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ABSTRACT

We consider a scheduling problem for a two-stage flexible flow shop with maximal time lags between
consecutive operations motivated by semiconductor manufacturing. The jobs have unequal ready times and
both initial and inter-stage time lags. The total weighted tardiness is the performance measure of interest.
A heuristic scheduling framework using genetic programming (GP) to automatically discover priority
indices is applied to the scheduling problem at hand. Computational experiments are carried out on
randomly generated problem instances. The results are compared with the ones of a reference heuristic
based on a biased random-key genetic algorithm combined with a backtracking procedure and a mixed-
integer linear programming-based decomposition approach. The results show that high-quality schedules
are obtained in a short amount of computing time using the GP approach.

1 INTRODUCTION

Dispatching and scheduling is a crucial production control function in most semiconductor wafer
fabrication facilities (wafer fabs). Production control for wafer fabs is complicated due to the processing
conditions and the sheer size of the wafer fabs in terms of number of machines, products, and operations.
The moving objects in these facilities are jobs that consist of up to 25 wafers, thin discs often made of
silicon or gallium arsenide. Maximal time lags are an important process restriction in wafer fabs (Han and
Lee 2024; Schorn and M6nch 2024). Maximal time lags are installed by process engineers to prevent native
oxidation and contamination effects on the wafer surface (Scholl and Domaschke 2000). In the case of
maximal time lag violations, it is likely that the affected jobs will be scrapped. Maximal time lags in wafer
fabs can be nested, i.e. overlapping. The appropriate treatment of maximal time lags in production control
approaches for wafer fabs is still not very well understood (May et al. 2024). It is well known that
conventional dispatching rules that are myopic by nature have difficulties to deal with time lags. In this
paper, we will demonstrate that this is not the situation for automatically discovered dispatching rules using
GP (Branke et al. 2016) which are able to learn to avoid maximal time lag violations. We will demonstrate
that such advanced dispatching strategies are able to determine schedules using a short amount of
computing time (CT) that can outperform those provided by metaheuristic approaches hybridized with time-
consuming mixed-integer linear programming (MILP)- or constraint programming (CP)-based
decomposition approaches (Klemmt and Mdnch 2012). GP approaches are only applied so far to
oversimplified scheduling situations with time lags (Quin et al. 2021). In the present paper, we still apply
our approach only to a simplified model problem which is a two-stage flexible flow shop. However, in
contrast to previous work the maximal time lags might have different lengths and initial maximal time lags
are also taken into account.

The main purpose of the present paper is to compare the performance of the heuristic scheduling
framework proposed by Schorn and Ménch (2025) for the special case of non-batching machines and the
total weighted tardiness measure with a job-based decomposition approach which extends a scheduling
approach proposed by Klemmt and Mdnch (2012) for a slightly different problem. Such a comparison is
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desirable since reference approaches for flexible flow shops or even job shops with maximal time lags are
still rare.

The paper is organized as follows. In the next section, we describe the scheduling problem at hand,
discuss related work, and derive research questions. The different solution approaches including the GP
approach are discussed in Section 3. Results of computational experiments are reported in Section 4.
Finally, conclusions and future research directions are provided in Section 5.

2 PROBLEM SETTING AND ANALYSIS

2.1  Scheduling Problem

We consider a two-stage flexible flow shop with m, identical parallel machines on each stage s € {1,2}.
Jobs j =1, ...,n must be scheduled. Each job belongs to a family f = 1, ..., F, where all jobs of a family
have the same processing time p;; for their operation executed on stage s. Furthermore, each job j has a
ready time ; = 0, a due date d;, and a weight w; which is used to express the importance of job j. The
completion time of job j is C;. The total weighted tardiness (TWT) measure is given by 2}‘21 w;T; for the

tardiness T := (Cj - dj)+ of job j. Here, we abbreviate x* := max(x, 0). The start time of the operation
of job j on stage s is denoted by Sg;. A maximal time lag of length t,,; between the operations executed
on both stages is ensured for job j if we have S,; < S;; + t;,;. Initial time lags are only possible for the
first stage. They are satisfied if S;; < t;; holds. Using the three-field notation for deterministic machine
scheduling, the scheduling problem is represented by

FF2|rj, ty;,t15j|TWT, (1)

where FF2 and r; refer to a two-stage flexible flow shop and unequal ready times, respectively. Initial and

inter-stage, i.e. regular time lags are also indicated. Problem (1) is NP-hard since the special case F2||TWT
with no time lags already has this property. Hence, we have to look for efficient heuristics to tackle large-
sized instances of (1) using an appropriate amount of CT.

