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ABSTRACT 

We consider a scheduling problem for a two-stage flexible flow shop with maximal time lags between 

consecutive operations motivated by semiconductor manufacturing. The jobs have unequal ready times and 
both initial and inter-stage time lags. The total weighted tardiness is the performance measure of interest. 
A heuristic scheduling framework using genetic programming (GP) to automatically discover priority 
indices is applied to the scheduling problem at hand. Computational experiments are carried out on 
randomly generated problem instances. The results are compared with the ones of a reference heuristic 
based on a biased random-key genetic algorithm combined with a backtracking procedure and a mixed-

integer linear programming-based decomposition approach. The results show that high-quality schedules 
are obtained in a short amount of computing time using the GP approach. 

1 INTRODUCTION 

Dispatching and scheduling is a crucial production control function in most semiconductor wafer 
fabrication facilities (wafer fabs). Production control for wafer fabs is complicated due to the processing 
conditions and the sheer size of the wafer fabs in terms of number of machines, products, and operations. 

The moving objects in these facilities are jobs that consist of up to 25 wafers, thin discs often made of 
silicon or gallium arsenide. Maximal time lags are an important process restriction in wafer fabs (Han and 
Lee 2024; Schorn and Mönch 2024). Maximal time lags are installed by process engineers to prevent native 
oxidation and contamination effects on the wafer surface (Scholl and Domaschke 2000). In the case of 
maximal time lag violations, it is likely that the affected jobs will be scrapped. Maximal time lags in wafer 
fabs can be nested, i.e. overlapping. The appropriate treatment of maximal time lags in production control 

approaches for wafer fabs is still not very well understood (May et al. 2024). It is well known that 
conventional dispatching rules that are myopic by nature have difficulties to deal with time lags. In this 
paper, we will demonstrate that this is not the situation for automatically discovered dispatching rules using 
GP (Branke et al. 2016) which are able to learn to avoid maximal time lag violations. We will demonstrate 
that such advanced dispatching strategies are able to determine schedules using a short amount of 
computing time (CT) that can outperform those provided by metaheuristic approaches hybridized with time-

consuming mixed-integer linear programming (MILP)- or constraint programming (CP)-based 
decomposition approaches (Klemmt and Mönch 2012). GP approaches are only applied so far to 
oversimplified scheduling situations with time lags (Quin et al. 2021). In the present paper, we still apply 
our approach only to a simplified model problem which is a two-stage flexible flow shop. However, in 
contrast to previous work the maximal time lags might have different lengths and initial maximal time lags 
are also taken into account.  

The main purpose of the present paper is to compare the performance of the heuristic scheduling 
framework proposed by Schorn and Mönch (2025) for the special case of non-batching machines and the 
total weighted tardiness measure with a job-based decomposition approach which extends a scheduling 
approach proposed by Klemmt and Mönch (2012) for a slightly different problem. Such a comparison is 
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desirable since reference approaches for flexible flow shops or even job shops with maximal time lags are 
still rare. 

The paper is organized as follows. In the next section, we describe the scheduling problem at hand, 

discuss related work, and derive research questions. The different solution approaches including the GP 
approach are discussed in Section 3. Results of computational experiments are reported in Section 4. 
Finally, conclusions and future research directions are provided in Section 5.  

2 PROBLEM SETTING AND ANALYSIS 

2.1 Scheduling Problem 

We consider a two-stage flexible flow shop with 𝑚𝑠 identical parallel machines on each stage 𝑠 ∈ {1,2}. 

Jobs 𝑗 = 1, … , 𝑛 must be scheduled. Each job belongs to a family 𝑓 = 1, … , 𝐹, where all jobs of a family 

have the same processing time 𝑝𝑠𝑗 for their operation executed on stage 𝑠. Furthermore, each job 𝑗 has a 

ready time 𝑟𝑗 ≥ 0, a due date 𝑑𝑗, and a weight 𝑤𝑗 which is used to express the importance of job 𝑗. The 

completion time of job 𝑗 is 𝐶𝑗. The total weighted tardiness (TWT) measure is given by ∑ 𝑤𝑗𝑇𝑗
𝑛
𝑗=1  for the 

tardiness 𝑇𝑗 ≔ (𝐶𝑗 − 𝑑𝑗)
+

 of job 𝑗. Here, we abbreviate 𝑥+ ≔ max(𝑥, 0). The start time of the operation 

of job 𝑗 on stage 𝑠 is denoted by 𝑆𝑠𝑗. A maximal time lag of length 𝑡12𝑗 between the operations executed 

on both stages is ensured for job 𝑗 if we have 𝑆2𝑗 ≤ 𝑆1𝑗 + 𝑡12𝑗. Initial time lags are only possible for the 

first stage. They are satisfied if 𝑆1𝑗 ≤ 𝑡1𝑗 holds. Using the three-field notation for deterministic machine 

scheduling, the scheduling problem is represented by  

 

        𝐹𝐹2|𝑟𝑗, 𝑡1𝑗, 𝑡12𝑗|𝑇𝑊𝑇,          (1) 

 

where 𝐹𝐹2 and 𝑟𝑗 refer to a two-stage flexible flow shop and unequal ready times, respectively. Initial and 

inter-stage, i.e. regular time lags are also indicated. Problem (1) is NP-hard since the special case 𝐹2||𝑇𝑊𝑇 

with no time lags already has this property. Hence, we have to look for efficient heuristics to tackle large-

sized instances of (1) using an appropriate amount of CT. 

