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ABSTRACT 

Production planning for wafer fabs often relies on linear programming. Exogenous lead time estimates or 

workload-dependent lead times by means of clearing functions are taken into account in common planning 
formulations. For realistic performance assessment purposes, the process uncertainty is captured by 
simulating the execution of the resulting release schedules, i.e. expected values for profit or costs are 
considered. In the present paper, we take a more direct approach using simulation-based optimization. The 
capacity constraints and the lead time representation are indirectly respected by executing release schedules 
in a simulation model of a large-scaled wafer fab. Variable neighborhood search (VNS) is used to compute 

release schedules. We show by designed experiments that the proposed approach is able to outperform the 
allocated clearing function (ACF) formulation for production planning under many experimental 
conditions.  

1 INTRODUCTION 

Production planning is an important planning function in semiconductor supply chains. It deals with 
deciding which amount of a certain product should be released into a single semiconductor wafer fabrication 

facility (wafer fab) over time to optimize some performance measure of interest, such as cost or profit to 
meet demand based on output from master planning (Mönch et al. 2018).  

Production planning formulations are often based on deterministic data for capacity and process flows 
derived from data found in manufacturing execution systems. Since cycle times (CTs), the time span 
between releasing work and its emergence as final product, is of the order of ten weeks in most wafer fabs, 
lead time (LT) information as estimates of the CT must be incorporated into production planning 

formulations for wafer fabs (Leachman 2000). Exogenous LTs are distinguished from workload-dependent 
LTs. The CTs are determined by the release decisions of the planning formulation. Therefore, LT 
information is an output of the planning formulation rather than an input parameter. Planning formulations 
based on exogenous LTs are often outperformed by planning models with workload-dependent LTs when 
the production plans are executed in a stochastic environment (Kacar et al. 2013; Kacar et al. 2016).  

Nonlinear clearing functions (CFs) model the expected throughput of a production resource as a 

function of its planned workload. CF-based planning models have yielded promising results when used in 
production planning models if the CFs are correctly parameterized. The resulting formulations after 
piecewise linearization of the CF-related constraints are large-scaled linear programs (LPs) which can be 
solved efficiently by commercial solver software. Recent approaches apply also non-linear optimization 
techniques such as conic programming and avoid a linearization of the original non-linear formulations (cf., 
for instance, Gopalswamy and Uzsoy 2020). 

The situation changes drastically when building a deterministic planning model from shop-floor and 
environmental data is difficult or when integer-valued decision variables have to be included into planning 
models. These modeling and solution difficulties can be avoided to some extent when discrete-event 
simulation is used to represent the base system of a wafer fab and its environment within a simulation-based 
optimization approach. While it is likely that such an approach will work in principle, it is not clear whether 

979-8-3315-8726-0/25/$31.00 ©2025 IEEE 1601



Sekiya and Mönch 
 

 

the computational burden of simulating large-scale wafer fabs is a barrier for the simulation-based 
optimization approach or not. Therefore, in the present paper we will design and test a simulation-based 
optimization approach for a stylized planning problem for a large-sized wafer fab.  

The paper is organized as follows. In the next section, we describe the production planning problem at 
hand, discuss related work, and derive research questions. The different production planning approaches, 
namely the ACF formulation and the VNS scheme, are discussed in Section 3. Implementation aspects are 
discussed in Section 4. The results of computational experiments are reported in Section 5. Finally, 
conclusions and future research directions are provided in Section 6.  

2 PROBLEM SETTING AND ANALYSIS 

2.1 Production Planning Problem 

Production planning involves the allocation of available capacity among the operations of the products to 
match supply with given demand in some near-optimal manner. Release decisions are made for a wafer fab. 
However, it is known from queuing theory, discrete-event simulation, and industrial observations that the 
mean and the variance of the CT increase nonlinearly with resource utilization, which, in turn, is determined 
by the release decisions made by the production planning function. This circularity implies that CTs are an 

output of production planning rather than an input. Hence, CTs are variables to be controlled in planning 
models, rather than exogenous parameters that must be estimated.  

Conventional production planning models described in the literature are based on exogenous LTs, fixed 
parameters independent of the congestion of the wafer fab. This approach leads to computationally tractable 
LP models, but fails to represent the congestion of the wafer fab correctly. There is research that explicitly 
addresses this circularity by modeling workload-dependent LTs in production planning models. Iterative 

methods combine LP models with exogenous LTs with simulation, queuing, or scheduling models to update 
LTs (Missbauer and Uzsoy 2020). But the convergence behavior of these methods is unclear (Missbauer 
2020). Nonlinear optimization models based on queueing concepts to represent the cost of congestion form 
another class of approaches. Among them CF-based models are popular. A CF estimates the average output 
of a work center in a planning period as a function of its available workload in that period. While early CF-
based models had difficulties to deal with multiple products, the ACF formulation by Asmundsson et al. 

(2009) addresses this situation. One limitation of CF-based production planning approaches is that yet no 
rigorous methodology for estimating CFs from data is known. This can be seen as a large barrier to their 
widespread adoption in planning models (Gopalswamy and Uzsoy 2019). Another class of production 
planning models are data-driven (DD) formulations (cf., for instance, Völker and Mönch 2023) which are 
based on a set of system states representing the congestion behavior of a wafer fab with work in progress 
(WIP) and resulting output levels. DD formulations can be seen as an alternative to CF-based production 

planning formulations (Missbauer and Uzsoy 2020). Large-sized mixed-integer linear programming 
(MILP) formulations are the result of the need to choose system states. 