2.2 Discussion of Related Work and Research Questions

Dealing with maximal time lags in wafer fabs is challenging (Mdnch et al. 2011). Rule-based approaches
and deterministic scheduling approaches are established methods. The rule-based approaches are formed
by dispatching strategies combined with stopping strategies to avoid time lag violations (cf. Scholl and
Domaschke 2000; Zhang et al. 2016; Kopp et al. 2020 among others). A stopping strategy is similar to an
order release approach, i.e., a job is set on hold if it is likely that a time lag will be violated if the job is
processed next. It is well-known that for nested time lags dispatching is not appropriate since dispatching
rules are myopic. Scheduling approaches are either MILP- or CP-based in combination with job-based
decomposition approaches by solving a series of smaller scheduling problems or based on metaheuristics.
Decomposition heuristics and metaheuristics can be hybridized. Examples of the first class are Klemmt and
Monch (2012), Jung et al. (2014), and Cailloux and Mdnch (2019). Metaheuristics based on neighborhood
search that accept moves only if time lags are not violated belong to the second class of approaches (cf.
Yugma et al. 2012; Knopp 2016; Han and Lee 2023). Simulated annealing, greedy randomized adaptive
search, and genetic algorithms (GAs) are applied in these papers to solve flow-shop and job-shop
scheduling problems with maximal time lags. On the one hand, rules are more reactive and faster than
deterministic scheduling approaches based on MILP, CP, or metaheuristics. On the other hand, designing
the dispatching and stopping rules is manually carried out and time-consuming since it must be supported
by discrete-event simulation. Consequently, a more automated discovery of such rules is desirable for
production control problems with maximal time lags. GP is popular to automatically discover dispatching
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rules (cf. Branke et al. 2016; Zhang et al. 2024 for related surveys). Complex job shops motivated by wafer
fabs are tackled using GP and discrete-event simulation by Hildebrandt et al. (2014) and Kiick et al. (2017).
GP approaches are proposed by Braune et al. (2022) and Ferreira et al. (2022) to discover dispatching rules
for flexible job shops. However, maximal time lags are not taken into account in these papers.

The most pertinent work for the present paper is the GP approach proposed by the two present authors
in Schorn and Monch (2025) for a two-stage flexible flow shop with batch processing machines and a
blended performance measure including energy costs and TWT. A batch is a set of jobs that can be
processed at the same time on a batch processing machine. In the present paper, we are interested in
answering the following two research questions:

1. RQ1: Is it possible to learn dispatching rules that are able to avoid violations of maximal time lags as
much as possible and are competitive with deterministic machine scheduling approaches?

2. RQ2: How robust are the learned rules to changes in structural properties of the problem instances
used for training purposes when applied to instances with different properties?

RQL1 is an interesting question given the fact that especially manually designed dispatching rules are
myopic by nature, whereas RQ2 is crucial taking into account the large computational burden of GP
approaches due to the learning.

3 SOLUTION APPROACHES

3.1  Job-based Decomposition Heuristic

We extend the approach proposed by Klemmt and Mdnch (2012) for an arbitrary flexible flow shop and
total tardiness (TT) to the present situation of a two-stage flow shop with TWT measure. The original list
scheduling approach works as follows:

1. Sort the n jobs in non-decreasing manner according to the earliest due date (EDD) rule.
2. Use list scheduling to insert the jobs in the order derived in Step 1 into the schedule. If maximal time
lags are violated, use backtracking to repair the schedule.