2.2 Discussion of Related Work and Research Questions 

Dealing with maximal time lags in wafer fabs is challenging (Mönch et al. 2011). Rule-based approaches 

and deterministic scheduling approaches are established methods. The rule-based approaches are formed 

by dispatching strategies combined with stopping strategies to avoid time lag violations (cf. Scholl and 

Domaschke 2000; Zhang et al. 2016; Kopp et al. 2020 among others). A stopping strategy is similar to an 

order release approach, i.e., a job is set on hold if it is likely that a time lag will be violated if the job is 

processed next. It is well-known that for nested time lags dispatching is not appropriate since dispatching 

rules are myopic. Scheduling approaches are either MILP- or CP-based in combination with job-based 

decomposition approaches by solving a series of smaller scheduling problems or based on metaheuristics. 

Decomposition heuristics and metaheuristics can be hybridized. Examples of the first class are Klemmt and 

Mönch (2012), Jung et al. (2014), and Cailloux and Mönch (2019). Metaheuristics based on neighborhood 

search that accept moves only if time lags are not violated belong to the second class of approaches (cf. 

Yugma et al. 2012; Knopp 2016; Han and Lee 2023). Simulated annealing, greedy randomized adaptive 

search, and genetic algorithms (GAs) are applied in these papers to solve flow-shop and job-shop 

scheduling problems with maximal time lags. On the one hand, rules are more reactive and faster than 

deterministic scheduling approaches based on MILP, CP, or metaheuristics. On the other hand, designing 

the dispatching and stopping rules is manually carried out and time-consuming since it must be supported 

by discrete-event simulation. Consequently, a more automated discovery of such rules is desirable for 

production control problems with maximal time lags. GP is popular to automatically discover dispatching 
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rules (cf. Branke et al. 2016; Zhang et al. 2024 for related surveys). Complex job shops motivated by wafer 

fabs are tackled using GP and discrete-event simulation by Hildebrandt et al. (2014) and Kück et al. (2017). 

GP approaches are proposed by Braune et al. (2022) and Ferreira et al. (2022) to discover dispatching rules 

for flexible job shops. However, maximal time lags are not taken into account in these papers. 
The most pertinent work for the present paper is the GP approach proposed by the two present authors 

in Schorn and Mönch (2025) for a two-stage flexible flow shop with batch processing machines and a 
blended performance measure including energy costs and TWT. A batch is a set of jobs that can be 
processed at the same time on a batch processing machine. In the present paper, we are interested in 
answering the following two research questions: 

 
1. RQ1: Is it possible to learn dispatching rules that are able to avoid violations of maximal time lags as 

much as possible and are competitive with deterministic machine scheduling approaches? 
2. RQ2: How robust are the learned rules to changes in structural properties of the problem instances 

used for training purposes when applied to instances with different properties? 
 

RQ1 is an interesting question given the fact that especially manually designed dispatching rules are 
myopic by nature, whereas RQ2 is crucial taking into account the large computational burden of GP 
approaches due to the learning. 

3 SOLUTION APPROACHES 

3.1 Job-based Decomposition Heuristic 

We extend the approach proposed by Klemmt and Mönch (2012) for an arbitrary flexible flow shop and 

total tardiness (TT) to the present situation of a two-stage flow shop with TWT measure. The original list 
scheduling approach works as follows: 
 
1. Sort the 𝑛 jobs in non-decreasing manner according to the earliest due date (EDD) rule. 
2. Use list scheduling to insert the jobs in the order derived in Step 1 into the schedule. If maximal time 

lags are violated, use backtracking to repair the schedule. 

 
A second approach is designed by solving a series of MILP instances. We always take the first 𝑛̃ < 𝑛 

jobs from the sorted list obtained from Step 1 into account. The MILP formulation for the scheduling 
problem is described in Klemmt and Mönch (2012). This is repeated until all jobs are scheduled. In each 
new MILP instance, the availability of the machines is updated, taking the scheduling decisions from the 
previous iteration into account. 

