve as a planned bottleneck work center. Batch processing machines and
sequence-dependent setup times occur. Exponentially distributed machine breakdowns are the major
contributor to variability. In the computational experiments, we use long machine failures as described by
Kacar et al. (2013) for the MIMAC I model. Two products are considered in the simulation experiments,
each of them requiring over 200 process steps with highly reentrant process flows, i.e., the same work center
is visited by a single lot several times. First-In-First-Out (FIFO) dispatching is used. The processing times
are deterministic.

5 COMPUTATIONAL EXPERIMENTS

5.1 Design of Experiments

We use a design of experiments similar to the one from Kacar et al. (2013). Time-varying demand is
applied. A planning window of T = 15 periods is used. The period length is a week. A product mix of 1:1
is considered. Demand D, that follows a normal distribution N (,ug, agz) is used. Here, ug is the mean
demand of product g that leads to a prescribed bottleneck utilization (BNU) level and a5 := ug - CV is the
standard deviation for a given coefficient of variation (CV) value. The p; values are chosen for each three-
week subinterval in such a way that the given target BNU level is reached. For the scenarios with BNU =
90%, ug values leading to BNU=85% or BNU=95% are selected with equal probability. For the scenarios
with BNU = 70%, p,4 values resulting in BNU=60% or BNU=80% are selected. Positively correlated
demand is considered due to the 1:1 product mix. No demand updates are taken into account. We refer to
this demand setting as time-varying load scenarios (cf. Kacar et al. 2013).

Ten different demand realizations are used. Initial WIP values are taken from long simulation runs. For
each demand realization, planning is performed with a horizon of 18 periods instead of 15 periods to avoid
end of horizon effects. The demand of the additional periods 16-18 is set as the average of the demand of
the last three planning periods of the original planning window. The design of experiments is summarized
in Table 2.

The CFs from Kacar et al. (2013) are reused. The evaluation of the release schedules obtained by the
ACF model is based on 20 independent simulation runs with the horizon of 15 periods (weeks). The final
release schedule obtained from simulation-based simulation is assessed in the same way. The unit cost
settings hgy = 15, by, = 50, and wy; = 35 are chosen as in Kacar et al. (2016). We apply a unit revenue
value of 180 in the computational experiments. The quantities Xy, are released by distributing them evenly
within the respective planning period.
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Table 2: Design of experiments.

Factor Level Count

Planning approaches ACF, RVNS-S, RVNS-M 3
Demand type time-varying load 1
Planned bottleneck utilization 70%, 90% 2
CvV 0.1,0.25 2

Machine failure duration long 1
Demand realizations 10

Simulation replications 1 or 5 per move, 20 for final solution

We are interested in comparing the performance of the simulation-based optimization approach with
the one of the ACF formulation. Moreover, the RVNS-S and RVNS-M variants are compared. The
computing time limit of 30 min is used for the RVNS variants, but the obtained total cost and revenue
values observed after each five consecutive minutes are also reported. The corresponding time-limited
RVNS variants are abbreviated by RVNS-S-c and RVNS-M-c, respectively where ¢ indicates the allowed
amount of computing time for the simulation-based optimization.

5.2 Computational Results

The average total cost of the ACF formulation and the RVNS-S and RVNS-M schemes is shown in Figure
1 depending on the allowed computing time limit. The x-axis represents the allowed computing time for
the different RVNS variants in minutes and the best solution found within the time limit. The y-axis
represents the cost values. The average total cost of 20 independent simulation runs of each final solution
is shown. It is worth mentioning that the average total cost values obtained from the ACF formulation are
quite similar to results reported by Kacar et al. (2016) for all BNU and CV combinations of time varying
(tv) load-type demand. This indicates that the ACF formulation is correctly coded. The results for the low
utilization cases found in the upper part of Figure 1 demonstrate that the initial solutions for the RVNS
schemes is already fairly competitive to the ones obtained from the ACF formulation. As the computing
time limit grows, both the RVNS-S and the RVNS-M outperform the ACF formulation to a large extent
with lower deviation in average total cost over different computing time limits.

For both RVNS variants, the largest improvements are obtained within the first five minutes while
RVNS-S exhibits a slightly faster convergence. These results can be explained by the observed stability of
shop floor under low utilization conditions. There are less CT fluctuations, hence there is capacity required
for performing pre- or post-production, and the optimized solutions computed by the ACF formulation yield
lower performance. This interpretation supports the superiority of the RVNS-S over the RVNS-M because
the limitation of the RVNS-S that it may not be able to escape from local optima with respect to a certain
random seed becomes less crucial as there is less randomness caused by the simulation.

At high utilization levels, depicted in the bottom part of Figure 1, the initial solutions obtained for the
RVNS are outperformed to a large extent by the ones computed by the ACF formulation. This demonstrates
the ability of the ACF formulation to control the congestion at the shop floor and optimize the production
quantities over a long horizon under high demand and large shop-floor variability conditions. Yet, the
RVNS schemes are able to outperform the ACF formulation as the computing time limit becomes larges.
Under the experimental conditions of high utilization and large CV values, however, the RVNS-S requires
a longer computing time, i.e. 20 minutes, to outperform the ACF formulation, highlighting the drawback
of the RVNS-S scheme to deal with a high uncertainty in an appropriate way. These results lead to the
conclusion that the RVNS is able to outperform the ACF formulation as long as the objective function value
calculation during planning reflects the real shop-floor randomness. As the randomness at the shop floor
increases, the RVNS-S scheme tends to stuck at local optima with respect to a certain random seed, which
does not perform well on average over different random seeds. Clearly, one way to overcome this issue is
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using the RVNS-M scheme to enhance the accuracy of the objective function value estimation by multiple
simulation runs. Thus, there is a trade-off between the allowed computing time and robustness of the
simulation-based optimization procedure, increasing the number of independent simulations runs for the
objective function calculation increases the former one but also improves the latter one at the same time
and vice versa.