A second approach is designed by solving a series of MILP instances. We always take the first i < n
jobs from the sorted list obtained from Step 1 into account. The MILP formulation for the scheduling
problem is described in Klemmt and Mdnch (2012). This is repeated until all jobs are scheduled. In each
new MILP instance, the availability of the machines is updated, taking the scheduling decisions from the
previous iteration into account.

First, we replace the EDD rule in the approach of Klemmt and Mdnch (2012) by the following global
Apparent Tardiness Cost (ATC) dispatching rule as proposed by Ménch and Zimmermann (2004), since it
is well known that this rule often leads to small TWT values. The index value I; of a job j at time ¢ is given

by:
;@) =w;/py e~ (4j=p1j+(rj=0)=(w2j+P2))" /P )

where k is a look-ahead parameter that scales the slack and p is the average processing time of the not yet
scheduled jobs on the first stage, and w,; is a waiting time estimate of job j on the second stage calculated

iteratively by executing the schedule in a deterministic forward manner. For the first iteration, we initialize

‘US) = p,, where the superscript (1) indicates the current iteration. After calculating the expected waiting

times, the index values of all jobs are computed according to (2). In the following iterations, the waiting

times are updated by wglj) =0-vy): wélj_l) + v * q2j, where g5, computed in the previous iteration,
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represents the current waiting time for the second stage after executing the schedule. The current waiting
time is the time elapsed between the completion of the job on the first stage and its starting time on the
second stage. The smoothing factor y € [0,1] is used to weigh the waiting time of the previous iteration
and the current waiting time. This procedure terminates when a pre-defined number of iterations is reached
or when the waiting time between two consecutive iterations is less than a prescribed threshold. If a regular
time lag is violated, a backtracking procedure is applied that iteratively increases the starting time of the
corresponding job on the first stage until the time lag is not violated anymore. Note that due to machine
availabilities resulting from previously scheduled jobs, this can also delay the start time on the second stage.

The list scheduling approach is further improved by proposing job sequences, i.e. permutations, using
a biased random-key GA (BRKGA) (Gongalves and Resende 2011). We encode the n jobs by an array
(rky, ...,Tk,) where job j is represented by a random key rk; € (0,1). Job s is before job ¢ in the
permutation if rkg < rk, holds. A population of random-key vectors, called chromosomes, is considered.
It is divided into a non-elite set and an elite set, which contains the best-performing chromosomes. A
parameterized uniform crossover is applied where one of the parent chromosomes belongs to the elite set.
Immigration is used to diversify the population. The list scheduling technique with backtracking from
Klemmt and Ménch (2012) is used to decode each job sequence into a feasible schedule to evaluate the
fitness of the chromosome by its TWT value. Finally, the best schedule obtained by the BRKGA is
improved using the job sequence that leads to this schedule and applying the MILP-based decomposition
heuristic from Klemmt and Ménch (2012) where we only replace the TT objective function by the one for
TWT in the MILP formulation.

3.2  Genetic Programming Approach

We apply the heuristic scheduling framework of Schorn and Monch (2025) to the special case of non-
batching machines on each stage. It consists of four main procedures, some of them are partially
parameterized using GP. The procedures are

iterative decomposition approach (IDA)

time window decomposition (TWD) approach
stopping strategy (STS)

backtracking procedure (BTP).

roOdE

We first briefly summarize the four procedures belonging to the framework. The purpose of the IDA
proposed by Tan et al. (2018) is to compute internal due dates for the operations to be scheduled on the first
stage and ready times for the operations on the second stage. The IDA procedure is based on the parameters
a, B € [0,1] that weigh the ready times and the waiting times of the operations resulting from the schedule
obtained in the previous iteration. Overall, [,,,,, iterations are performed. Due to space limitations, we avoid
describing the details and refer to Tan et al. (2018).