First, we replace the EDD rule in the approach of Klemmt and Mönch (2012) by the following global 

Apparent Tardiness Cost (ATC) dispatching rule as proposed by Mönch and Zimmermann (2004), since it 

is well known that this rule often leads to small TWT values. The index value 𝐼𝑗 of a job 𝑗 at time 𝑡 is given 

by: 

 

𝐼𝑗(𝑡) ≔ 𝑤𝑗 𝑝1𝑗⁄ 𝑒−(𝑑𝑗−𝑝1𝑗+(𝑟𝑗−𝑡)−(𝜔2𝑗+𝑝2𝑗))
+

𝜅𝑝̅⁄ ,  (2) 

 

where 𝜅 is a look-ahead parameter that scales the slack and 𝑝̅ is the average processing time of the not yet 

scheduled jobs on the first stage, and 𝜔2𝑗 is a waiting time estimate of job 𝑗 on the second stage calculated 

iteratively by executing the schedule in a deterministic forward manner. For the first iteration, we initialize 

𝜔2𝑗
(1)

≔ 𝑝2𝑗, where the superscript (𝑙) indicates the current iteration. After calculating the expected waiting 

times, the index values of all jobs are computed according to (2). In the following iterations, the waiting 

times are updated by 𝜔2𝑗
(𝑙)

≔ (1 − 𝛾) ∙ 𝜔2𝑗
(𝑙−1)

+ 𝛾 ∙ 𝑞2𝑗, where 𝑞2𝑗 , computed in the previous iteration, 
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represents the current waiting time for the second stage after executing the schedule. The current waiting 

time is the time elapsed between the completion of the job on the first stage and its starting time on the 

second stage. The smoothing factor 𝛾 ∈ [0,1] is used to weigh the waiting time of the previous iteration 

and the current waiting time. This procedure terminates when a pre-defined number of iterations is reached 

or when the waiting time between two consecutive iterations is less than a prescribed threshold. If a regular 

time lag is violated, a backtracking procedure is applied that iteratively increases the starting time of the 

corresponding job on the first stage until the time lag is not violated anymore. Note that due to machine 

availabilities resulting from previously scheduled jobs, this can also delay the start time on the second stage. 

The list scheduling approach is further improved by proposing job sequences, i.e. permutations, using 

a biased random-key GA (BRKGA) (Gonçalves and Resende 2011). We encode the 𝑛 jobs by an array 
(𝑟𝑘1, … , 𝑟𝑘𝑛)  where job 𝑗  is represented by a random key 𝑟𝑘𝑗 ∈ (0,1) . Job 𝑠  is before job 𝑡  in the 

permutation if 𝑟𝑘𝑠 ≤ 𝑟𝑘𝑡 holds. A population of random-key vectors, called chromosomes, is considered. 

It is divided into a non-elite set and an elite set, which contains the best-performing chromosomes. A 

parameterized uniform crossover is applied where one of the parent chromosomes belongs to the elite set. 

Immigration is used to diversify the population. The list scheduling technique with backtracking from 

Klemmt and Mönch (2012) is used to decode each job sequence into a feasible schedule to evaluate the 

fitness of the chromosome by its TWT value. Finally, the best schedule obtained by the BRKGA is 

improved using the job sequence that leads to this schedule and applying the MILP-based decomposition 

heuristic from Klemmt and Mönch (2012) where we only replace the TT objective function by the one for 

TWT in the MILP formulation. 

3.2 Genetic Programming Approach 

We apply the heuristic scheduling framework of Schorn and Mönch (2025) to the special case of non-

batching machines on each stage. It consists of four main procedures, some of them are partially 

parameterized using GP. The procedures are 
 

1. iterative decomposition approach (IDA) 

2. time window decomposition (TWD) approach 
3. stopping strategy (STS) 
4. backtracking procedure (BTP). 

 

We first briefly summarize the four procedures belonging to the framework. The purpose of the IDA 

proposed by Tan et al. (2018) is to compute internal due dates for the operations to be scheduled on the first 

stage and ready times for the operations on the second stage. The IDA procedure is based on the parameters 

𝛼, 𝛽 ∈ [0,1] that weigh the ready times and the waiting times of the operations resulting from the schedule 

obtained in the previous iteration. Overall, 𝑙𝑚𝑎𝑥 iterations are performed. Due to space limitations, we avoid 

describing the details and refer to Tan et al. (2018).  

The outcome of the IDA allows to decompose the flow-shop scheduling problem into two subproblems 

for parallel identical machines. To compute the schedules for each stage within the IDA procedure, we use 

a list scheduling scheme coupled with the TWD approach similar to that proposed for batch scheduling by 

Mönch et al. (2005). However, since each machine can only process one job at a time in the present 

situation, the TWD approach basically ensures that only jobs are considered that are either ready for 

processing or arrive within a certain time window whose length is a fairly small multiple of the average 

processing time of the operations. A given dispatching rule is used to select the job from the time window 

to be processed next. This procedure is repeated whenever a machine or a new operation becomes available. 

For more details, we refer to Schorn and Mönch (2024). We use Δ𝑠,𝑚𝑎𝑥  as a parameter that sets the 

maximum length of the time window starting from time 𝑡 for stage 𝑠. On contrast to the original TWD 

version, we consider all time windows with 0 ≤ Δ ≤ Δ𝑠,𝑚𝑎𝑥 at each decision point. The job with the highest 
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priority index 𝑗∗ and the corresponding Δ value are chosen. Note that this allows for overlapping of time 

windows. 