However, the approaches discussed so far implicitly assume that a deterministic model can be built that 
anticipates the behavior of the base system, i.e. the shop floor, and the external environment of a wafer fab, 
correctly. This assumption is not always valid. Another problem are integer-valued decision variables in 
planning formulation which make the formulations computationally intractable. For instance, Ziarnetzky et 

al. (2017) propose a production planning model for wafer fabs where the installation of renewable energy 
sources such as wind turbines (WTs) or photovoltaic panels (PVs) is considered. Both the energy 
consumption of the machines on the shop floor and the energy provided by wind and sun are difficult to 
model without simulation. Moreover, the amount of WTs and PVs must be modeled by integer-valued 
decision variables. Werner et al. (2022) consider a related long-term strategic planning model for 
semiconductor supply chains. Again, large-scaled MILP models must be solved. One possible approach to 

deal with these problems is simulation-based optimization where the wafer fabs and their environment are 
represented by a simulation model which represents important constraints and the process uncertainty from 
the shop floor and the environment. 
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2.2 Related Work 

Next, we discuss known simulation-based optimization approaches for wafer fabs. Liu et al. (2011) use 
simulation-based optimization based on the Nondominated Sorting Genetic Algorithm II (NSGA-II) to 

determine Pareto-optimal production plans for the expected value and variance of the sum of WIP, 
inventory holding, and backlog cost. A simulation model of a scaled-down wafer fab which contains only 
11 machines is used. Ziarnetzky and Mönch (2016) consider a simplified semiconductor supply chain 
consisting of a wafer fab and a backend facility. Simulation-based optimization based on simulated 
annealing is used to determine the minimum bottleneck utilization in the wafer fab and the amount of 
expanded capacity in the BE facility. A simulation model of a large-sized wafer fab with more than 200 

machines is used for this design problem. Kacar and Uzsoy (2015) use a gradient-based algorithm to 
determine appropriate parameters for the CFs in the ACF formulation by simulation-based optimization. 
Moreover, the same technique is used for determining release plans. The production plans obtained by 
simulation-based optimization outperforms the ones obtained by the CF-based methods including the one 
where the CF are obtained from simulation-based optimization. Zhang et al. (2022) apply simulation-based 
optimization to improve CFs in a production planning model. In both papers, the proposed methods are 

applied to a simulation model of a scaled-down wafer fab which contains only 11 machines. Overall, we 
conclude that most of the simulation-based optimization schemes for production planning of wafer fabs are 
based only on scaled-down manufacturing systems. Therefore, in the present paper, we propose a 
simulation-based optimization approach for a simulation-model of a large-sized wafer fab. 

3 SOLUTION APPROACHES 

3.1 ACF Formulation 

We assume a planning window of 𝑇 periods of the same length. For the sake of completeness, we repeat 

the ACF model. It is used for benchmarking the simulation-based optimization scheme. Linearized CFs 

constrain the achievable output quantity for each work center 𝑘 in units of time, allocating it to the products 

𝑔  and operations 𝑙 ∈ 𝑂(𝑔, 𝑘) . The formulation is based on the following sets and indices, decision 

variables, and parameters. 

 

Sets and indices: 

𝑡: period index with planning window 𝑇 
 𝑔: product index 
 𝐺: set of all products 𝑔 

 𝑘: work center index 
 𝐾: set of all work centers 
 𝑙: operation index 

 𝑂(𝑔): set of all operations of product 𝑔 

𝑂(𝑔, 𝑘): set of all operations of product 𝑔 that can be performed on machines of work center 𝑘 

𝐾(𝑔, 𝑙): set of work centers that can be used to perform operation 𝑙 of product 𝑔 

𝑛: CF segment index 

 𝐶(𝑘): set of indices denoting the linear segments used to approximate the CF for work center 𝑘 

  

Decision variables: 
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𝑌𝑔𝑡: expected output of product 𝑔 in period 𝑡 at the last operation of its routing  
 𝐼𝑔𝑡: finished goods inventory (FGI) of product 𝑔 at the end of period 𝑡 
 𝐵𝑔𝑡: backlog of product 𝑔 at the end of period 𝑡 

 𝑌𝑔𝑡𝑙: quantity of product 𝑔 completing its operation 𝑙 in period 𝑡 

 𝑋𝑔𝑡𝑙: quantity of product 𝑔 starting operation 𝑙 in period 𝑡 

 𝑊𝑔𝑡𝑙: WIP of product 𝑔 at operation 𝑙 at the end of period 𝑡 

 
𝑍𝑔𝑡𝑙

𝑘 : fraction of output from work center 𝑘 allocated to operation 𝑙 of product 𝑔 in period 𝑡 

  

Parameters: 

ℎ𝑔𝑡: unit FGI holding cost for product 𝑔 in period 𝑡 
 𝑏𝑔𝑡: unit backlog cost for product 𝑔 in period 𝑡 
 𝜔𝑔𝑡: unit WIP cost for product 𝑔 in period 𝑡 
 𝐷𝑔𝑡: demand for product 𝑔 in period 𝑡 
 𝛼𝑔𝑙: processing time for operation 𝑙 of product 𝑔 

 𝛽𝑘
𝑛:  slope of segment 𝑛 of the CF for work center 𝑘 

 𝜇𝑘
𝑛: intercept of segment 𝑛 of the CF for work center 𝑘. 