The outcome of the IDA allows to decompose the flow-shop scheduling problem into two subproblems
for parallel identical machines. To compute the schedules for each stage within the IDA procedure, we use
a list scheduling scheme coupled with the TWD approach similar to that proposed for batch scheduling by
Monch et al. (2005). However, since each machine can only process one job at a time in the present
situation, the TWD approach basically ensures that only jobs are considered that are either ready for
processing or arrive within a certain time window whose length is a fairly small multiple of the average
processing time of the operations. A given dispatching rule is used to select the job from the time window
to be processed next. This procedure is repeated whenever a machine or a new operation becomes available.
For more details, we refer to Schorn and Monch (2024). We use Ag 4, @S @ parameter that sets the
maximum length of the time window starting from time ¢ for stage s. On contrast to the original TWD
version, we consider all time windows with 0 < A < Ag ;.4 at each decision point. The job with the highest
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priority index j* and the corresponding A value are chosen. Note that this allows for overlapping of time
windows.

The TWD procedure is applied for both stages. However, when scheduling the operations for the first
stage, a STS that controls the scheduling of jobs is applied before job j* is added to the schedule. The STS
ensures that no more than § jobs without initial time lags become available to be processed on the second
stage within a short time span, making it easier to satisfy regular time lags. For a machine k that becomes
available at time t, the proposed STS procedure works as follows:

1. Introduce a list C.q:, to store the estimated completion times of jobs on the second stage. It is
initialized with C,¢:, == @, and Czj is the estimated completion time of job j on the second stage.

2. When a machine of the first stage becomes available at time t, we update C,g, by setting Cogr =
Cost2\{C> j|€2 i< t} because we expect that the corresponding jobs have finished processing on the
second stage by time t.

3. Next, we check whether j* is subject to an initial time lag or not. If either this is the case or if
|Cest2| < 6 holds, j* is schedulable.

4, If j is schedulable, the completion time on the second stage is estimated by Czj»« =

Sijo + o + iy, iftyyr < oo
{Slj* + FF - p2,  otherwise.
Here, FF denotes an estimate of the flow factor (Ménch et al. 2013). If j* has no initial time lag, we
update Cosez = Cesez U Cyj+ . Finally, j* is scheduled to start processing on machine k at time S;- .

5. If j* is not schedulable, the procedure terminates, the availability time of machine k is increased by
one and the TWD procedure is performed again.

Note that to prevent an increase in the number of initial time lag violations due to the use of the proposed
STS, jobs with initial time lags do not affect C,5:,. When scheduling the operations of the jobs on the
second stage, a BTP is applied if the selected start time of job j* leads to a violation of its regular time lag,
I.e., if S5+ > t;,;+ + S1+ holds. The main idea consists in delaying the start of the first operation of j* on
the first stage by setting Sy j- := S, — t1,+. Due to space limitations, we refer to Klemmt and Monch
(2012) for details. The interaction of the four procedures of the framework is shown in Figure 1.

—>|IDA: calculate internal due dates and ready times |

|

repeat for both stages:
[while unscheduled jobs exist]

|TWD: choose job to schedule next |

[if stage = 1]

|STS: decide whether or not more jobs can currently be scheduled |

[if stage = 2]

|BTP: decide if it is beneficial to adjust the schedule to reduce the number of time lag violations |

Continue with next combination of v, 3,

[if objective function value improved]

—| update best schedule |

Figure 1: Procedures of the heuristic scheduling framework.

Itis crucial to determine suitable priority indices for the operations, since they are used within the TWD
procedure. Moreover, the TWD and STS procedures need to be parameterized with respect to the properties

1761



Schorn and Moénch

of the jobs. To accomplish this in an automated manner, we use GP with the chromosome design
(1,13, A maxs Bzmax, 6). Here, I are the priority indices discovered by GP, and Ag 4, is the value to
parameterize the TWD procedure for stage s. The § quantity is used to parameterize the STS. For the GP
approach, the priority indices are represented as rooted expression trees that are not limited by a fixed
height, allowing the creation of priority indices of variable length (Zhang et al. 2024). Each node in a tree
contains either a function or a terminal. By traversing the tree, the corresponding priority index is obtained
and a computable expression is created. This expression is then used to calculate the index values of the
jobs. The Ag 1,4, and & quantities are represented by an array. The set of terminals used to develop the
priority indices consists of both tardiness- and time lag-related terminals and is summarized in Table 1.