The TWD procedure is applied for both stages. However, when scheduling the operations for the first 

stage, a STS that controls the scheduling of jobs is applied before job 𝑗∗ is added to the schedule. The STS 

ensures that no more than 𝛿 jobs without initial time lags become available to be processed on the second 

stage within a short time span, making it easier to satisfy regular time lags. For a machine 𝑘 that becomes 

available at time 𝑡, the proposed STS procedure works as follows: 
 

1. Introduce a list 𝐶𝑒𝑠𝑡2  to store the estimated completion times of jobs on the second stage. It is 

initialized with 𝐶𝑒𝑠𝑡2 ≔ ∅, and 𝐶̃2𝑗 is the estimated completion time of job 𝑗 on the second stage. 

2. When a machine of the first stage becomes available at time 𝑡, we update 𝐶𝑒𝑠𝑡2 by setting 𝐶𝑒𝑠𝑡2 ≔

𝐶𝑒𝑠𝑡2\{𝐶̃2𝑗|𝐶̃2𝑗 ≤ 𝑡} because we expect that the corresponding jobs have finished processing on the 

second stage by time 𝑡. 

3. Next, we check whether 𝑗∗  is subject to an initial time lag or not. If either this is the case or if 

|𝐶𝑒𝑠𝑡2| < 𝛿 holds, 𝑗∗ is schedulable. 

4. If 𝑗∗  is schedulable, the completion time on the second stage is estimated by 𝐶̃2𝑗∗ ≔

{
𝑆1𝑗∗ + 𝑝2𝑗∗ + 𝑡12𝑗∗ ,  if 𝑡12𝑗∗ <  ∞

𝑆1𝑗∗ + 𝐹𝐹̂ ⋅ 𝑝2𝑗∗ ,      otherwise.
  

Here, 𝐹𝐹̂ denotes an estimate of the flow factor (Mönch et al. 2013). If 𝑗∗ has no initial time lag, we 

update 𝐶𝑒𝑠𝑡2 ≔ 𝐶𝑒𝑠𝑡2 ∪ 𝐶̃2𝑗∗ . Finally, 𝑗∗ is scheduled to start processing on machine 𝑘 at time 𝑆𝑗∗ . 

5. If 𝑗∗ is not schedulable, the procedure terminates, the availability time of machine 𝑘 is increased by 

one and the TWD procedure is performed again. 

 

Note that to prevent an increase in the number of initial time lag violations due to the use of the proposed 

STS, jobs with initial time lags do not affect 𝐶𝑒𝑠𝑡2. When scheduling the operations of the jobs on the 

second stage, a BTP is applied if the selected start time of job 𝑗∗ leads to a violation of its regular time lag, 

i.e., if 𝑆2𝑗∗ > 𝑡12𝑗∗ + 𝑆1𝑗∗  holds. The main idea consists in delaying the start of the first operation of 𝑗∗ on 

the first stage by setting 𝑆1𝑗∗ ≔ 𝑆2𝑗∗ − 𝑡12𝑗∗ . Due to space limitations, we refer to Klemmt and Mönch 

(2012) for details. The interaction of the four procedures of the framework is shown in Figure 1. 

 

 

Figure 1: Procedures of the heuristic scheduling framework. 

It is crucial to determine suitable priority indices for the operations, since they are used within the TWD 

procedure. Moreover, the TWD and STS procedures need to be parameterized with respect to the properties 
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of the jobs. To accomplish this in an automated manner, we use GP with the chromosome design 

(𝐼1, 𝐼2, ∆1,𝑚𝑎𝑥, ∆2,𝑚𝑎𝑥, 𝛿). Here, 𝐼𝑠 are the priority indices discovered by GP, and ∆𝑠,𝑚𝑎𝑥 is the value to 

parameterize the TWD procedure for stage 𝑠. The 𝛿 quantity is used to parameterize the STS. For the GP 

approach, the priority indices are represented as rooted expression trees that are not limited by a fixed 

height, allowing the creation of priority indices of variable length (Zhang et al. 2024). Each node in a tree 

contains either a function or a terminal. By traversing the tree, the corresponding priority index is obtained 

and a computable expression is created. This expression is then used to calculate the index values of the 

jobs. The Δ𝑠,𝑚𝑎𝑥 and 𝛿 quantities are represented by an array. The set of terminals used to develop the 

priority indices consists of both tardiness- and time lag-related terminals and is summarized in Table 1. 

Table 1: Terminals used by the GP approach. 

Terminal Description 

𝑑 (internal) due date of the current job 

𝑟 (internal) ready time of the current job on the current stage 

𝑝 processing time of the current job on the current stage 

𝑞 stage-dependent slack for the current job to meet the due date 

𝑤 weight of the current job 

𝑡 current time 

𝑝𝑡 average processing time of all jobs on the current stage 

𝑝𝑡̅̅̅ average processing time of the remaining jobs on the current stage 

𝑣 length of the time lag of the current job on the current stage or 𝑑 

𝑔 slack 𝑔: = 𝑒−(𝑡𝑗−𝑡)
+

/𝑝𝑡̅̅ ̅ for the time lag of the current job on the current stage or 𝐿  

𝑔̅ slack 𝑔̅: = 𝑡 − 𝑡𝑗 for the time lag of the current job 𝑗 on the current stage or −𝜋  

𝐶 constant value from {1, 2, … , 9} 

 

The terminal 𝑣 only takes the size of a time lag if the current job has a time lag on the current stage that 

can still be fulfilled, otherwise 𝑣 takes the value of the terminal 𝑑. Under the same conditions, the terminals 

𝑔 and 𝑔̅ evaluate to the time lag-related values, otherwise they take the value 𝐿 and −𝜋, respectively, where 

𝐿  is an infinitesimal small positive number, and 𝜋  is the penalty value when a time lag is violated. 