  

The ACF model is stated as follows: 

min ∑ ∑ (𝜔𝑔𝑡 ∑ 𝑊𝑔𝑡𝑙

𝑙∈𝑂(𝑔)

+ℎ𝑔𝑡𝐼𝑔𝑡+𝑏𝑔𝑡𝐵𝑔𝑡)

𝑇

𝑡=1𝑔∈𝐺

 (1) 

subject to 

𝑊𝑔,𝑡−1,𝑙 + 𝑋𝑔𝑡𝑙 − 𝑌𝑔𝑡𝑙 = 𝑊𝑔𝑡𝑙, 𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇, 𝑙 ∈ 𝑂(𝑔)  (2) 

𝐼𝑔,𝑡−1 + 𝑌𝑔𝑡 − 𝐵𝑔,𝑡−1 + 𝐵𝑔𝑡  − 𝐼𝑔𝑡 = 𝐷𝑔𝑡,  𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇 (3) 

𝛼𝑔𝑙𝑌𝑔𝑡𝑙 ≤ 𝜇𝑘
𝑛𝑍𝑔𝑡𝑙

𝑘 + 𝛽𝑘
𝑛𝛼𝑔𝑙(𝑋𝑔𝑡𝑙 + 𝑊𝑔,𝑡−1,𝑙),  𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇, 𝑙 ∈ 𝑂(𝑔), 𝑘 ∈ 𝐾(𝑔, 𝑙), 𝑛 ∈ 𝐶(𝑘)  (4) 

∑ ∑ 𝑍𝑔𝑡𝑙
𝑘

𝑙∈𝑂(𝑔,𝑘)𝑔∈𝐺 = 1,  𝑡 = 1, … , 𝑇, 𝑘 ∈ 𝐾 (5) 

𝑊𝑔𝑡𝑙 , 𝐼𝑔𝑡, 𝐵𝑔𝑡 , 𝑋𝑔𝑡𝑙 , 𝑌𝑔𝑡𝑙 , 𝑍𝑔𝑡𝑙
𝑘 ≥ 0,  𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇, 𝑙 ∈ 𝑂(𝑔), 𝑘 ∈ 𝐾(𝑔, 𝑙). (6) 

 

The objective function (1) to be minimized is as the sum of WIP, FGI, and backlog costs over all 

products, operations, and periods. The WIP balance constraints (2) represent the changes of WIP over time 

based on the input and output for product 𝑔 at operation 𝑙. The holding of strategic inventory in the wafer 

fab is not possible. After completion, work is immediately transferred to the next operation in its routing, 

i.e., we have 𝑋𝑔𝑡𝑙 = 𝑌𝑔,𝑡,𝑙−1. Demand fulfilment and FGI balance are represented by the constraints (3). The 

CF constraints (4) represent the expected output of each work center as a function of the workload. It 

consists of the WIP at the beginning and the releases during each period. Output and workload are measured 

in units of time to allow for varying processing times between operations at the same work center. The 𝑍𝑔𝑡𝑙
𝑘  

decision variables allocate processing capacity to the products and their operations and are limited to a total 
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of one by constraint set (5). The non-negativity of the decision variables is ensured by constraints (6). We 

refer to Asmundsson et al. (2009) and Missbauer and Uzsoy (2020) for the details of the ACF formulation. 

3.2 VNS Scheme 

3.2.1 VNS Principles 

VNS is a neighborhood search-based metaheuristic (Mladenovic and Hansen 1997; Hansen and Mladenovic 
2001). It is based on the idea to enrich a simple neighborhood search-based method to enable it escaping 

from local optima. This is carried out by restarting the search for better solution from a randomly chosen 
neighbour of the incumbent solution. This restarting step, the so-called shaking, is performed using different 
neighborhood structures of increasing sizes. The basic VNS (BVNS) scheme can be summarized in pseudo 
code manner as follows: 
 
Initialize:   (1)  Define 𝑘𝑚𝑎𝑥 different neighborhood structures 𝑁𝑘. 

    (2)  Generate an initial solution 𝑥. 
    (3)  Initialize 𝑘 ⟵ 1. 
Algorithm:  (4)  Repeat until stopping criterion is met 
     (a) Shaking: choose randomly 𝑥′ ∈ 𝑁𝑘. 
     (b) Local search: Improve 𝑥′ by a local search method. 
     (5) Accept? If 𝑥′ is better than 𝑥, then update 𝑥 ⟵ 𝑥′ and 𝑘 ⟵ 1, otherwise update the  

     neighborhood structure to be applied by 𝑘 ⟵ (𝑘 mod 𝑘𝑚𝑎𝑥) + 1. 
 

Each move in the simulation-based optimization approach for production planning requires at least a 
single simulation run which tends to be time-consuming. Therefore, we omit the local search Step 4(b) and 
apply only a reduced VNS (RVNS) scheme.  