Table 1: Terminals used by the GP approach.

Terminal Description

d (internal) due date of the current job

r (internal) ready time of the current job on the current stage

p processing time of the current job on the current stage

q stage-dependent slack for the current job to meet the due date

w weight of the current job

t current time

pt average processing time of all jobs on the current stage

pt average processing time of the remaining jobs on the current stage

% length of the time lag of the current job on the current stage or d

g slack g: = e‘(tf‘t)Jr/ﬁ for the time lag of the current job on the current stage or L

g slack g: = t — ¢; for the time lag of the current job j on the current stage or —m

C constant value from {1, 2, ..., 9}

The terminal v only takes the size of a time lag if the current job has a time lag on the current stage that
can still be fulfilled, otherwise v takes the value of the terminal d. Under the same conditions, the terminals
g and g evaluate to the time lag-related values, otherwise they take the value L and —m, respectively, where
L is an infinitesimal small positive number, and r is the penalty value when a time lag is violated.
Depending on the stage, t; takes the value of either ¢ or t;,;.

The set of functions used by GP are addition, subtraction, multiplication, protected division (a/b = 1
if b = 0), maximum and minimum of two values, powers, positive part a*, negative value, and exponential
function (exp (a)), where a and b are placeholders for the operands. To develop I, we use a subtree
crossover and a swap tree mutation as genetic operators (Schorn and Monch 2024). As both indices need
to work well together, they are developed in an alternating manner. Starting from the first stage, the stage
for which the index is developed changes after each generation. The values of Ag ., are developed
together with the corresponding indices. A one-point crossover operation (Michalewicz 1996) is applied.
When mutation is performed, the value of Ag ., is taken from the parent chromosome, randomly increased
or decreased by one, and then passed on to the child chromosome. The same operators are applied for &,
but the value of § is only changed by genetic operators when developing the indices for the first stage.

Developing suitable chromosomes is divided into a training and a validation phase. During the training
phase, the chromosomes are trained on a given set of problem instances. By providing the priority indices
and the values to parameterize the TWD and STS procedures, the resulting schedules can be used to
compute the performance measure values and use them as fitness values of the chromosomes. The genetic
operators are applied based on the fitness values, and new chromosomes are created for the next generation.
The training phase terminates when either a pre-defined number of generations or a prescribed CT is
reached. To validate the performance of the ten best-performing chromosomes, they are applied in the
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validation phase on a larger set of problem instances that have the same properties as the set of instances
used in the training phase. After the training phase and the validation phases, we obtain the lowest objective
function value OFV := TWT + m - TV achieved in the validation phase, where TV is the number of time
lag violations. We then extract the values from the chromosome that achieved the OFV values and store
them, along with the OFV value and the properties of the solved problem instances in a dataset T'S. The set
is enriched with each training phase and the subsequent validation phases performed. Solving new problem
instances based on the created dataset is called the evaluation phase. Here, it is first searched for an entry
in TS whose instance properties are close to the properties of the new instance to parameterize the
framework with respect to the properties of the new instance.

4 COMPUTATIONAL EXPERIMENTS

4.1  Design of Experiments and Implementation Issues

Randomly generated problem instances with different properties are used to train the GP. We expect that
the performance of the different approaches depends on the ready time and due date setting and the presence
of time lags. The applied problem instance generation scheme is summarized in Table 2. Here, Ula, b] and
DU|a, b] refer to a continuous uniform distribution over [a, b] and to a discrete uniform distribution over
the set of integers {a, ..., b}, respectively.

Table 2: Problem instance generation scheme to train the GP.