Depending on the stage, 𝑡𝑗 takes the value of either 𝑡1𝑗 or 𝑡12𝑗. 

The set of functions used by GP are addition, subtraction, multiplication, protected division (𝑎/𝑏 = 1 

if 𝑏 = 0), maximum and minimum of two values, powers, positive part 𝑎+, negative value, and exponential 

function (exp (a)), where 𝑎  and 𝑏 are placeholders for the operands. To develop 𝐼𝑠 , we use a subtree 

crossover and a swap tree mutation as genetic operators (Schorn and Mönch 2024). As both indices need 

to work well together, they are developed in an alternating manner. Starting from the first stage, the stage 

for which the index is developed changes after each generation. The values of Δ𝑠,𝑚𝑎𝑥  are developed 

together with the corresponding indices. A one-point crossover operation (Michalewicz 1996) is applied. 

When mutation is performed, the value of Δ𝑠,𝑚𝑎𝑥 is taken from the parent chromosome, randomly increased 

or decreased by one, and then passed on to the child chromosome. The same operators are applied for 𝛿, 

but the value of 𝛿 is only changed by genetic operators when developing the indices for the first stage.  

Developing suitable chromosomes is divided into a training and a validation phase. During the training 

phase, the chromosomes are trained on a given set of problem instances. By providing the priority indices 

and the values to parameterize the TWD and STS procedures, the resulting schedules can be used to 

compute the performance measure values and use them as fitness values of the chromosomes. The genetic 

operators are applied based on the fitness values, and new chromosomes are created for the next generation. 

The training phase terminates when either a pre-defined number of generations or a prescribed CT is 

reached. To validate the performance of the ten best-performing chromosomes, they are applied in the 
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validation phase on a larger set of problem instances that have the same properties as the set of instances 

used in the training phase. After the training phase and the validation phases, we obtain the lowest objective 

function value 𝑂𝐹𝑉 ≔ 𝑇𝑊𝑇 + 𝜋 ⋅ 𝑇𝑉 achieved in the validation phase, where 𝑇𝑉 is the number of time 

lag violations. We then extract the values from the chromosome that achieved the 𝑂𝐹𝑉 values and store 

them, along with the 𝑂𝐹𝑉 value and the properties of the solved problem instances in a dataset 𝑇𝑆. The set 

is enriched with each training phase and the subsequent validation phases performed. Solving new problem 

instances based on the created dataset is called the evaluation phase. Here, it is first searched for an entry 

in 𝑇𝑆  whose instance properties are close to the properties of the new instance to parameterize the 

framework with respect to the properties of the new instance. 

4 COMPUTATIONAL EXPERIMENTS 

4.1 Design of Experiments and Implementation Issues 

Randomly generated problem instances with different properties are used to train the GP. We expect that 

the performance of the different approaches depends on the ready time and due date setting and the presence 

of time lags. The applied problem instance generation scheme is summarized in Table 2. Here, 𝑈[𝑎, 𝑏] and 

𝐷𝑈[𝑎, 𝑏] refer to a continuous uniform distribution over [𝑎, 𝑏] and to a discrete uniform distribution over 

the set of integers {𝑎, … , 𝑏}, respectively.  

 

Table 2: Problem instance generation scheme to train the GP. 

Factor Level Count 

𝑚1, 𝑚2 𝑚1, 𝑚2 = 4 1 

𝑛 𝑛 = 100 1 

𝐹 𝐹 = 4 1 

𝑝1𝑗, 𝑝2𝑗 
𝑝1𝑗, 𝑝2𝑗 ∈ {2, 4, 10, 16, 20} with probabilities 

{0.2, 0.2, 0.3, 0.2, 0.1}, respectively 
1 

𝑤𝑗 𝑤𝑗~𝑈[0, 1] 1 

𝑟𝑗 𝑟𝑗~𝐷𝑈 [0, ⌊𝜚 (
1

𝑚1
∑ 𝑝1𝑗 +𝑛

𝑗=1
1

𝑚2
∑ 𝑝2𝑗

𝑛
𝑗=1 )⌋]. 1 

𝜚 𝜚 ∈ {0.4, 0.6, 0.8} 3 

𝑑𝑗 𝑑𝑗 ≔ 𝑟𝑗 + 𝐹𝐹(𝑝1𝑗 + 𝑝2𝑗) 1 

𝐹𝐹 𝐹𝐹 ∈ {0.6, 0.8, 1.0, 1.2} 4 

𝑡1𝑗, 𝑡𝑝1 
𝑡1𝑗 − 𝑟𝑗~𝐷𝑈[1/𝑛 ∑ 𝑝1𝑗

𝑛
𝑗=1 , 1/𝑚1 ∑ 𝑝1𝑗

𝑛
𝑗=1 ] with probability 𝑡𝑝1 ∈

{0.1, 0.2}, ∞ otherwise 
2 

𝑡12𝑗, 𝑡𝑝12 𝑡12𝑗 ≔ 2.5𝑝1𝑗 with probability 𝑡𝑝12 ∈ {0.2, 0.4, 0.6}, ∞ otherwise 3 

 

Due to the defined levels, a total of 72 different factor combinations is considered. For each 

combination, 25 independent problem instances are generated. Five instances per combination are solved 

in the training phase, while the remaining 20 instances are used for validation (Schorn and Mönch 2024). 