Next, we have to specify which neighborhood structures are applied in which sequence. This is based 

on the idea that ∑ ∑ (𝜔𝑔𝑡 ∑ 𝑊𝑔𝑡𝑙𝑙∈𝑂(𝑔) +ℎ𝑔𝑡𝐼𝑔𝑡+𝑏𝑔𝑡𝐵𝑔𝑡)𝑇
𝑡=1𝑔∈𝐺  can be decomposed into a timing-related 

part, i.e. ∑ ∑ (ℎ𝑔𝑡𝐼𝑔𝑡+𝑏𝑔𝑡𝐵𝑔𝑡)𝑇
𝑡=1𝑔∈𝐺 , and a part that reflects the congestion behavior of the shop floor, i.e., 

by ∑ ∑ 𝜔𝑔𝑡 ∑ 𝑊𝑔𝑡𝑙𝑙∈𝑂(𝑔) =𝑇
𝑡=1 ∑ ∑ 𝑊𝑔𝑡

𝑇
𝑡=1𝑔∈𝐺𝑔∈𝐺 , where 𝑊𝑔𝑡  is the total WIP quantity of product 𝑔  in 

period 𝑡. 

3.2.2 Fixed LT-based Neighborhood Structures 

We are interested in a neighborhood structure which leads to small changes in the timing-related part of the 

total cost. We start from the recursive relation for the stock difference: 
 

Δ𝑔𝑡 = Δ𝑔,𝑡−1 + 𝑌𝑔𝑡 − 𝐷𝑔𝑡 = 𝐼𝑔𝑡 − 𝐵𝑔𝑡 , 𝑡 = 1, … , 𝑇 (7) 

 

for Δ𝑔0 ≔ 0. Let 𝑋𝑔 ≔ (𝑋𝑔1, … , 𝑋𝑔𝑡, … , 𝑋𝑔𝑇 ) be the component for product 𝑔 of a solution 𝑋 ∈ ℝ+
|𝐺|×𝑇

 of 

the production planning problem. We consider an updated solution component 𝑋𝑔
′ ≔ (𝑋1, … , 𝑋𝑔𝑡 −

Δ𝑔,𝑡+𝐿𝑔
, … , 𝑋𝑇 ). The output in period  𝑡 + 𝐿𝑔 based on the release in period 𝑡 is then 𝑌𝑔,𝑡+𝐿𝑔

′ ≔ 𝑌𝑔,𝑡+𝐿𝑔
−

Δ𝑔,𝑡+𝐿𝑔
 if there is enough capacity on the shop floor. Here, we assume an integer-valued fixed LT (FLT) of 

𝐿𝑔 periods for product 𝑔, i.e., we have 𝑌𝑔,𝑡+𝐿𝑔
= 𝑋𝑔𝑡. Using (7), we obtain 𝑌𝑔,𝑡+𝐿𝑔

− Δ𝑔,𝑡+𝐿𝑔
= 𝐷𝑔,𝑡+𝐿𝑔

−

Δ𝑔,𝑡+𝐿𝑔−1 , i.e., we have Δ𝑔,𝑡+𝐿𝑔

′ ≔ Δ𝑔,𝑡+𝐿𝑔−1 + 𝑌𝑔,𝑡+𝐿𝑔

′ − 𝐷𝑔,𝑡+𝐿𝑔
=  0. This means that the resulting 

backlog and inventory holding costs are zero for period 𝑡 + 𝐿𝑔 if the update quantity is chosen in this way. 
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Next, we consider the vector of the stock differences Δ𝑔 ≔ (Δ11, … , Δ𝑔,𝑡+𝐿𝑔−1, Δ𝑔,𝑡+𝐿𝑔
+ Δ𝑋𝑔𝑡 … , Δ𝑔𝑇 +

Δ𝑋𝑔𝑡) where we must choose Δ𝑋𝑔𝑡 ≔ −Δ𝑔,𝑡+𝐿𝑔
 to obtain Δ𝑔,𝑡+𝐿𝑔

′ = 0.  

If we want to update the releases of product 𝑔 for two different periods 𝑡 < 𝑠 by means of Δ𝑋𝑔𝑡 and 

Δ𝑋𝑔𝑠, respectively, then by the same argument, the vector of the updated stock differences of product 𝑔 is  

 

(Δ𝑔1, … , Δ𝑔,𝑡+𝐿𝑔
+ Δ𝑋𝑔𝑡 , … , Δ𝑔,𝑠+𝐿𝑔

+ Δ𝑋𝑔𝑡 + Δ𝑋𝑔𝑠, … , Δ𝑔𝑇 + Δ𝑋𝑔𝑡 + Δ𝑋𝑔𝑠) . (8) 

 

Hence, to have updated stock differences at periods 𝑡 and 𝑠 that are both zero, we must choose Δ𝑋𝑔𝑡 ≔

−Δ𝑔,𝑡+𝐿𝑔
 and Δ𝑋𝑔𝑠 ≔ − (Δ𝑔,𝑠+𝐿𝑔

+ Δ𝑋𝑔𝑡). Analogously, considering updating all periods 𝑡 = 1, … , 𝑇 and 

choosing the update quantities as Δ𝑋𝑔𝑡 ≔ − (Δ𝑔,𝑡+𝐿𝑔
+ ∑ Δ𝑋𝑔𝑠

𝑡−1
𝑠=1 ) , 𝑡 = 1, … , 𝑇, we obtain the updated 

stock differences as (Δ𝑔1, … , Δ𝑔𝐿𝑔
, 0, … ,0). However, when applying this update procedure to all products 

and time periods it is likely that the capacity is not enough and hence the FLT assumption is violated. 