Factor Level Count
my,m, my,m; = 4 1
n n =100 1
F F=4 1
o p1j,D2j € {2,4,10,16, 20} with probabilities 1
P1j:P2j {0.2,0.2,0.3,0.2, 0.1}, respectively
1 1
Tj ri~DU [O' l@ (m_1 j=1P1j +m_22?=1 sz)” 1
0 0 €{0.4,0.6,0.8} 3
FF FF € {0.6,0.8,1.0,1.2} 4
t1j — 1;~DU[1/n X% p1j,1/my X pyj] With probability tp, €
t1j,thy 2

{0.1, 0.2}, oo otherwise

ti2jitP12 | tizj = 2.5p;; with probability tp;, € {0.2,0.4,0.6}, o otherwise 3

Due to the defined levels, a total of 72 different factor combinations is considered. For each
combination, 25 independent problem instances are generated. Five instances per combination are solved
in the training phase, while the remaining 20 instances are used for validation (Schorn and Mdnch 2024).
To appropriately penalize time lag violations, we set T = 200.

Given the instance generation scheme from Table 2, each entry in TS consists of tuples
(OFV, 11,13, A maxs B max, 0,0, FF, tpy, tp12), Where g is a distribution parameter for the ready times, FF
denotes the flow factor, and tp; and tp;, are the probabilities of initial and regular time lags, respectively.

A

When a new instance is solved during the evaluation phase, we estimate §:=
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d;—r;j

En.(in 4 Llym ) i o= lyn i o M <<t
n J=17}/ m12]:1p1] +m221:1P2] , FF ._nZ,:1p1j+p2j, tpq ._n|{]|1_]_n,t1]qtoo}|, and

[ % [{i|1 <j < n ty5; # }|. Since only a short amount of CT is needed to solve a new instance

during the evaluation phase, we select the five best matching entries from TS with 7 := argmin(max{|é —
i€ETS

oil, |FF — FFy|, |tp; — tpy;l, 18D12 — tp1:il}) . The parameter values (I, Iy, Ay max, Aomax 8) OF the

entries labeled by t are then used to parameterize the scheduling framework to solve the new instance.

The GP operates on a population with 400 chromosomes and with a crossover and mutation probability
of 80% and 20%, respectively. The replacement rate is 50%. The tree structures can have a maximum height
of four when created and can grow to a maximum height of eight during the process. Each node can have
a maximum of three child nodes. The GP is trained for 100 generations or 7200s of CT, whichever is
reached first. To reduce the computational effort required to train the GP, some procedures are modified
for the training phase based on insights from preliminary experiments. First, we refrain from using the IDA
procedure, since it is sufficient to apply the IDA procedure during validation. To obtain internal due dates
for the training phase, the slack of each job is evenly distributed over both stages. Moreover, the search
space of the GP is restricted by defining lower and upper bounds for Ag .4, and &8, ensuring that genetic
operators are only applied if they do not result in a violation of 2 < Ag ;15 < 12and 4 < 6 < 16. The
chromosomes are initialized using A 4, ~DU[2,12] and §~DU[8,12]. Finally, only one value A~DU|[O0,
Agmax] is considered during the TWD procedure.

To apply the IDA procedure during the validation and evaluation phases, the values for a and g are
taken independently from the grid a, 8 € {0.0,0.25,...,1}. Three iterations are performed, i.e. [,,4, = 3.
After conducting preliminary experiments, the ATC dispatching rule used in the reference heuristic is
parameterized with y := 0.5. Values for k are taken from the grid x = 0.5k for k = 1, ..., 10. For each
value of k, three iterations are performed. The BRKGA is performed for a CT of 600s. The maximum CT
per MILP instance is set to 30s, and each MILP instance takes a maximum of 7 := 10 jobs into account.