To appropriately penalize time lag violations, we set 𝜋 = 200. 

Given the instance generation scheme from Table 2, each entry in 𝑇𝑆  consists of tuples 

(𝑂𝐹𝑉, 𝐼1, 𝐼2, ∆1,𝑚𝑎𝑥, ∆2,𝑚𝑎𝑥, 𝛿, 𝜚, 𝐹𝐹, 𝑡𝑝1, 𝑡𝑝12), where 𝜚 is a distribution parameter for the ready times, 𝐹𝐹 

denotes the flow factor, and 𝑡𝑝1 and 𝑡𝑝12 are the probabilities of initial and regular time lags, respectively. 

When a new instance is solved during the evaluation phase, we estimate 𝜚 ≔
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2

𝑛
∑ 𝑟𝑗

𝑛
𝑗=1 (

1

𝑚1
∑ 𝑝1𝑗 +𝑛

𝑗=1
1

𝑚2
∑ 𝑝2𝑗

𝑛
𝑗=1 )⁄ , 𝐹𝐹̂ ≔

1

𝑛
 ∑

𝑑𝑗−𝑟𝑗

𝑝1𝑗+𝑝2𝑗
,𝑛

𝑗=1  𝑡𝑝̂1 ≔
1

𝑛
|{𝑗|1 ≤ 𝑗 ≤ 𝑛, 𝑡1𝑗 ≠ ∞}|,  and 

𝑡𝑝̂12 ≔
1

𝑛
|{𝑗|1 ≤ 𝑗 ≤ 𝑛, 𝑡12𝑗 ≠ ∞}|. Since only a short amount of CT is needed to solve a new instance 

during the evaluation phase, we select the five best matching entries from 𝑇𝑆 with 𝜏 ≔  argmin
𝑖∈𝑇𝑆

(max{|𝜚̂ −

𝜚𝑖|, |𝐹𝐹̂ − 𝐹𝐹𝑖|, |𝑡𝑝̂1 − 𝑡𝑝1𝑖|, |𝑡𝑝̂12 − 𝑡𝑝12𝑖|}) . The parameter values (𝐼1, 𝐼2, Δ1,𝑚𝑎𝑥, Δ2,max, 𝛿)  of the 

entries labeled by  𝜏 are then used to parameterize the scheduling framework to solve the new instance. 

The GP operates on a population with 400 chromosomes and with a crossover and mutation probability 

of 80% and 20%, respectively. The replacement rate is 50%. The tree structures can have a maximum height 

of four when created and can grow to a maximum height of eight during the process. Each node can have 

a maximum of three child nodes. The GP is trained for 100 generations or 7200s of CT, whichever is 

reached first. To reduce the computational effort required to train the GP, some procedures are modified 

for the training phase based on insights from preliminary experiments. First, we refrain from using the IDA 

procedure, since it is sufficient to apply the IDA procedure during validation. To obtain internal due dates 

for the training phase, the slack of each job is evenly distributed over both stages. Moreover, the search 

space of the GP is restricted by defining lower and upper bounds for Δ𝑠,𝑚𝑎𝑥 and 𝛿, ensuring that genetic 

operators are only applied if they do not result in a violation of 2 ≤ Δ𝑠,𝑚𝑎𝑥 ≤ 12 and 4 ≤ 𝛿 ≤ 16. The 

chromosomes are initialized using Δ𝑠,𝑚𝑎𝑥~𝐷𝑈[2,12] and 𝛿~𝐷𝑈[8,12]. Finally, only one value Δ~𝐷𝑈[0,

Δ𝑠,𝑚𝑎𝑥] is considered during the TWD procedure. 

To apply the IDA procedure during the validation and evaluation phases, the values for 𝛼 and 𝛽 are 

taken independently from the grid 𝛼, 𝛽 ∈ {0.0, 0.25, . . . , 1}. Three iterations are performed, i.e. 𝑙𝑚𝑎𝑥 ≔ 3. 