Therefore, we scale the update quantities Δ𝑋𝑔𝑡 using parameters 𝛾𝑔𝑡 ∈ [0,1] by: 

 

Δ𝑋𝑔𝑡 ≔ −𝛾𝑔𝑡 (Δ𝑔,𝑡+𝐿𝑔
+ ∑ Δ𝑋𝑔𝜏

𝑡−1

𝜏=1
) . (9) 

 

Note that we obtain Δ𝑔,𝑡+𝐿𝑔

′ = 0 for 𝛾𝑔𝑡 = 1, and 𝛾𝑔𝑡 = 0 leads to an unchanged release for product 𝑔 

in period 𝑡. The new solution has lower timing-related cost under the FLT assumption for the remaining 

values of the scaling parameters. We define a neighborhood structure 𝑁𝑆
𝐹𝐿𝑇for a given set 𝑆 ⊆ [0,1] by 

setting  

 

𝑁𝑆
𝐹𝐿𝑇(𝑋) ≔ {𝑋′ ∈ ℝ+

|𝐺|×𝑇|𝑋𝑔𝑡
′ ≔  𝑋𝑔𝑡 − 𝛾𝑔𝑡 (Δ𝑔𝑡+𝐿𝑔

+ ∑ Δ𝑋𝑔𝜏

𝑡−1

𝜏=1
) , 𝛾𝑔𝑡 ∈ 𝑆, 𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇 } (10) 

 

for a given solution 𝑋 ∈ ℝ+
|𝐺|×𝑇

. Note that the elements of 𝑁𝑆
𝐹𝐿𝑇(𝑋) can be obtained by sampling scaling 

parameter matrices γ ∈ ℝ+
|𝐺|×𝑇 from 𝑆|𝐺|×𝑇 . 

3.2.3 Target Bottleneck Utilization-based Neighborhood Structures 

The second class of neighborhood structures deals with reducing WIP cost caused by a solution 𝑋 ∈ ℝ+
|𝐺|×𝑇

 

in such a way that the desired target bottleneck utilization level obtained from the demand properties is 

reached. If we execute this solution using a simulation model of the wafer fab, we obtain the realized 

utilization level of each work center at each period. The utilization level 𝑢𝑡 of a work center is obtained as 

the ratio of the total processing time  and the total available time 𝐴𝑡  within  a period. We obtain 𝑢𝑡 =
∑ ∑ 𝛼𝑔𝑙𝑌𝑔𝑡𝑙𝑙∈𝑂(𝑔,𝑘∗) 𝑔∈𝐺 𝐴𝑡⁄  for the utilization of the planned bottleneck work center with 𝑘∗ ∈ 𝐾. 

Next, we update the release quantity 𝑋𝑔𝑡 by Δ𝑋𝑔𝑡. This updates the output quantity approximately to 

𝑌𝑔𝑡𝑙 + Δ𝑋𝑔𝑡 for all 𝑙 ∈ 𝑂(𝑔, 𝑘∗). The resulting updated bottleneck utilization 𝑢𝑡
′  can be then approximated 

by  
 

𝑢𝑡 
′ ≔ 𝑢𝑡 + Δ𝑋𝑔𝑡 ∑ 𝛼𝑔𝑙 𝐸(𝐴𝑡)⁄

𝑙∈𝑂(𝑔,𝑘∗) 
, (11) 
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where 𝐸(𝐴𝑡)  is the expected available time of operation 𝑙  of product 𝑔  in period 𝑡 . We set 𝑎𝑔𝑡 ≔
∑ 𝛼𝑔𝑙𝑙∈𝑂(𝑔,𝑘∗) 𝐸(𝐴𝑡)⁄  for abbreviation. From (11), we directly obtain the update quantity: 

 
Δ𝑋𝑔𝑡 = (𝑢𝑡

′ − 𝑢𝑡) 𝑎𝑔𝑡⁄ , (12) 

 

where 𝑢𝑡
′  can be seen as the target bottleneck utilization to be reached after the update. Recall that 𝑢𝑡 is the 

realized utilization level. We define another neighborhood structure 𝑁𝑆
𝑇𝑈for a given 𝑆 ⊆ [0,1] by setting 

 

𝑁𝑆
𝑇𝑈(𝑋) ≔ {𝑋′ ∈ ℝ+

|𝐺|×𝑇|𝑋𝑔𝑡
′ ≔  𝑋𝑔𝑡 + 𝛾𝑔𝑡 (𝑢𝑡

′ − 𝑢𝑡) 𝑎𝑔𝑡⁄ , 𝛾𝑔𝑡 ∈ 𝑆, 𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇 } (13) 

 

for a given solution 𝑋 ∈ ℝ+
|𝐺|×𝑇

. Note that the elements of 𝑁𝑆
𝑇𝑈(𝑋) again can be obtained by sampling 

scaling parameter matrices γ ∈ ℝ+
|𝐺|×𝑇 from 𝑆|𝐺|×𝑇 . 