We conduct a series of experiments to assess the performance of the heuristic scheduling framework
during the evaluation phase. We start by evaluating the performance under conditions optimal for GP by
applying the framework to 72 new problem instances with the same properties as the instances used to train
the GP. To evaluate the robustness, several experiments with 100 problem instances each are performed.
First, we create instances with a scheme based on distributions instead of fixed values by usingn = x -
F,x~DUJ[15,35],0~U[0.4,0.8], FF~U[0.6,1.2], tp,~U[0.1,0.2], and tp,,~U[0.2, 0.6]. All other values
remain unchanged. In addition, we use this scheme to generate instances with much tighter ready times than
the instances used for training by setting o~U[0.1,0.2]. Furthermore, we perform experiments with a
different number of families and widely varying but fixed processing times per family by adjusting the
generation scheme using F~DU[2,8] and x~DU[[60/F],[140/F]]. The processing times for the
operations executed on the first and second stage are set as p;f == (2,20,4,16,2,20,4,16) and p,5 =
(4,16,2,20,4,16,2,20) for f =1, ...,8, respectively.

All algorithms are coded in the C++ programming language. The GP is implemented using the GaL.ib
framework (Wall 2025). The BRKGA is coded using the brkgaAPI framework (Tosso and Resende 2025).
IBM ILOG CPLEX Optimization Studio 12.7 is used for solving the MILPs. The computational
experiments are performed on a PC with an Intel Core i7-10700 with 2.90 GHz and 32 GB of RAM.

4.2 Results

To assess the performance, we report the average TWT value per solved instance obtained with the heuristic
scheduling framework and the reference heuristic, which will be denoted as HSF and BRKGA+MILP in
the following tables, respectively. In addition, we also report the percentage improvement achieved by the
framework over the reference heuristic. The results for the 72 problem instances with the same properties
as the instances used to train the GP are shown in an aggregated form in Table 3.

1764



Schorn and Ménch
The results shown in Table 3 indicate that the tightness of the ready times, i.e. the value of g, has the
highest impact on the results. The HSF achieves the highest improvements over the reference heuristic for
instances with high g values, suggesting that more loose ready times are beneficial for the framework.

Table 3: Results for problem instances with the same properties as the instances used for training.

Factor/Level HSF BRKGA+MILP Improvement
0=04 422.18 402.47 -4.90%
0=0.6 129.57 186.62 30.57%
0=038 49.69 79.50 37.50%
FF =0.6 286.43 307.60 6.88%
FF =0.8 209.64 247.13 15.17%
FF =1.0 168.01 198.57 15.39%
FF =1.2 137.84 138.16 0.23%
tp; = 0.1 200.37 221.15 9.40%
tp, = 0.2 200.59 224.58 10.68%
tpi2 = 0.2 195.98 220.09 10.95%
tpi, = 0.4 202.80 227.88 11.00%
tpiz = 0.6 202.65 220.63 8.15%

Overall 200.47 222.86 10.04%

Moreover, we can observe that a moderate value for the flow factor, i.e. FF € {0.8, 1.0}, yields notably
higher improvements compared to both lower FF = 0.6 and higher FF = 1.2 values. The probabilities of
initial tp; and regular time lags tp,, have only minor effects on the results. Under consideration of all
solved instances, an average improvement of 10.04% per instance is achieved. The results for the problem
instances generated using perturbed distributions are shown in Table 4.

Table 4: Results for problem instances generated with distributions.

Factor/Level HSF BRKGA+MILP Improvement

n < 80 278.91 298.44 6.54%

80 <n <100 373.19 395.82 5.72%
100<n <120 456.26 495.64 7.95%
n> 120 513.84 545.03 5.72%
0=<0.5 751.60 776.57 3.22%
05<0<0.6 388.98 425.36 8.55%
06<0<07 244.13 267.54 8.75%
0>07 197.57 231.13 14.52%