Average Total Cost

BNU=70%, CV=0.1 BNU=70%, CV=0.25

------ ACF
A R —e— RVNS-S 90000
RVNS-M
88000 89000
@ @
o o
“ 87000 © 28000
86000 87000
85000 10 20 30 0 10 20 30
Time in minutes Time in minutes
BNU=90%, CV=0.1 BNU=90%, CV=0.25
1300009 \ ACF 138000/ \ ACF
—— RVNS-S —s— RVNS-S
128000 RVNS-M 136000 RVNS-M
i I
gieeeoor A S 134000
124000 132000 TR \
122000 130000

0 10 20 30 0 10 20 30
Time in minutes Time in minutes

Figure 1: RVNS improvement plots compared to ACF.

The cost breakdowns of the ACF formulation, the RVNS-S, and the RVNS-M, each with a computing
time limit of 5 and 30 minutes, respectively, are reported in Table 3. Recall that the concrete value of the
symbol ¢ in RVNS-M-c indicates the amount of computing time in minutes. In addition to the total cost,
we also report the profit, i.e. the difference of revenue and total cost, in Table 3. The best total cost and
profit values for comparable settings, i.e. within a single cell, are always marked bold.

Under low utilization conditions, the RVNS schemes are able to outperform the ACF formulation with
respect to total costs and total profit even when a computing time limit of only five minutes is given. Longer
allowed computing times enlarge the gap for almost all performance measures. Under high utilization
conditions, the better total cost performance of the RVNS schemes is caused by lower WIP cost and FGI
holding cost. At high utilization with high CV values, the RVNS scheme with a short computing time limit
of five minutes is outperformed by the ACF formulation, where the ACF causes lower backlog cost. It is
remarkable that even the RVNS with an allowed computing time of 30 minutes still has worse backlog cost
under high bottleneck utilization conditions, and therefore the RVNS schemes, although they have better
total cost under all experimental conditions, exhibit lower profit than the ACF scheme. This result states
that the cost parameters for simulation-based optimization procedures for production planning should be
carefully chosen as one may have better total cost but a slightly smaller profit.
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Table 3. Cost breakdowns and profit values.

BNU | CV Approach WIP BO FGI Total Cost Profit
70 10 ACF 79584.6 | 7105.3 | 22449 88934.7 51455.4
70 10 RVNS-S-5 77911.2 | 6871.0 | 1616.8 86399.0 54121.6
70 10 RVNS-M-5 | 78308.0 | 6733.0 | 1874.9 86915.8 53711.0
70 10 RVNS-S-30 | 77666.1 | 6134.8 | 1402.0 85202.8 55334.9
70 10 | RVNS-M-30 | 79034.9 | 5461.3 | 2168.8 86664.9 54040.2
70 25 ACF 79472.6 | 8687.8 | 2578.7 90739.0 47538.8
70 25 RVNS-S-5 77239.9 | 77383 | 1737.2 86715.3 51421.2
70 25 RVNS-M-5 | 77988.8 | 7193.0 | 2518.7 87700.4 50419.9
70 25 RVNS-S-30 | 77471.1 | 7226.8 | 1739.6 86437.5 51629.7
70 25 | RVNS-M-30 | 77631.9 | 6723.8 | 2163.3 86519.0 51538.3
90 10 ACF 109060.5 | 14372.5 | 1497.5 124930.6 50216.7
90 10 RVNS-S-5 | 104864.7 | 17904.3 | 1046.3 123815.2 479453
90 10 RVNS-M-5 | 100869.7 | 22042.8 | 1183.0 124095.4 45497.9
90 10 RVNS-S-30 | 102461.6 | 18553.3 | 920.9 121935.7 49229.0
90 10 | RVNS-M-30 | 99662.0 | 21375.3 | 1012.8 122050.0 47793.5
90 25 ACF 109792.9 | 20659.0 | 1791.6 132243.5 41794.0
90 25 RVNS-S-5 | 106316.5 | 25910.8 | 1402.5 133629.8 35981.5
90 25 RVNS-M-5 | 106319.3 | 25491.3 | 1374.5 133185.0 36839.4
90 25 RVNS-S-30 | 102140.9 | 27098.0 | 1139.3 130378.1 37835.5
90 25 | RVNS-M-30 | 100844.1 | 27373.3 | 1224.1 129441.4 38675.9

6 CONCLUSIONS AND FUTURE WORK

We designed a simulation-based optimization procedure for production planning in wafer fabs. A
simulation model of a large-sized wafer fab is applied to assess the proposed method. We observed from
the experiments that the simulation-based optimization approach is able to outperform the ACF formu-
lation, a production planning formulation based on nonlinear CFs, under many experimental conditions.
However, the simulation-based optimization scheme clearly required more computing time. Overall, it is
possible to apply simulation-based optimization for large-scaled wafer fab models.

There are several directions for future research. First of all, the experiments can be repeated in a rolling
horizon setting using the martingale model of forecast evolution (MMFE) due to Heath and Jackson (1994)
to model demand uncertainty. Another interesting research avenue consists in comparing the gradient-based
approach considered by Kacar and Uzsoy (2015) with the simulation-based optimization approach proposed
in the present paper. Moreover, we are interested in solving the problem considered by Ziarnetzky and
Monch (2017) with integer-valued decision variables using simulation-based optimization. It is expected
that the method proposed in the present paper can also be applied to the strategic network design problem
with renewable energy resources studied by Werner et al. (2022). Here, however, one major obstacle is the
need to simulate an entire semiconductor supply chain.
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