3.2.4 Overall Scheme 

Initial solutions for the RVNS scheme are computed based on releasing 𝑋𝑔𝑡 ≔ 𝐷𝑔𝑡. Two RVNS variants 

are considered. The first one, denoted as RVNS-S, performs only a single simulation run to calculate the 

total cost value (1), whereas the second variant, abbreviated by RVNS-M, performs multiple independent 

simulation replications if an improvement of the total cost value is observed for the first replication. The 

average total cost value is computed based on 𝑚 = 5 independent simulation runs. Appropriate 𝐿𝑔 values 

are determined by simulation experiments (cf. Kacar et al. 2013) assuming a given target bottleneck 

utilization that is compatible with the given demand. 

The entries of the scaling matrices 𝛾 are derived as follows. For a given interval 𝑆𝑘, 𝑘 = 1, … , 𝑘𝑚𝑎𝑥 

we generate 𝑢𝑔𝑡 ∼ 𝑈[𝑆𝑘], where 𝑈[𝑎, 𝑏]  is a continuous uniform distribution over the interval [𝑎, 𝑏]. 

Moreover, let 𝑏𝑔𝑡 be a realization of a Bernoulli distributed random variable with success probability 𝑝𝑘. 

We then choose 𝛾𝑔𝑡 = 𝑏𝑔𝑡 ⋅ 𝑢𝑔𝑡 . Note that the success probability of the Bernoulli distributed random 

variable controls how often 𝛾𝑔𝑡 > 0 is, i.e., an update of a release quantity occurs. A total of 16 pairs 

(𝑝𝑘 , 𝑆𝑘) is applied, but we show in Table 1 only eight pairs since we have (𝑝2𝑘 , 𝑆2𝑘): = (𝑝2𝑘−1, 𝑆2𝑘−1) for 

𝑘 = 1, … ,8. 

Table 1. Parameters (𝑝𝑘 , 𝑆𝑘) for neighborhood structures. 

𝑘 1 3 5 7 9 11 13 15 

𝑝𝑘 0.1 1.0 0.25 0.25 0.5 0.5 1.0 0.25 

𝑆𝑘 [0.5,1.0] [0.1,0.3] [0.0,0.5] [0.5,0.75] [0.25,0.5] [0.5,1.0] [0.0,0.5] [−0.25,1.25] 

 

The neighborhood structures are defined for 𝑘 = 1, … , 16 as follows: 

 

𝑁𝑘 ≔ {
𝑁𝑆𝑘

𝐹𝐿𝑇 , if 𝑘 ≡ 1 (mod 2)          

𝑁𝑆𝑘

𝑇𝑈,         if 𝑘 ≡ 0 (mod 2).        
(14) 

 

The 𝑁𝑆𝑘

𝐹𝐿𝑇 − and 𝑁𝑆𝑘

𝑇𝑈 −type neighborhood structures are different and one is not a special case of the 

other due to the different intervals 𝑆𝑘 . Therefore, they are not nested. Moreover, the sizes of the 

neighborhoods are not increasing. 
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4 IMPLEMENTATION ASPECTS 

4.1 Infrastructure for Simulation-based Optimization 

The RVNS scheme is coded using the C# programming language. AutoSched AP 11.03 is used as 

simulation engine. It is a framework based on the C++ programming language. The steering system 
AutoSched AP calls the executable code of the RVNS scheme. The C# program and AutoSched AP 
communicate via files. The ACF formulation is coded using again the C++ language, the resulting LPs are 
solved using the commercial solver ILOG CPLEX 12.7.1. The simulation infrastructure described by Kacar 
et al. (2013) is reused to execute the production plans from the LP runs. The specified number of lots is 
released uniformly over the respective periods. All the computational experiments are conducted on a 12th 

Gen Intel ® Core™ i7-12700 CPU 2.1 GHz PC with 32 GB RAM. 

4.2 Simulation Model 

The computational experiments are based on the MIMAC I simulation model (Fowler and Robinson 1995) 
which represents a large-scale wafer fab with more than 200 machines organized in 69 work centers. The 
steppers of the lithography area serve as a planned bottleneck work center. Batch processing machines and 
sequence-dependent setup times occur. Exponentially distributed machine breakdowns are the major 

contributor to variability. In the computational experiments, we use long machine failures as described by 
Kacar et al. (2013) for the MIMAC I model. Two products are considered in the simulation experiments, 
each of them requiring over 200 process steps with highly reentrant process flows, i.e., the same work center 
is visited by a single lot several times. First-In-First-Out (FIFO) dispatching is used. The processing times 
are deterministic. 