FF <0.8 524.21 543.12 3.48%
08<FF<1.0 428.55 471.65 9.14%
FF > 1.0 263.04 288.32 8.77%
tp; < 0.15 468.69 499.55 6.18%
tp, > 0.15 343.87 370.11 7.09%
tp1, < 0.4 426.06 453.17 5.98%
tpr, > 0.4 395.22 425.37 7.09%
Overall 431.60 461.80 6.54%
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From Table 4 we observe that the number of jobs n has no significant impact on the results, i.e., the
framework is robust with respect to problem instance sizes. Regarding the tightness of the ready times, we
can see in accordance with the results presented in Table 3 that a large value of g is beneficial for the
framework. The same can be observed for the flow factor FF, as larger improvements are achieved for
instances with FF > 0.8. Again, no major impact on the results depending on the probabilities for initial
tp; and regular time lags tp;, can be observed. However, the framework achieves slightly higher
improvements over the reference heuristic for instances including more jobs with time lags. In contrast to
solving the instances with the same properties as the instances used for training, selecting the five best
matching entries leads to a notable improvement in solution quality for the instances created with
distributions, as no exact matching entries exist in the dataset T'S. Taking all solved instances into account,
an average improvement of 6.54% over the reference heuristic is achieved by the framework. To visualize
the properties of the solved problem instances, we show the values of n, g, FF, tp, and tp,, for each of the
solved instances in Figure 2.
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Figure 2: Properties of the problem instances created with distributions.

The results presented in Table 4 and the properties illustrated in Figure 2 show that the framework is
robust and therefore able to create high-quality schedules for a stream of incoming problem instances with
different properties. For the special case with tighter ready times, the framework achieves an average TWT
value of 2165.08 per instance. In comparison, the reference heuristic achieves a lower average TWT value
of 2092.03, which represents a negative improvement of -3.49% for the framework relative to reference
heuristic. The performance of the framework is only slightly worse despite the fact that the GP is not trained
on instances with such tight ready times. However, this highlights the importance of creating a sufficiently
diverse dataset to make the framework adaptable and successfully applicable to problem instances with
different properties. The results for the experiments with different numbers of families and widely varying
but fixed processing times per family are shown in Table 5.

Table 5: Results for problem instances with different numbers of families.

Factor/Level HSF BRKGA+MILP Improvement
F=2 358.00 399.59 10.41%
F=3 190.14 211.41 10.06%
F=4 329.80 341.70 3.48%
F=5 180.79 193.55 6.59%
F=6 364.03 370.14 1.65%
F=7 378.50 386.59 2.09%
F=8 379.29 385.73 1.67%
Overall 320.26 335.29 4.48%
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From Table 5 we can observe that a small number of different families is beneficial for the framework.
Interestingly, the highest improvements per instance compared to the reference are achieved for F € {2, 3},
even though the GP is trained on instances characterized by F = 4. With a larger number of families, i.e.
with F € {6, 7, 8}, the improvement compared to the reference heuristic decreases.

Considering all problem instances solved during the experiments, neither the application of the
framework nor the reference heuristic result in any time lag violations. Due to the applied error function,
the parameters o, FF, tp,, tp;, are the decisive selection criteria in 29%, 33%, 14% and 24% of the cases,
respectively. Training the GP twice on the same factor combinations and storing the best chromosomes for
each factor combination in the dataset shows only small improvements in solution quality. Training the GP
with problem instances of different sizes n € {80,100, 120} also causes only a small effect. Because the
GP is trained on multiple factor combinations in parallel, the training takes around 8.4 hours or 30240
seconds. The average CT required by the framework to solve a new instance during the evaluation phase is
6.11 seconds. Solving a new instance with the reference heuristic takes around 900 seconds on average,
depending on the number of jobs.

5 CONCLUSIONS AND FUTURE WORK

A two-stage flexible flow-shop scheduling problem with maximal time lags was studied. We compared the
performance of a heuristic scheduling framework based on GP with a job-based decomposition approach
based on a BRKGA and a MILP-based improvement phase. We observed by designed computational
experiments that the GP approach is able to solve problem instances much faster than the decomposition
approach after enough time is spent for training the GP and thus creating a sufficiently diverse dataset. The
GP-based approach leads to high-quality schedules and is robust with respect to changes in the properties
of the instances used for training, validation, and evaluation.

There are several directions for future research. First of all, we are interested in extending the two
approaches from flow shops to job shops. This requires that discrete-event simulation must be used to assess
the schedules under process uncertainty. It is also interesting to design algorithms that take into account
overlapping maximal time lags.
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