After conducting preliminary experiments, the ATC dispatching rule used in the reference heuristic is 

parameterized with 𝛾 ≔ 0.5. Values for 𝜅 are taken from the grid 𝜅 = 0.5𝑘 for 𝑘 = 1, … , 10. For each 

value of 𝜅, three iterations are performed. The BRKGA is performed for a CT of 600s. The maximum CT 

per MILP instance is set to 30s, and each MILP instance takes a maximum of 𝑛̃ ≔ 10 jobs into account. 
We conduct a series of experiments to assess the performance of the heuristic scheduling framework 

during the evaluation phase. We start by evaluating the performance under conditions optimal for GP by 
applying the framework to 72 new problem instances with the same properties as the instances used to train 
the GP. To evaluate the robustness, several experiments with 100 problem instances each are performed. 
First, we create instances with a scheme based on distributions instead of fixed values by using 𝑛 = 𝑥 ∙
𝐹, 𝑥~𝐷𝑈[15, 35], 𝜚~𝑈[0.4, 0.8], 𝐹𝐹~𝑈[0.6, 1.2], 𝑡𝑝1~𝑈[0.1, 0.2], and 𝑡𝑝12~𝑈[0.2, 0.6]. All other values 

remain unchanged. In addition, we use this scheme to generate instances with much tighter ready times than 
the instances used for training by setting 𝜚~𝑈[0.1, 0.2]. Furthermore, we perform experiments with a 
different number of families and widely varying but fixed processing times per family by adjusting the 
generation scheme using 𝐹~𝐷𝑈[2,8]  and 𝑥~𝐷𝑈[⌈60/𝐹⌉, ⌈140/𝐹⌉] . The processing times for the 
operations executed on the first and second stage are set as 𝑝1𝑓 ≔ (2, 20, 4, 16, 2, 20, 4, 16) and 𝑝2𝑓 ≔
(4, 16, 2, 20, 4, 16, 2, 20) for 𝑓 = 1, … ,8, respectively. 

All algorithms are coded in the C++ programming language. The GP is implemented using the GaLib 

framework (Wall 2025). The BRKGA is coded using the brkgaAPI framework (Tosso and Resende 2025). 

IBM ILOG CPLEX Optimization Studio 12.7 is used for solving the MILPs. The computational 

experiments are performed on a PC with an Intel Core i7-10700 with 2.90 GHz and 32 GB of RAM. 

4.2 Results 

To assess the performance, we report the average TWT value per solved instance obtained with the heuristic 

scheduling framework and the reference heuristic, which will be denoted as HSF and BRKGA+MILP in 
the following tables, respectively. In addition, we also report the percentage improvement achieved by the 
framework over the reference heuristic. The results for the 72 problem instances with the same properties 
as the instances used to train the GP are shown in an aggregated form in Table 3. 
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The results shown in Table 3 indicate that the tightness of the ready times, i.e. the value of 𝜚, has the 
highest impact on the results. The HSF achieves the highest improvements over the reference heuristic for 
instances with high 𝜚 values, suggesting that more loose ready times are beneficial for the framework. 

 

Table 3: Results for problem instances with the same properties as the instances used for training. 

Factor/Level HSF BRKGA+MILP Improvement 

𝜚 = 0.4 422.18 402.47 -4.90% 

𝜚 = 0.6 129.57 186.62 30.57% 

𝜚 = 0.8 49.69 79.50 37.50% 

𝐹𝐹 = 0.6 286.43 307.60 6.88% 

𝐹𝐹 = 0.8 209.64 247.13 15.17% 

𝐹𝐹 = 1.0 168.01 198.57 15.39% 

𝐹𝐹 = 1.2 137.84 138.16 0.23% 

𝑡𝑝1 = 0.1 200.37 221.15 9.40% 

𝑡𝑝2 = 0.2 200.59 224.58 10.68% 

𝑡𝑝12 = 0.2 195.98 220.09 10.95% 

𝑡𝑝12 = 0.4 202.80 227.88 11.00% 

𝑡𝑝12 = 0.6 202.65 220.63 8.15% 

Overall 200.47 222.86 10.04% 

 
Moreover, we can observe that a moderate value for the flow factor, i.e. 𝐹𝐹 ∈ {0.8, 1.0}, yields notably 

higher improvements compared to both lower 𝐹𝐹 = 0.6 and higher 𝐹𝐹 = 1.2 values. The probabilities of 

initial 𝑡𝑝1 and regular time lags 𝑡𝑝12 have only minor effects on the results. Under consideration of all 
solved instances, an average improvement of 10.04% per instance is achieved. The results for the problem 
instances generated using perturbed distributions are shown in Table 4. 

 

Table 4: Results for problem instances generated with distributions. 

Factor/Level HSF BRKGA+MILP Improvement 

𝑛 ≤ 80 278.91 298.44 6.54% 

80 < 𝑛 ≤ 100 373.19 395.82 5.72% 

100 < 𝑛 ≤ 120 456.26 495.64 7.95% 

𝑛 > 120 513.84 545.03 5.72% 

𝜚 ≤ 0.5 751.60 776.57 3.22% 

0.5 < 𝜚 ≤ 0.6 388.98 425.36 8.55% 

0.6 ≤ 𝜚 ≤ 0.7 244.13 267.54 8.75% 

𝜚 > 0.7 197.57 231.13 14.52% 

𝐹𝐹 ≤ 0.8 524.21 543.12 3.48% 

0.8 < 𝐹𝐹 ≤ 1.0 428.55 471.65 9.14% 

𝐹𝐹 > 1.0 263.04 288.32 8.77% 

𝑡𝑝1 ≤ 0.15 468.69 499.55 6.18% 

𝑡𝑝1 > 0.15 343.87 370.11 7.09% 

𝑡𝑝12 ≤ 0.4 426.06 453.17 5.98% 

𝑡𝑝12 > 0.4 395.22 425.37 7.09% 

Overall 431.60 461.80 6.54% 
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From Table 4 we observe that the number of jobs 𝑛 has no significant impact on the results, i.e., the 
framework is robust with respect to problem instance sizes. Regarding the tightness of the ready times, we 
can see in accordance with the results presented in Table 3 that a large value of 𝜚 is beneficial for the 