5 COMPUTATIONAL EXPERIMENTS 

5.1 Design of Experiments 

We use a design of experiments similar to the one from Kacar et al. (2013). Time-varying demand is 

applied. A planning window of 𝑇 = 15 periods is used. The period length is a week. A product mix of 1:1 

is considered. Demand 𝐷𝑔𝑡  that follows a normal distribution 𝑁(𝜇𝑔, 𝜎𝑔
2) is used. Here, 𝜇𝑔  is the mean 

demand of product 𝑔 that leads to a prescribed bottleneck utilization (BNU) level and 𝜎𝑔 ≔ 𝜇𝑔 ⋅ 𝐶𝑉 is the 

standard deviation for a given coefficient of variation (CV) value. The 𝜇𝑔 values are chosen for each three-

week subinterval in such a way that the given target BNU level is reached. For the scenarios with 𝐵𝑁𝑈 =
90%, 𝜇𝑔 values leading to 𝐵𝑁𝑈=85% or 𝐵𝑁𝑈=95% are selected with equal probability. For the scenarios 

with 𝐵𝑁𝑈 = 70%, 𝜇𝑔 values resulting in 𝐵𝑁𝑈=60% or 𝐵𝑁𝑈=80% are selected. Positively correlated 

demand is considered due to the 1:1 product mix. No demand updates are taken into account. We refer to 

this demand setting as time-varying load scenarios (cf. Kacar et al. 2013). 

Ten different demand realizations are used. Initial WIP values are taken from long simulation runs. For 

each demand realization, planning is performed with a horizon of 18 periods instead of 15 periods to avoid 

end of horizon effects. The demand of the additional periods 16-18 is set as the average of the demand of 

the last three planning periods of the original planning window. The design of experiments is summarized 

in Table 2. 

The CFs from Kacar et al. (2013) are reused. The evaluation of the release schedules obtained by the 

ACF model is based on 20 independent simulation runs with the horizon of 15 periods (weeks). The final 

release schedule obtained from simulation-based simulation is assessed in the same way. The unit cost 

settings ℎ𝑔𝑡 = 15, 𝑏𝑔𝑡 = 50, and 𝜔𝑔𝑡 = 35 are chosen as in Kacar et al. (2016). We apply a unit revenue 

value of 180  in the computational experiments. The quantities 𝑋𝑔𝑡 are released by distributing them evenly 

within the respective planning period. 
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Table 2: Design of experiments. 

Factor Level Count 

Planning approaches ACF, RVNS-S, RVNS-M  3 
Demand type time-varying load 1 

Planned bottleneck utilization 70%, 90% 2 
CV 0.1, 0.25 2 

Machine failure duration long 1 

Demand realizations  10 
Simulation replications 1 or 5 per move, 20 for final solution  

 

We are interested in comparing the performance of the simulation-based optimization approach with 

the one of the ACF formulation. Moreover, the RVNS-S and RVNS-M variants are compared. The 

computing time limit of 30 min is used for the RVNS variants, but the obtained total cost and revenue 

values observed after each five consecutive minutes are also reported. The corresponding time-limited 

RVNS variants are abbreviated by RVNS-S-c and RVNS-M-c, respectively where c indicates the allowed 

amount of computing time for the simulation-based optimization. 

5.2 Computational Results 

The average total cost of the ACF formulation and the RVNS-S and RVNS-M schemes is shown in Figure 
1 depending on the allowed computing time limit. The x-axis represents the allowed computing time for 
the different RVNS variants in minutes and the best solution found within the time limit. The y-axis 

represents the cost values. The average total cost of 20 independent simulation runs of each final solution 
is shown. It is worth mentioning that the average total cost values obtained from the ACF formulation are 
quite similar to results reported by Kacar et al. (2016) for all BNU and CV combinations of time varying 
(tv) load-type demand. This indicates that the ACF formulation is correctly coded. The results for the low 
utilization cases found in the upper part of Figure 1 demonstrate that the initial solutions for the RVNS 
schemes is already fairly competitive to the ones obtained from the ACF formulation. As the computing 

time limit grows, both the RVNS-S and the RVNS-M outperform the ACF formulation to a large extent 
with lower deviation in average total cost over different computing time limits.  

For both RVNS variants, the largest improvements are obtained within the first five minutes while 
RVNS-S exhibits a slightly faster convergence. These results can be explained by the observed stability of 
shop floor under low utilization conditions. There are less CT fluctuations, hence there is capacity required 
for performing pre- or post-production, and the optimized solutions computed by the ACF formulation yield 

lower performance. This interpretation supports the superiority of the RVNS-S over the RVNS-M because 
the limitation of the RVNS-S that it may not be able to escape from local optima with respect to a certain 
random seed becomes less crucial as there is less randomness caused by the simulation. 

At high utilization levels, depicted in the bottom part of Figure 1, the initial solutions obtained for the 
RVNS are outperformed to a large extent by the ones computed by the ACF formulation. This demonstrates 
the ability of the ACF formulation to control the congestion at the shop floor and optimize the production 

quantities over a long horizon under high demand and large shop-floor variability conditions. Yet, the 
RVNS schemes are able to outperform the ACF formulation as the computing time limit becomes larges. 
Under the experimental conditions of high utilization and large CV values, however, the RVNS-S requires 
a longer computing time, i.e. 20 minutes, to outperform the ACF formulation, highlighting the drawback 
of the RVNS-S scheme to deal with a high uncertainty in an appropriate way. These results lead to the 
conclusion that the RVNS is able to outperform the ACF formulation as long as the objective function value 

calculation during planning reflects the real shop-floor randomness. As the randomness at the shop floor 
increases, the RVNS-S scheme tends to stuck at local optima with respect to a certain random seed, which 
does not perform well on average over different random seeds. Clearly, one way to overcome this issue is 
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using the RVNS-M scheme to enhance the accuracy of the objective function value estimation by multiple 
simulation runs. Thus, there is a trade-off between the allowed computing time and robustness of the 
simulation-based optimization procedure, increasing the number of independent simulations runs for the 

objective function calculation increases the former one but also improves the latter one at the same time 
and vice versa. 

Figure 1: RVNS improvement plots compared to ACF. 

The cost breakdowns of the ACF formulation, the RVNS-S, and the RVNS-M, each with a computing 

time limit of 5 and 30 minutes, respectively, are reported in Table 3. Recall that the concrete value of the 

symbol c in RVNS-M-c indicates the amount of computing time in minutes. In addition to the total cost, 

we also report the profit, i.e. the difference of revenue and total cost, in Table 3. The best total cost and 

profit values for comparable settings, i.e. within a single cell, are always marked bold. 
Under low utilization conditions, the RVNS schemes are able to outperform the ACF formulation with 

respect to total costs and total profit even when a computing time limit of only five minutes is given. Longer 
allowed computing times enlarge the gap for almost all performance measures. Under high utilization 
conditions, the better total cost performance of the RVNS schemes is caused by lower WIP cost and FGI 
holding cost. At high utilization with high CV values, the RVNS scheme with a short computing time limit 
of five minutes is outperformed by the ACF formulation, where the ACF causes lower backlog cost. It is 
remarkable that even the RVNS with an allowed computing time of 30 minutes still has worse backlog cost 

under high bottleneck utilization conditions, and therefore the RVNS schemes, although they have better 
total cost under all experimental conditions, exhibit lower profit than the ACF scheme. This result states 
that the cost parameters for simulation-based optimization procedures for production planning should be 
carefully chosen as one may have better total cost but a slightly smaller profit. 
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Table 3. Cost breakdowns and profit values. 

BNU CV Approach WIP BO FGI Total Cost Profit 

70 10 ACF 79584.6 7105.3 2244.9 88934.7 51455.4 

70 10 RVNS-S-5 77911.2 6871.0 1616.8 86399.0 54121.6 

70 10 RVNS-M-5 78308.0 6733.0 1874.9 86915.8 53711.0 

70 10 RVNS-S-30 77666.1 6134.8 1402.0 85202.8 55334.9 

70 10 RVNS-M-30 79034.9 5461.3 2168.8 86664.9 54040.2 

70 25 ACF 79472.6 8687.8 2578.7 90739.0 47538.8 

70 25 RVNS-S-5 77239.9 7738.3 1737.2 86715.3 51421.2 

70 25 RVNS-M-5 77988.8 7193.0 2518.7 87700.4 50419.9 

70 25 RVNS-S-30 77471.1 7226.8 1739.6 86437.5 51629.7 

70 25 RVNS-M-30 77631.9 6723.8 2163.3 86519.0 51538.3 

90 10 ACF 109060.5 14372.5 1497.5 124930.6 50216.7 

90 10 RVNS-S-5 104864.7 17904.3 1046.3 123815.2 47945.3 

90 10 RVNS-M-5 100869.7 22042.8 1183.0 124095.4 45497.9 

90 10 RVNS-S-30 102461.6 18553.3 920.9 121935.7 49229.0 

90 10 RVNS-M-30 99662.0 21375.3 1012.8 122050.0 47793.5 

90 25 ACF 109792.9 20659.0 1791.6 132243.5 41794.0 

90 25 RVNS-S-5 106316.5 25910.8 1402.5 133629.8 35981.5 

90 25 RVNS-M-5 106319.3 25491.3 1374.5 133185.0 36839.4 

90 25 RVNS-S-30 102140.9 27098.0 1139.3 130378.1 37835.5 

90 25 RVNS-M-30 100844.1 27373.3 1224.1 129441.4 38675.9 

6 CONCLUSIONS AND FUTURE WORK 

We designed a simulation-based optimization procedure for production planning in wafer fabs. A 
simulation model of a large-sized wafer fab is applied to assess the proposed method. We observed from 
the experiments that the simulation-based optimization approach is able to outperform the ACF formu-
lation, a production planning formulation based on nonlinear CFs, under many experimental conditions. 
However, the simulation-based optimization scheme clearly required more computing time. Overall, it is 

possible to apply simulation-based optimization for large-scaled wafer fab models. 
There are several directions for future research. First of all, the experiments can be repeated in a rolling 

horizon setting using the martingale model of forecast evolution (MMFE) due to Heath and Jackson (1994) 
to model demand uncertainty. Another interesting research avenue consists in comparing the gradient-based 
approach considered by Kacar and Uzsoy (2015) with the simulation-based optimization approach proposed 
in the present paper. Moreover, we are interested in solving the problem considered by Ziarnetzky and 

Mönch (2017) with integer-valued decision variables using simulation-based optimization. It is expected 
that the method proposed in the present paper can also be applied to the strategic network design problem 
with renewable energy resources studied by Werner et al. (2022). Here, however, one major obstacle is the 
need to simulate an entire semiconductor supply chain. 
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