framework. The same can be observed for the flow factor 𝐹𝐹, as larger improvements are achieved for 
instances with 𝐹𝐹 > 0.8. Again, no major impact on the results depending on the probabilities for initial 
𝑡𝑝1  and regular time lags 𝑡𝑝12  can be observed. However, the framework achieves slightly higher 
improvements over the reference heuristic for instances including more jobs with time lags. In contrast to 
solving the instances with the same properties as the instances used for training, selecting the five best 
matching entries leads to a notable improvement in solution quality for the instances created with 

distributions, as no exact matching entries exist in the dataset 𝑇𝑆. Taking all solved instances into account, 
an average improvement of 6.54% over the reference heuristic is achieved by the framework. To visualize 
the properties of the solved problem instances, we show the values of 𝑛, 𝜚, 𝐹𝐹, 𝑡𝑝1 and 𝑡𝑝12 for each of the 
solved instances in Figure 2. 

Figure 2: Properties of the problem instances created with distributions. 

The results presented in Table 4 and the properties illustrated in Figure 2 show that the framework is 
robust and therefore able to create high-quality schedules for a stream of incoming problem instances with 
different properties. For the special case with tighter ready times, the framework achieves an average TWT 
value of 2165.08 per instance. In comparison, the reference heuristic achieves a lower average TWT value 

of 2092.03, which represents a negative improvement of -3.49% for the framework relative to reference 
heuristic. The performance of the framework is only slightly worse despite the fact that the GP is not trained 
on instances with such tight ready times. However, this highlights the importance of creating a sufficiently 
diverse dataset to make the framework adaptable and successfully applicable to problem instances with 
different properties. The results for the experiments with different numbers of families and widely varying 
but fixed processing times per family are shown in Table 5. 

 

Table 5: Results for problem instances with different numbers of families. 

Factor/Level HSF BRKGA+MILP Improvement 

𝐹 = 2 358.00 399.59 10.41% 

𝐹 = 3 190.14 211.41 10.06% 

𝐹 = 4 329.80 341.70 3.48% 

𝐹 = 5 180.79 193.55 6.59% 

𝐹 = 6 364.03 370.14 1.65% 

𝐹 = 7 378.50 386.59 2.09% 

𝐹 = 8 379.29 385.73 1.67% 

Overall 320.26 335.29 4.48% 
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From Table 5 we can observe that a small number of different families is beneficial for the framework. 
Interestingly, the highest improvements per instance compared to the reference are achieved for 𝐹 ∈ {2, 3}, 
even though the GP is trained on instances characterized by 𝐹 = 4. With a larger number of families, i.e. 

with 𝐹 ∈ {6, 7, 8}, the improvement compared to the reference heuristic decreases. 
Considering all problem instances solved during the experiments, neither the application of the 

framework nor the reference heuristic result in any time lag violations. Due to the applied error function, 
the parameters 𝜚, 𝐹𝐹, 𝑡𝑝1, 𝑡𝑝12 are the decisive selection criteria in 29%, 33%, 14% and 24% of the cases, 
respectively. Training the GP twice on the same factor combinations and storing the best chromosomes for 
each factor combination in the dataset shows only small improvements in solution quality. Training the GP 

with problem instances of different sizes 𝑛 ∈ {80, 100, 120} also causes only a small effect. Because the 
GP is trained on multiple factor combinations in parallel, the training takes around 8.4 hours or 30240 
seconds. The average CT required by the framework to solve a new instance during the evaluation phase is 
6.11 seconds. Solving a new instance with the reference heuristic takes around 900 seconds on average, 
depending on the number of jobs. 

5 CONCLUSIONS AND FUTURE WORK 

A two-stage flexible flow-shop scheduling problem with maximal time lags was studied. We compared the 
performance of a heuristic scheduling framework based on GP with a job-based decomposition approach 
based on a BRKGA and a MILP-based improvement phase. We observed by designed computational 
experiments that the GP approach is able to solve problem instances much faster than the decomposition 
approach after enough time is spent for training the GP and thus creating a sufficiently diverse dataset. The 
GP-based approach leads to high-quality schedules and is robust with respect to changes in the properties 

of the instances used for training, validation, and evaluation. 
There are several directions for future research. First of all, we are interested in extending the two 

approaches from flow shops to job shops. This requires that discrete-event simulation must be used to assess 
the schedules under process uncertainty. It is also interesting to design algorithms that take into account 
overlapping maximal time lags. 
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